248 research outputs found

    HDR Image Watermarking

    Get PDF
    In this Chapter we survey available solutions for HDR image watermarking. First, we briefly discuss watermarking in general terms, with particular emphasis on its requirements that primarily include security, robustness, imperceptibility, capacity and the availability of the original image during recovery. However, with respect to traditional image watermarking, HDR images possess a unique set of features such as an extended range of luminance values to work with and tone-mapping operators against whom it is essential to be robust. These clearly affect the HDR watermarking algorithms proposed in the literature, which we extensively review next, including a thorough analysis of the reported experimental results. As a working example, we also describe the HDR watermarking system that we recently proposed and that focuses on combining imperceptibility, security and robustness to TM operators at the expense of capacity. We conclude the chapter with a critical analysis of the current state and future directions of the watermarking applications in the HDR domain

    Watermarking of HDR images in the spatial domain with HVS-imperceptibility

    Get PDF
    This paper presents a watermarking method in the spatial domain with HVS-imperceptibility for High Dynamic Range (HDR) images. The proposed method combines the content readability afforded by invisible watermarking with the visual ownership identification afforded by visible watermarking. The HVS-imperceptibility is guaranteed thanks to a Luma Variation Tolerance (LVT) curve, which is associated with the transfer function (TF) used for HDR encoding and provides the information needed to embed an imperceptible watermark in the spatial domain. The LVT curve is based on the inaccuracies between the non-linear digital representation of the linear luminance acquired by an HDR sensor and the brightness perceived by the Human Visual System (HVS) from the linear luminance displayed on an HDR screen. The embedded watermarks remain imperceptible to the HVS as long as the TF is not altered or the normal calibration and colorimetry conditions of the HDR screen remain unchanged. Extensive qualitative and quantitative evaluations on several HDR images encoded by two widely-used TFs confirm the strong HVSimperceptibility capabilities of the method, as well as the robustness of the embedded watermarks to tone mapping, lossy compression, and common signal processing operations

    Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication

    Get PDF
    Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication

    An Effective chaos-based image watermarking scheme using fractal coding

    Get PDF
    AbstractThe image watermarking technology is a technique of embedding hidden data in an original image. In this paper, a new watermarking method for embedding watermark bits based on Chaos-Fractal Coding is given. A chaotic signal is defined as being deterministic, pseudo periodic and presenting sensitivity to initial conditions. Combining a chaos system with Fractal Coding plays an important role in the security, invisibility and capacity of the proposed scheme. The main idea of the new proposed algorithm for coding is to determine a set of selective blocks for steady embedding. Simulation results show that the CFC algorithm (Chaos-Fractal Coding) has a confident capacity. The embedding technique that proposed in this paper is quite general, and can be applied to the extracting scheme with demanded changes

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems
    corecore