7 research outputs found

    Area-Optimized Fully-Flexible BCH Decoder for Multiple GF Dimensions

    Get PDF
    Recently, there are increasing demands for fully flexible Bose Chaudhuri Hocquenghem (BCH) decoders, which can support different dimensions of Galois fields (GF) operations. As the previous BCH decoders are mainly targeting the fixed GF operations, the conventional techniques are no longer suitable for multiple GF dimensions. For the area-optimized flexible BCH decoders, in this paper, we present several optimization schemes for reducing hardware costs of multi-dimensional GF operations. In the proposed optimizations, we first reformulate the matrix operations in syndrome calculation and Chien search for sharing more common sub-expressions between GF operations having different dimensions. The cell based multi-m GF multiplier is newly introduced for the area-efficient flexible key-equation solver. As case studies, we design several prototype flexible BCH decoders for digital video broadcasting systems and NAND flash memory controllers managing different page sizes. The implementation results show that the proposed fully-flexible BCH decoder architecture remarkably enhances the area-efficiency compared with the conventional solutions.112Ysciescopu

    A Flexible BCH decoder for Flash Memory Systems using Cascaded BCH codes

    Get PDF
    NAND ash memories are widely used in consumer electronics, such as tablets, personal computers, smartphones, and gaming systems. However, unlike other standard storage devices, these ash memories suffer from various random errors. In order to address these reliability issues, various error correction codes (ECC) are employed. Bose-Chaudhuri Hocquenghem (BCH) code is the most common ECC used to address the errors in modern ash memories. Because of the limitation of the realization of the BCH codes for more extensive error correction, the modern ash memory devices use Low-density parity-check (LDPC) codes for error correction scheme. The realization of the LDPC decoders have greater complexity than BCH decoders, so these ECC decoders are implemented within the ash memory device. This thesis analyzes the limitation imposed by the state of the art implementation of BCH decoders and proposes a cascaded BCH code to address these limitations. In order to support a variety of ash memory devices, there are three main challenges to be addressed for BCH decoders. First, the latency of the BCH decoders, in the case of no error scenario, should be less than 100us. Second, there should be flexibility in supporting different ECC block size; more precisely, the solution should be able to support 256, 512, 1024, and 2048 bytes of ECC block. Third, there should be flexibility in supporting different bit errors. A recent development with Graphical Processing Units (GPUs) has attracted many researchers to use GPUs for non-graphical implementation. These GPUs are used in many consumer electronics as part of the system on chip (SOC) configuration. In this thesis we studied the limitation imposed by different implementations (VLSI, GPU, and CPU) of BCH decoders, and we propose a cascaded BCH code implemented using a hybrid approach to overcome the limitations of the BCH codes. By splitting the implementation across VLSI and GPUs, we have shown in this thesis that this method can provide flexibility over the block size and the bit error to be corrected

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    FPGA-based architectures for next generation communications networks

    Get PDF
    This engineering doctorate concerns the application of Field Programmable Gate Array (FPGA) technology to some of the challenges faced in the design of next generation communications networks. The growth and convergence of such networks has fuelled demand for higher bandwidth systems, and a requirement to support a diverse range of payloads across the network span. The research which follows focuses on the development of FPGA-based architectures for two important paradigms in contemporary networking - Forward Error Correction and Packet Classification. The work seeks to combine analysis of the underlying algorithms and mathematical techniques which drive these applications, with an informed approach to the design of efficient FPGA-based circuits

    Novel folded-KES architecture for high-speed and area-efficient BCH decoders

    No full text
    In this brief, we present a novel folding technique for high-speed and low-cost Bose-Chaudhuri-Hocquenghem (BCH) decoders. In the conventional BCH decoder, the critical path lies on the Galois-field (GF) multiplier of the key equation solver, where the speedup of the critical path is very difficult due to a significant area increase. In the proposed work, the regularly structured GF multiplier is introduced to be efficiently folded to reduce the complexity and the critical delay. Moreover, the conventional global folding scheme can be applied to further reduce the hardware costs. The implementation results show that the proposed folding scheme enhances the area efficiency by 1.73 and 1.9 times in the Digital Video Broadcasting-Satellite-Second Generation system and the storage controller, respectively.1121Nsciescopu

    Novel Folded-KES Architecture for High-Speed and Area-Efficient BCH Decoders

    No full text
    corecore