59 research outputs found

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    A wavelength assignment and traffic control scheme in reservation slotted OBS rings

    Full text link

    Performance analysis of optical burst switching network

    Get PDF
    In this dissertation, after reviewing the new paradigm in the optical switching network invoked by the DWDM technology and studying the changes of the schemes, we design the new optical burst switching networks, analyze the performance of the proposed scheme and interpret the analysis results. For design point of view, the fairness guaranteeing scheme and burst blocking reduction schemes in the mesh networks, loss less burst transmission scheme in DWDM metro ring networks are considered. As a future broad band optical alternative, optical burst switching has been receive much focus. We review the property of the optical switching technologies such as optical packet switching, optical circuit switching, and optical burst switching. The benefits of the optical burst switching is illustrated. Even though optical burst switching has several advantage, it has intrinsic technology barrier. We study the research activities to remove the basic problem of optical burst switching. Optical deflection, optical burst segmentation, burst cloning, and burst piggy backing scheme is considered. To improve the network performance, we design optical burst switching network in mesh networks and metro ring networks. We also implement the proposed network by our own developed network test bench. We verify the proposed network performance by analyzing the network mathematically in terms of blocking rate, delay and throughput. The theoretical results are compared with the simulation results. The verification shows that our proposed schemes outperform those of the conventional scheme. Our mathematical models are also matched to the simulation results. The interpretation of the verification shows that our assumption and theoretical analysis is well designed. The results illustrate that the difference between the simulation results and mathematical results is within the considerable margin. The contribution of the thesis is that the performance improvement schemes in both of the mesh network and ring network are proposed and analyzed. By considering feasibility of the future optical networks, proposed scheme in this thesis is more deployable in commercial network in terms of the burst blocking rate and delay as well as the network stability

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Quality of service in optical burst switching networks

    Get PDF
    Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009Fundação para e Ciência e a Tecnologi

    Control plane routing in photonic networks

    Get PDF
    The work described in the thesis investigates the features of control plane functionality for routing wavelength paths to serve a set of sub-wavelength demands. The work takes account of routing problems only found in physical network layers, notably analogue transmission impairments. Much work exists on routing connections for dynamic Wavelength-Routed Optical Networks (WRON) and to demonstrate their advantages over static photonic networks. However, the question of how agile the WRON should be has not been addressed quantitatively. A categorization of switching speeds is extended, and compared with the reasons for requiring network agility. The increase of effective network capacity achieved with increased agility is quantified through new simulations. It is demonstrated that this benefit only occurs within a certain window of network fill; achievement of significant gain from a more-agile network may be prevented by the operator’s chosen tolerable blocking probability. The Wavelength Path Sharing (WPS) scheme uses semi-static wavelengths to form unidirectional photonic shared buses, reducing the need for photonic agility. Making WPS more practical, novel improved routing algorithms are proposed and evaluated for both execution time and performance, offering significant benefit in speed at modest cost in efficiency. Photonic viability is the question of whether a path that the control plane can configure will work with an acceptable bit error rate (BER) despite the physical transmission impairments encountered. It is shown that, although there is no single approach that is simple, quick to execute and generally applicable at this time, under stated conditions approximations may be made to achieve a general solution that will be fast enough to enable some applications of agility. The presented algorithms, analysis of optimal network agility and viability assessment approaches can be applied in the analysis and design of future photonic control planes and network architectures

    Optics and virtualization as data center network infrastructure

    Get PDF
    The emerging cloud services have motivated a fresh look at the design of data center network infrastructure in multiple layers. To transfer the huge amount of data generated by many data intensive applications, data center network has to be fast, scalable and power efficient. To support flexible and efficient sharing in cloud services, service providers deploy a virtualization layer as part of the data center infrastructure. This thesis explores the design and performance analysis of data center network infrastructure in both physical network and virtualization layer. On the physical network design front, we present a hybrid packet/circuit switched network architecture which uses circuit switched optics to augment traditional packet-switched Ethernet in modern data centers. We show that this technique has substantial potential to improve bisection bandwidth and application performance in a cost-effective manner. To push the adoption of optical circuits in real cloud data centers, we further explore and address the circuit control issues in shared data center environments. On the virtualization layer, we present an analytical study on the network performance of virtualized data centers. Using Amazon EC2 as an experiment platform, we quantify the impact of virtualization on network performance in commercial cloud. Our findings provide valuable insights to both cloud users in moving legacy application into cloud and service providers in improving the virtualization infrastructure to support better cloud services

    Situation-aware Edge Computing

    Get PDF
    Future wireless networks must cope with an increasing amount of data that needs to be transmitted to or from mobile devices. Furthermore, novel applications, e.g., augmented reality games or autonomous driving, require low latency and high bandwidth at the same time. To address these challenges, the paradigm of edge computing has been proposed. It brings computing closer to the users and takes advantage of the capabilities of telecommunication infrastructures, e.g., cellular base stations or wireless access points, but also of end user devices such as smartphones, wearables, and embedded systems. However, edge computing introduces its own challenges, e.g., economic and business-related questions or device mobility. Being aware of the current situation, i.e., the domain-specific interpretation of environmental information, makes it possible to develop approaches targeting these challenges. In this thesis, the novel concept of situation-aware edge computing is presented. It is divided into three areas: situation-aware infrastructure edge computing, situation-aware device edge computing, and situation-aware embedded edge computing. Therefore, the concepts of situation and situation-awareness are introduced. Furthermore, challenges are identified for each area, and corresponding solutions are presented. In the area of situation-aware infrastructure edge computing, economic and business-related challenges are addressed, since companies offering services and infrastructure edge computing facilities have to find agreements regarding the prices for allowing others to use them. In the area of situation-aware device edge computing, the main challenge is to find suitable nodes that can execute a service and to predict a node’s connection in the near future. Finally, to enable situation-aware embedded edge computing, two novel programming and data analysis approaches are presented that allow programmers to develop situation-aware applications. To show the feasibility, applicability, and importance of situation-aware edge computing, two case studies are presented. The first case study shows how situation-aware edge computing can provide services for emergency response applications, while the second case study presents an approach where network transitions can be implemented in a situation-aware manner
    corecore