120,158 research outputs found

    Approaches for advancing scientific understanding of macrosystems

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    Contemporary geomorphological activity throughout the proglacial area of an alpine catchment

    No full text
    Quantification of contemporary geomorphological activity is a fundamental prerequisite for predicting the effects of future earth surface process and landscape development changes. However, there is a lack of high-resolution spatial and temporal data on geomorphological activity within alpine catchments, which are especially sensitive to climate change, human impacts and which are amongst the most dynamic landscapes on Earth. This study used data from repeated laser scanning to identify and quantify the distribution of contemporary sediment sources and the intensity of geomorphological activity within the lower part of a glaciated alpine catchment; Ă–denwinkelkees, central Austria. Spatially, geomorphological activity was discriminated by substrate class. Activity decreased in both areal extent and intensity with distance from the glacier, becoming progressively more restricted to the fluvially-dominated valley floor. Temporally, geomorphological activity was identified on annual, seasonal, weekly and daily timescales. Activity became more extensive with increasing study duration but more intense over shorter timescales, thereby demonstrating the importance of temporary storage of sediment within the catchment. The mean volume of material moved within the proglacial zone was 4400m.yr, which suggests a net surface lowering of 34mm.yr in this part of the catchment. We extrapolate a minimum of 4.8mm.yr net surface lowering across the whole catchment. These surface lowering values are approximately twice those calculated elsewhere from contemporary measurements of suspended sediment flux, and of rates calculated from the geological record, perhaps because we measure total geomorphological activity within the catchment rather than overall efflux of material. Repeated geomorphological surveying therefore appears to mitigate the problems of hydrological studies underestimating sediment fluxes on decadal-annual time-scales. Further development of the approach outlined in this study will enable the quantification of geomorphological activity, alpine terrain stability and persistence of landforms

    A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data

    Full text link
    A great improvement to the insight on brain function that we can get from fMRI data can come from effective connectivity analysis, in which the flow of information between even remote brain regions is inferred by the parameters of a predictive dynamical model. As opposed to biologically inspired models, some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and temporal precedence. While powerful and widely applicable, this approach could suffer from two main limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function (HRF) and conditioning to a large number of variables in presence of short time series. For task-related fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more difficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues and to allow a more general approach, here we present a simple and novel blind-deconvolution technique for BOLD-fMRI signal. Coming to the second limitation, a fully multivariate conditioning with short and noisy data leads to computational problems due to overfitting. Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a limited subset of variables in the framework of information theory, as recently proposed. Mixing these two improvements we compare the differences between BOLD and deconvolved BOLD level effective networks and draw some conclusions
    • …
    corecore