3 research outputs found

    Enhanced the Weighted Centroid Localization Algorithm Based on Received Strength Signal in Indoor Wireless Sensor Network

    Get PDF
    A challenging problem that arises in the Wireless Sensor Network (WSN) is localization. It is essential for applications that need information about target positions, are inside an indoor environment. The Localization scheme presented in this experiment consists of four anchor nodes that change their position coordinates and one target node that is used to control the distance. The Localization algorithm designed in this paper makes use of the combination of two algorithms; the Received Strength Signal Indication (RSSI) and Weight Centroid Localization Algorithm (WCLA), called the RSSI-WCLA algorithm. The laboratory results show that the fusion between the RSSI-WCLA algorithm is outstanding than RSSI and WCLA algorithms itself in terms of localization accuracy. However, our proposed algorithm shows that the maximum error distance is less than 0.096m

    Indoor location identification technologies for real-time IoT-based applications: an inclusive survey

    Get PDF
    YesThe advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification.Supported in part by the Tertiary Education Trust Fund of the Federal Government of Nigeria, and in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement H2020-MSCA-ITN-2016 SECRET-72242
    corecore