University

of Glasgow

#[‘?5
o
VIA VERITAS VITA

Hegarty, Declan (2008) FPGA-based architectures for next generation
communications networks. EngD thesis.

http://theses.gla.ac.uk/455/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/
theses@gla.ac.uk

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/455/

FPGA-based Architectures for Next

Generation Communications Networks

Declan Hegarty BA BAI MIEEE MIET

A thesis submitted to
The Universities of
Edinburgh
Glasgow
Heriot Watt
Strathclyde

for the Degree of

Doctor of Engineering in System Level Integration

[0 Aliathon Limited, March 2008

Abstract

This Engineering Doctorate concerns the application of Field Programmedtie Aray
(FPGA) technology to some of the challenges faced in the design of neragéon
communications networks. The growth and convergence of such netwaskfuelled demand
for higher bandwidth systems, and a requirement to support a divaarge of payloads across

the network span.

The research which follows focuses on the development of FPGAdbasshitectures for
two important paradigms in contemporary networking - Forward Error étion and
Packet Classification. The work seeks to combine analysis of the undgdigorithms and
mathematical techniques which drive these applications, with an informedagpto the

design of efficient FPGA-based circuits.

Declaration of originality

| hereby declare that the research recorded in this dissertation anis#eetation itself was
composed and originated entirely by myself at the Institute for System Letegration and

Aliathon Ltd.

Parts of this work have previously been publishedas FPGA-based Configurable Network
Interface Card, in the Proceedings of the IEEE International Conference on Sysi€asNsS),
April 2006.

Declan Hegarty, 17th October 2007.

Acknowledgements

| would like to express my sincere thanks to the principal supervisors optbject, Prof. Joe
Sventek at the University of Glasgow and Steve McDonald at Aliathon Ltdthtir assured
direction, enthusiasm and for many lively discussions over the last fearsy which have

inspired and improved this work.

Thanks also to Sandie BuchanaraisWilliams, Jed Martens, Dr. Wim Vanderbauwhede, Prof.
Ivan Andonovic, Prof. Istvan Gyongy, Dr. Chris Athorne, Dr. N&ehyth, Dr. George Burns

and Graeme Kelly.

I would like to thank my wife Nancy for her patience, understanding andwagement whilst

this work was completed.

Finally, to my family - Mum, Fiona, Gavin and all the O’Kanes, thank you.

Contents

Declaration of originality iii
Acknowledgements iv
Contents e Y
Listoffigures e iX
Listoftables e Xii
Acronyms and abbreviations L oL Xiii
1 Introduction 1
1.1 SystemLevelIntegration 1
1.2 ASICs, ASSPsand FPGAS 3
1.3 ThesisStatement 5
1.3.1 OnForward Error Correction 6
1.3.2 On Packet Classification 7
1.4 Dissertation Structure e e e e 8
2 Background 9
2.1 Introduction 9
2.2 Next Generation Communications Networks 9
221 FromPDHto SONET/SDHandOTN 9
2.2.2 From Circuit-Switched to Packet-Switched Networks 11
2.3 Technical Background, 21
2.3.1 Anintroductionto FPGASs 12
2.3.2 The FPGA and ASIC/ASSP DesignFlows 14
2.3.3 Design Trade-Offs and Guiding Principles 17
2.3.4 An FPGA-based Configurable Network Interface Card 20
3 Forward Error Correction 23
3.1 Introduction 23
3.2 Finitefieldtheory e 24
3.2.1 Groups e e e e e e 24
3.22 Fields 24
3.2.3 Polynomialsover GaloisFields 26
3.2.4 Construction of Extension Fields Based®@h(2) 27
3.3 CodingOverview e e 30
3.3.1 Useful Propertiesof Block Codes 30
3.3.2 From Single to Multiple-Error-Correcting Codes 33
3.3.3 From Binaryto Non-binaryCodes 34
3.4 Forward Error Correction in the Optical Transport Network 36
3.5 Forward Error Correction for 43Gbps Systems 38
3.5.1 Reed-SolomonEncodingo, 39
3.5.2 A New Approach to Reed-Solomon Encoding 40
3.5.3 A Modified Reed-Solomon Encoder forOTU-3 44

Contents

3.54 Reed-SolomonDecoding, 47
3.5.5 SyndromeCalculator, 47
3.5.6 KeyEquationSolver (KES) 49
3.5.7 Chien Search and Forney Calculation 51
3.5.8 Practical Reed-SolomonDecoding 52
3.5.9 Towards Optimisation of the KES Architecture 53
3.5.10 The Hybrid Decoding Algorithm 54
3.5.11 VLSIImplementation 58
3.5.12 Towards an improved KES architecture 59
4 Packet Classification 67

4.1 Introduction e 67
4.1.1 StringMatching 68
4.1.2 LongestPrefixMatching 68
413 ExactMatching e 70

4.2 Complexity in Packet Classification 70
4.2.1 Space, Time and Power Complexity 71
4.2.2 Update Complexity 71
4.2.3 Massive Linearity and Massive Parallelism 71
424 TowardstheMiddleGround 72

4.3 Techniques for String Matching 73
4.3.1 Aho-Corasick StringMatching, 73
4.3.2 Boyer-Moore String Matching 75
4.3.3 Contemporary String Matching Solutions 75

4.4 Techniques for Longest Prefix Matching 77
4.4.1 Recursive Flow Classification 77
442 GridofTries e 80
4.4.3 Expanded Tries - From Controlled Prefix Expansions to Tree-Bitma83.

4.5 Techniques for ExactMatching, 87
451 Trees e e 87
452 Hashing 88
4.5.3 Contemporary Hashing Techniques 92

4.6 Towards an FPGA-based Packet Classification Engine 96
4.6.1 Understanding d-left: A Numerical Analysis 97
4.6.2 Existing NumericalResults 100
4.6.3 Numerical Results at Improved Load Factors 101
4.6.4 From Staticto DynamicSystems 103
4.6.5 Overflow Sufficiency 104
4.6.6 A New Study of Dynamic Systems 105
4.6.7 Numerical Results for Dynamic Systems 106
4.6.8 Software Simulation of Dynamic 2-Left Systems 107
4.6.9 Interpreting the Software SimulationResults 113
4.6.10 Defining Dynamic Systems Analytically 117
4.6.11 More General SystemUse-Cases. 18. 1
4.6.12 SimulationswithRealIPv4Data 120

4.7 A Prototype Hardware Implementation. 125
4.7.1 Promotion and Memory Efficiency 126

Vi

Contents

4.7.2 Prototype SystemDimensions 00 130
4.7.3 BasicCircuitOperation. 131
4.7.4 Implementing Fast OverflowSearch 134
475 NewCircuitOperation, 139
4.7.6 Resource Utilisation 140
4.7.7 Numerical, Software and Hardware Results Compared 1. 14
4.7.8 Performance Comparison. e 145
5 Summary 147
51 Chapterl e e 147
52 Chapter2 147
53 Chapter3 e 148
5.3.1 Reed-SolomonEncoding, 148
5.3.2 Reed-SolomonDecoding 149
5.4 Chapterd e e 150
6 Conclusions and Further Work 153
6.1 OnForward Error Correction 153
6.2 On Packet Classification 155
A An Inversionless Berlekamp-Massey Algorithm 158
B An Extended Euclidean Algorithm 160
C An Outline Business Plan 161
C.1 Executive SUMMArY 0 i e e e e e e e e e e 162
C.2 Company OVEIVIEW v i e i e e e e e e e 163
C.2.1 Introduction. 163
C.2.2 Operational Summary 164
C.2.3 Industry Overview i e 166
C.3 Products e 167
C.3.1 TheFPGAAdvantage 167
C.3.2 ProductPortfolio 168
C.4 Competitive Environment e e 170
C.4.1 ASIC/ASSP Competitor Profiles 170
C.4.2 IP Provider Competition, 172
C.43 SWOTANalysis it 174
C.4.4 Aliathon and the Five Forces Framework 176
C.5 The Market Environment 917
C.5.1 PESTLE Analysis of the Macro-Environment 179
C.5.2 Market Segmentation by Network Space 183
C.5.3 Market Segmentation by Technology 184
C.5.4 Telecom/Datacom Market Fundamental Drivers 5 18
C.5.5 Market Analysis Highlights and Conclusions 186
C.5.6 Aliathon’s Marketing Activities 187
C.6 StrategicPlan e 189
C.6.1 OVEeIVIEW o ot e e 189
C.6.2 MigrationtolPSales 190

vii

Contents

C.6.3 Increase Direct Marketing Activity 190
C.6.4 Consolidate Partnerships with Xilinx and Altera. 190
C.6.5 DevelopStandardProducts 190
C.7 Financials e 191
C.7.1 OVEeIVIEW o e 191
C.7.2 Revenue Projection e 192
C.8 Supporting Information 193
C.8.1 Background to the Aliathon Portfolio 193
C.8.2 IPTaxonomy 194
C.8.3 TargetCustomers i i e e 196
References 199

viii

List of figures

11
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.26
3.27
3.28

The productivity gap, as defined bythe ITRS 2
FPGA replacement of an ASIC/ASSP ATM-over-T1 solution b
Xilinx CLBand sliceelements 13
A simple boolean logic function realisedinaLUT 14
Generalised FPGA (a) and ASIC/ASSP (b) designflows 15
The problem of combinatorial delay in digital systems 6 1
Pipelining the logic of Figure 2.4 to improve timing 18
A 4-bit comparator coded with low level abstraction 19

A 4-bit comparator coded with high level abstraction 19
Top level PCB architecture of an FPGA-based network interface car . . . 21
Simple modulo-2 operations 25
Power, polynomial and n-tuple representation€6%23) 29

A basic communications system 30
The Hamming7,4) blockcode 31
Atrivial binarycode 33
Non binary code with 8 symbol errors - 1 bit error per symbol 35
Non binary code 8 symbol errors - 8 bit errorspersymbol 35
OTWK frame structure 36
Byte interleaved FEC as specified by ITU-TG.709 37
Circuit for dividingz® + 25 +2* +23+1 39
Standard?S (255, 239) encoder architecture L. 40
OTU-3 encoding based on single symbolencoders. 41
Simple encoder for analysis over two clockcycles 42
Reformulated two-symbol encoder fgr) = 22 — 2 +a2% 44
Most significant symbols of a Reed-solomonencoder 45

A modified Reed-Solomon RS(255,239) encoder for OTU-3 45
Invalid data overlap in a two-symbolencoder 46

A typical Reed-Solomon decodersystem 47
Generator matrix fay(x) = 1+x+23 oL 48

A systematic generatormatrix e 48
A simple syndrome calculator circuit 49
Achiensearchcircuit 25
Detailed working of hybrid algorithm for the evaluator polynomial57
Detailed working of hybrid algorithm for the locator polynomial 57
VLSI architecture for evaluator computation based on a hybrid degod
algorithm 58
VLSI architecture for locator computation based on a hybrid dec@dgugithm 58
Non-zero coefficients with 1 symbolerror 60
Non-zero coefficients with 2 symbolerrors. 60

List of figures

3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Non-zero coefficients with 3 symbolerrors.
Non-zero coefficients with 4 symbolerrors
Non-zero coefficients with 5 symbolerrors
Non-zero coefficients with 6 symbolerrors
Non-zero coefficients with 7 symbolerrors

Non-zero coefficients with 8 symbol errors .

Proposed coefficient justification for worst case error vector
Modified KES architecture for a single coefficient

Address grouping with prefixand wildcard
Standard SRAM(a) and TCAM(b)cells
A ndve string matching algorithm
Pre-processed optimised patternshift
Boyer-Moore pattern shifting oL
Example lookup using recursive flow classification

Set Pruning (a) and Grid of Tries (b) structure for the classifieabfer4.2

Bit Vector structure for the classifierof Table4.2
Simple prefixdatabase oL
A multi-bit trie with Controlled Prefix Expansion

A multi-bit trie with Controlled Prefix Expansion and Leaf Pushing

Node compression by bit vector in the Luleascheme
Multi-stage lookup as specified by Bennett
Multi-stage lookup implemented inRAM
Memory collisioninsingle hashing.
ABloomFilter
Packet classification with a Counting Bloom Filter.
Single hashing (a) and two-random hashing(b)
Expected behaviour of the(t) terms from the 2-left differential equations
Fraction of hash bins with load exactly 2 for a load factor%ofwith
deletions/reinsertions at the system capagtity
4.21 Fraction of bins with load 2 for varying load factor, with continuous tiate
and reinsertion at the system capadity

108

4.22 Embedded memory utilisation for a 2-left classifier with 16384 items and

variable bins, under dynamic deletion and insertion of items
4.23 Normalised variance from numerically predicted load for the systemasho
Figure 4.22

4.24 Embedded memory utilisation for a 2-left classifier with 262144 bins and

variable items, under dynamic deletion and insertion of items
4.25 Normalised variance from numerically predicted load for the systermsho
Figure 4.24

.. 112

4.26 Embedded memory utilisation for a single hashing classifier with 32768 items

and 262144 bins, under dynamic deletion and insertion
4.27 Embedded memory utilisation foRdeft classifier with 16384 items and 65536
bins, showing bulk deletion and insertion of items
4.28 Embedded memory utilisation foRdeft classifier with 16384 items and 65536
bins, under more general use-cases

123

List of figures

4.29 Embedded memory utilisation foRdeft classifier with 16384 items and 65536
bins, with IPv4 trace dataasinput 124
4.30 Simple hash tables - implementation independent (a), and with physical
separation between primary hash space and collision resolution ovelflow.(127
4.31 Embedded memory utilisation for Zleft classifier with 16384 items and
variable bins, under dynamic deletion and insertion of items without promotiod 12

4.32 Initial prototype classification architecture 132
4.33 Block RAM architecture to facilitate an input comparison every 4 systeck c

CyCles 135
4.34 Parallel comparison of a 4-bit number with4 others 136
4.35 Cache structures to preserve contextaccuracy 138
4.36 Revised prototype architecture with 2-level, 2-lefthashing 140
4.37 Maintaining correct load counts in a 2-layer, 2-left allocation 141
4.38 Characterising internal loading in a 2-level d-left implementation 142
4.39 Comparison of software simulation and hardware implementation resudts for

2-level, d-left classifier with 4096 inputitems 144
6.1 KES architecture for a single coefficient with improved timing 54 1

6.2 Fraction of bins with load 2 for varying load factor, with continuous detetio
and reinsertion at the system capadity for a 3-left (a) and 4-left (b) allocation 156

C.1 Aliathon revenue growth 2001-2006 162
C.2 Total global IP revenue, 2004 - $1.27 Billion. 163
C.3 Market for communications chip solutions 2000-2010 164
C.4 Aliathon’s position in the communications/networking value chain 6 16
C.5 FPGA versus ASIC/ASSP in communications systems 167
C.6 Aliathon portfolio and roadmap fortelecomsIP 8 16
C.7 Aliathon portfolio and roadmap for datacomsIP 68 1
C.8 Wireline ASIC/ASSP Market, 2004 - $6.5Billion 171
C.9 Portersforces of competition. 0L, 771
C.10 Aliathon cores across the networkspan. 185
C.11 Optical Transport Systems Growth 185
C.12 Aliathon revenue trends: IP core sales vs design services 191
C.13 Target Customer Matrix -1 719
C.14 Target Customer Matrix -1l 981

Xi

List of tables

2.1
3.1

4.1
4.2
4.3

4.4

4.5

6.1

Cl1
c.2
C.3
C4

SONET/SDH TransmissionRates 10
OTUtypeandcapacity i it 38
A simple classifierdataset 78
A simple classifier dataset specified over source and destinatiorsadeig . 80
Expected fraction of bins with load exactlywvith variable number of items
allocated inton bins by single hashing (a) and 2-left hashing (b) 101
Expected fraction of bins with load exactlyith variable number of items

allocated inton bins by single hashing (a) and 2-left hashing (b) at improved

load factors 102
Embedded memory requirements2feft and single hashing classifiers for
simulated systems at varyingloadfactors 116
Resource utilisation for OTU-3 FEC architectures 155
Aliathon customermatrix L L 169
Market size and forecasts in key technology segments 187
Aliathon IP core pricing2005 818
Aliathon’s projected revenues by selected quarter 193

Xii

Acronyms and abbreviations

FPGA
3G
ASIC
ASSP
ATCA
ATM
CIDR
CLB
CMOS
DDR
FEC
FPGA

Field Programmable Gate Array

Third Generation (Mobile Telephony)
Application Specific Integrated Circuit
Application Specific Standard Product
Advanced Telecommunications Computing Architecture
Asynchronous Transfer Mode

Classless Inter Domain Routing
Configurable Logic Block

Complementary Metal Oxide Semiconductor
Double Data Rate

Forward Error Correction

Field Programmable Gate Array

Galois Field

Generic Framing Protocol

Integrated Circuit

Intellectual Property or Internet Protocol
International Technology Roadmap for Semiconductors
International Telecommunication Union

Key Equation Solver

Linear Feedback Shift Register

Link Capacity Adjustment Scheme

Media Access Control

Multi-Protocol Label Switching

Multi-Service Provisioning Platform

Network Equipment Manufacturer

Network Intrusion Detection System

Xiii

Acronyms and abbreviations

OTN
OoTU
PCB
PCI
PDH
POS
PWE3
QDR
QoS
RAM
RFC
RTL
SDH
SLI
SoC
SONET
TCAM
TDM
VCAT
VHDL
VLSI
\VoIP
VPN
WDM

Optical Transport Network

Optical Transport Unit

Printed Circuit Board

Peripheral Component Interconnect
Plesiochronous Digital Hierarchy
Packet-over-SONET

Pseudo-Wire Emulation End-to-End
Quad Data Rate

Quiality of Service

Random Access Memory

Recursive Flow Classification
Register Transfer Level
Synchronous Digital Hierarchy
System Level Integration

System on Chip

Synchronous Optical Network
Ternary Content Addressable Memory
Time Division Multiplexed

Virtual Concatenation
(Very High Speed Integrated Circuit) Hardware Description Laaggi
Very Large Scale Integration
Voice-over-Internet Protocol

Virtual Private Network

Wavelength Division Multiplexed

Xiv

Chapter 1
Introduction

The semiconductor industry is arguably one of the most dynamic and dergaoditour
planet. There is an unrelenting emphasis placed on being the first to reachxhperceived
technological milestone, and billions of dollars of research and develdpelget are
expended to secure the prestige, and ultimately market share, which tmgttdbadership
position affords. Such massive levels of investment have allowed thetipdwsprosper,
and to go on producing increasingly complex products within ever shrinegign cycle
times. Perhaps the most succinct summary of this increased complexity meadoeedited to
Gordon Moore [1, 2], who correctly predicted that from 1975 the nunobé&ransistors which

could be integrated per unit area would double approximately every tws.yea

1.1 System Level Integration

This exponential increase in semiconductor density has ultimately given ribe thscipline
of System Level Integration (SLI), acknowledging that contemporaiggnated circuits are
no longer merely components in Printed Circuit Board (PCB) architectimgscomplex
microsystems in their own right. The International Technology Roadmapdmic®nductors
(ITRS) [3] has identified an emergingoductivity gapas shown in Figure 1.1 - illustrating
the discrepancy between transistor density (shown by the solid line) andutnber of
transistors which may be incorporated into a design in a staff month (showrebyaghed
line). System Level Integration is an attempt to bridge this gap, and is in faetyabroad
generalisation incorporating a wide variety of disciplines, all in some régpebrsed to handle
the complexities of systems with millions of transistors. These include, at valgieds of

abstraction:

e Device Modelling and DesignComplementary Metal Oxide Semiconductor (CMOS)
transistor devices are thought to represent 75% of the world’s dusesniconductor

consumption [3]. Progress in computing technology is therefore heavilgrdkent on

Introduction

1000— —10000
100 — — 1000

—100 -

-
o

-

o
o

0.01— — 0.1

Transistors per Integrated Circuit
(millions)
Productivity
(thousands of transistors per staff month)

0.001— — 0.01

CAGR = Compound Aggregate Growth Rate

(2]
o
o
N

2001 —
2003
2005

D
(<23
[e2]
—

1991 —
1993 —
1997 —
2007

Figure 1.1: The productivity gap, as defined by the ITRS

progress in the development of smaller, faster and less power hungogesle Further,
the ITRS predicts that most of the currently known technological capabilifiptaoar
CMOS will approach or have reached their limits by the end of 2016, sutlotigming

research in this area is essential for the industry to survive.

¢ Block-Based Design and IP-ReuseThe difficulties of complex systems design

are compounded by the competitive markets into which these systems are sold.
Time-to-market pressures have led the industry to place an increasechgmom
design re-use [4] whereby, rather than customize systems on a desigsigyn basis,

one seeks to develop building blocks (often referred to as IntellectugdeRy (IP)
blocks or cores) which may be reused across multiple designs. Thedes btay
themselves comprise many hundreds of thousands of transistors, loigsigaed along
best-practice guidelines such as the Quality IP (QIP) Metric [5] to ensomabplity

between systems.

e Test and VerificationThe complexity of contemporary System-On-Chip (SoC) designs,
and the large number of operational use-cases for the equipment in tidghare
embedded, mean that ad-hoc testing by the system designer is no longptabte
Rather, testing and verification is becoming an industry itself, with numeralisated
verification languages and test coverage tools emerging to ensure #Highsievith

millions of transistors are appropriately stress tested before release.

Introduction

Verification and design reuse are in fact often combined, in the fornmushide testbench
code, or generic verification blocks which may be instantiated acrossetifféSoC)

topologies [6].

The list does not end there of course; the block-based approatledagxtended in the form of
reusable platforms [7], providing sockets for IP blocks and standatdiigerconnect; software
complexity increases commensurate with logic density; thermal issues becormeasingly
significant as millions of switching transistors dissipate tens of Watts of pandrpackaging,
power-distribution and signal-integrity design are major disciplines in theirragtr - System

Level Integration is all of these.

1.2 ASICs, ASSPs and FPGAs

In practice, three categories of System-On-Chip device currently domthaténdustry.
Pioneered in the early 1980s as transistor arrays of a few thousandgkgis, Application
Specific Integrated Circuits (ASICs) are devices which are customisedthigir end
applications, and have fixed functionality once manufactured. Typicallgy thre
commissioned or designed by a single end user. Contemporary ASICstngushed from
commaodity integrated circuits by their complexity, with gate counts in the tens orédsof

millions.

Application Specific Standard Products (ASSPs) are also typically comggkfunctionality
devices, but are sold as standardised components to multiple customersntiast; Field
Programmable Gate Arrays (FPGAs) are completely reprogrammable devmeprising
standardised logic blocks and interconnect which the end-user magfigroe to target a

variety of end applications.

The strengths and weaknesses of custom approaches (ASIC aR) #3Sus reprogrammable
approaches (FPGA) have been debated for some years [8], adideussed in more detail in
the context of their respective design flows in Chapter 2. On one haldsfed ASSPs offer
the prospect of higher raw clock speed performance, and are ehigahigh volume. ASIC
designs in particular can be very highly optimised and integrate specialisgaeafunctions.
FPGAs however, offer more predictable design cycle times, reducditagon effort, lower

non-recurring engineering (NRE) costs, and ease of upgrade.

Introduction

This project is co-sponsored by an FPGA Intellectual Property sup@igthon Limited - and
focuses on the application of FPGA technology to emerging design challemgetworking

and communications.

New technologies such as wireless internet access (Wi-Fi and WiMAo{gevover-IP, virtual
private networks (VPNs) and third generation mobile (3G) are generatiogmg demand
for bandwidth and guaranteed quality of service in contemporary neswoéks a result,
the traditionally disparate disciplines of voice and data communications areergomy
to deliver what are becoming known as the “triple play” services: voitdeosand data.
Network elements deployed to provide these services require integrated ¢iC) solutions
of commensurate sophistication, which have been traditionally offered # ASd ASSP

devices.

The risks and non-recurring engineering costs of developing sudCsA8re significant
(reported at US$30M for 90nm fabrication [9]) particularly for loweolume, higher
complexity networking applications. Customer needs are extremely divedsecatinuously
evolving as new standards emerge. Thus ASIC vendors must seek totemfgyen a
single customer model, by accommodating a broad range of functionality talafpe
wider customer base, and incorporating some degree of reconfigurdbilitpck evolving
standards [10]. The end result is often a large, power-hungry el@iicch may be sub-optimal

for a given customer’s application.

In contrast, the inherently reprogrammable nature of FPGAs significantly neisiggp-front
design and verification costs, and facilitates future-proof systems wissvedesigns can be
downloaded to accommodate evolving customer requirements. Functionalitye daiidoed

on an application-by-application basis, eliminating redundant hardwanplesity. These
advantages encapsulate Aliathon’s value proposition. The company &eékrget existing
ASIC and ASSP solutions in high value, low volume communications applications fo

replacement with lower cost, lower power FPGA-based solutions.

Figure 1.2 illustrates a current deployment following this business model refflacement
of multiple Application Specific Standard Products (ASSPs) in an ATM-dveapplication,
where Synchronous Digital Hierarchy (SDH), Plesiochronous Digitakatchy (PDH) and
Asynchronous Transfer Mode (ATM) blocks have been integratéal @single FPGA

!Additional background on these standards is presented in Chapter 2.

Introduction

RAM

Lower Cost
Lower Power

iI Less Complex

PCI

Line FPGA e Higher Cost
IF o H
L Higher Power
.

Very Complex

RAM RAM

PCI
IF SDH PDH Packet

Figure 1.2: FPGA replacement of an ASIC/ASSP ATM-over-T1 solution

The viability of this business model is clearly dependent on the companyity ab produce

efficient FPGA solutions, which enable chip-count reduction and loweenmah costs for
customers. This in turn is dependent on the efficiency of the componesdréd® on which
these top-level FPGA solutions are based. Aliathon thus places strongsisiph technology
performance, seeking to produce IP cores which are smaller and thatethose of their

competitors.

Creating and maintaining this advantage for next-generation networkingamnuohunications
applications is the key commercial motivation for the work which follows. The hesjs

will be on seeking architectural-level gains, since reusable lower ldéuaettares such as
arithmetic blocks (multipliers, adders), counters and first-in-first-ouebsi{ FIFOs) have all

been previously developed in Aliathon and have received significaimigation effort.

1.3 Thesis Statement

Emerging networking standards require data processing operations areignathematically
intensive, and must be completed at high equipment line rates. It is astwtdatieoretical
research and detailed operational study of the algorithms which undemgse gtandards,
combined with an architectural-level focus on FPGA design, will yield solstighich better

the state-of-the-art.

Introduction

Two important networking techniqueBprward Error Correctionand Packet Classification
are of particular commercial interest to Aliathon and are examined as exagtemafs for this

assertion.

1.3.1 On Forward Error Correction

Forward Error Correction (FEC) adds additional information in real time # dhginal
information to be transmitted over a channel such that at the receivemhigiation of the

original information and the additional information can correct errorsahtime.

FEC is increasingly important in very high bandwidth optical networks astrassion speeds
up to 43Gbps where it acts to counter signal-to-noise ratio degradationodiilere loss,

chromatic dispersion and other aberrations, and reduces the requifemexpensive optical
repeater equipment. Specifically, in the context of the ITU G.709 standafdbpsed on
Reed-Solomon (255,239) FEC for OTU-3 43Gbps systems, it is asseated th

e The arithmetic associated with the Reed-Solomon (255,239) encoding can be
reformulated, generalised and mapped onto FPGA hardware in the forra of
shift-register division circuit capable of processing two input symbols/eryesystem
clock cycle. A 43Gbps encoder based on the reformulated arithmetic rerttevaeed
for data buffering and pipelined processing required by the single-glyprbcessing

equivalent.

¢ A Key Equation Solver associated with the Reed-Solomon (255,239) degddised on
a hybrid Euclidean/Berlekamp-Massey algorithm [12], can be improvechdgifying
the initial conditions to remove a redundant processing cycle, and by jastficof
its non-zero coefficients - which approximately halves the logic resowgeined for
polynomial storage. For 43Gbps systems, the modified Key Equation Sdllisesu
just 56% of the storage resource and 61% of the arithmetic resourceeckdy a
direct implementation of the hybrid algorithm, and utilises just 36% of the totalireso

required by Aliathon’s existing solution, based on [13].

Introduction

1.3.2 On Packet Classification

Packet Classification is a key technology for a wide range of networkidgcammunications
application areas, including Internet Protocol (IP) routing and switchsgyvice level
differentiation, network security and flow monitoring. Essentially, one seéekmake some
decision on the destination of a data packet based on some portion of itetsontgpically
the packet header. Classless-Inter-Domain-Routing (CIDR) techsibased on longest
prefix matching dominate the literature, but string matching and exact pattermingatc
techniques are becoming increasingly important. The latter is of particular canafrieterest
to Aliathon, potentially offering performance improvements for legacy petsgjnd enabling
provision of IP cores in new areas such as packet filtering, flow monitarigPseudo-Wire
Emulation End-to-End (PWE3) [14].

Exact match technigues include schemes based on decision-treed, mewuiarks, Bloom
Filters and hashing. State-of-the-art techniques based on treesaffigietely deterministic
classification odookup times, but scale poorly to systems with long headers. Conversely,
contemporary techniques based on hashing scale better but are teomidistic, such
that worst case lookup times can be poor. A hashing-based algorithnd chlédt, first
formalised by \bcking [15] and later analysed by Mitzenmacher and Broder using eliffid
equations [16], mitigates the effects of non-determinacy and shows prasibe basis of an

FPGA-based classification engine. In this context, it is asserted that:

e The analysis presented in [16] can be extended to consider packsgfick®n systems

with dynamic deletion and insertion of items.

e This dynamic mode of operation exhibits stable, repeatable steady-stavédoelrehich
places an upper bound on the amount of FPGA block RAM required toosufie

system.

e This upper bound enables an FPGA-based packet classification impl¢ioenthich is

effectively deterministic.

e A novel 2-level, d-left scheme, implemented in an FPGA requires 62.5% eixieenal
memory resource, and just 2% of the embedded internal SRAM requiracgpstem of

equivalent capacity based on Counting Bloom Filters.

Introduction

1.4 Dissertation Structure

The remainder of this dissertation is structured as follows: Chapter 2 ntsegeneral
commercial and technical background to the project, and describes vhgiment of an
FPGA-based network interface card, undertaken as a precurs@ poiticipal research work.
Chapters 3 and 4 comprise the main research contributions, on Forwamd Gorrection
and Packet Classification respectively. Chapter 5 offers a summatyClaapter 6 presents
conclusions and some suggestions for further work. A business ptapased in fulfilment of

the business and management requirements of the EngD is included in tineliappe

Chapter 2
Background

2.1 Introduction

This chapter sets the context for the research which follows, both in tefrthe commercial
motivations for the work and the FPGA architectures targeted by the prdmmdutions. The
opening discussions present some background on what exactly is Inyemfrtext generation”
network - a general term which embodies both a migration to higher bandwisitéinss, and
an industry-wide trend towards more diverse payloads over a paaketilinfrastructure. This
discussion is followed by a general introduction to FPGA technology andeign principles
followed in the course of the research. Finally, a description of the FB&s%&d network

interface development undertaken as the first phase of this projeetsisred.

2.2 Next Generation Communications Networks

Historically, communications networks have been based on voice telepAdwyfrequency
spectrum of the average human voice ranges from approximately 30kz 4Hz. Thus,
in accordance with Nyquist’s rule, one must sample a voice signal at@dpmately 8kHz to
achieve faithful reproduction of that signal. Traditional Pulse Code WN&dtbn systems use 8

bits to represent each sample, so one requires 8000 x 8 = 64kbpsifovaeae channel.

2.2.1 From PDH to SONET/SDH and OTN

The entire time division multiplexed (TDM) hierarchy has been built arounddata rate.
Early networks were based on the Plesiochronous Digital Hierarchi#P&hich aggregated
multiple voice channels together in trunk links running at nominally, but notipet/ the
same frequency. As traffic demands on the network grew, the limitations &fhkenetwork

emerged.

Background

SONET SDH Optical Line Rate (Mbps)
STS-1 STM-0 ocC-1 51.48
STS-3 STM-1 0oC-3 155.52
STS-12 STM4 0Cc-12 622.08
STS48 STM-16 0C-48 2,488.32
STS-192 STM-64 0C-192 9,953.28
STS-768 STM-256 0OC-768 39,813.12

STS: Synchronous Transport Signal
STM: Synchronous Transport Module
OC: Optical Carrier

Table 2.1: SONET/SDH Transmission Rates

Lack of standardisation made interoperability between equipment veniiicslg network
management functionality was limited, and individual voice channels had tadedaand

dropped via a complex and expensive multiplexing and demultiplexing higrarch

The core standards for the Synchronous Optical Network (SONE®)tla@ Synchronous
Digital Hierarchy (SDH) [17] were introduced to address these shisitfadding rich
management overhead and unified network timing, for interconnection avegh speed

optical infrastructure, running at the frequencies shown in Table 2.1.

The SONET/SDH infrastructure is now well established, with an installeddfasame 390,000
rings worldwide. However, the communications industry is entering yet angtériod of
transition. Increases in voice traffic have been incremental in the lasirS.yPata traffic, by

comparison, has increased exponentially, driven by the global adagtimoadband services.

Network providers are thus increasingly seeking more cost-effectayeswo provision and
manage large amounts of bandwidth and diverse payloddisxt-Gentechniques such as
Virtual Concatenation (VCAT) and the Link Capacity Adjustment Scheme (&CAave
emerged [18] to improve SONET/SDH bandwidth utilisation when payload bis-ddenot fit
conveniently into the traditional hierarchical containers. The ITU-T G@@8cal Transport
Network (OTN) [11, 19] has also emerged as an improved physical layeocol, with a
streamlined subset of the SONET/SDH management functions, suppahefeananagement
of Wavelength Division Multiplexed (WDM) systems, and tandem connectionitaang for

signal diagnostics across multiple networks. Aliathon currently offersrdgtio of IP cores

10

Background

targeting OTN applications at 2.7Gbps, with a roadmap to 10.7Gbps and 43g&tess -
the latter being a key commercial motivation for the research on Forwamd Ewrrection

presented in Chapter 3.

2.2.2 From Circuit-Switched to Packet-Switched Networks

In addition to this generalised increase in demand for bandwidth, markettsejf20—-22]
clearly indicate a migration away from legacy TDM networks towards a paskigched
infrastructure, based on the Internet Protocol (IP), which enalgtgonk operators to realise
a lower cost per bit in the delivery of voice, video and data serviceis. uBiquitous, but is not
optimised for transfer of delay sensitive signals such as video and vbémhiniques such as
Multi-Protocol-Label-Switching (MPLS) and Diffserv have emerged toradsl these issues,
providing Quality-of-Service (Qo0S) guarantees over packet-bastworks and enabling
unified transmission of voice, video and data over the same infrastrucAi2005 survey
of Service Providers in North America and Europe [23] conducted fignktics Research

indicated the following:

e That service providers faced the double bind of keeping pace with signifgrowth in IP
traffic whilst simultaneously trying to increase the profitability of IP-basedses. 77%
of respondents identified maintaining revenue growth in a period of tedhraceition

as the key business challenge faced.
e That broadband internet adoption was the key driver for the growth traffic.

e That over 65% of respondents were no longer evaluating legacy Asymgous Transfer

Mode (ATM) or Frame Relay equipment.

e That over 25% of respondents had already deployed IPv6 network@G#, although
deployments were not on a large scale. By close of 2005, half of albbnefgmts expected

to have some IPv6 roll-out.

e That 81% of respondents used some form of MPLS networking in 20@, 2%
adopting the technology by the end of 2005.

So, whilst the installed SONET/SDH infrastructure continues to generatauevor Aliathon,

continuing migration to packet-switched networks by service providerseatwabrk equipment

11

Background

manufacturers underlines the need to develop technology in this area -omheeccial

motivation for the research on Packet Classification presented in Clapter

2.3 Technical Background

2.3.1 An Introduction to FPGASs

In introducing FPGA technology, thértex-Il Pro Platform FPGA [24] from Xilinx Inc. will be
used as a reference, since this device was in full production at the ofiteis project, and was
thus used both in the prototype platform discussed in 2.3.4, and in analy=igSand Packet
Classification architectures discussed in later chapters. Newer demdeefahave of course
continued to emerge during the course of this reséaroiit the architectural fundamentals

remain broadly the same.

In the most general context an FPGA consists ofaenay of programmable logic elements
arranged on a matrix of programmable interconnect. In the Virtex-Il Prize¢hese elements
include high-speed serial transceivers with a bit-rate of up to 3.125Grmhpnnel, embedded
IBM PowerPC Reduced Instruction Set Computer (RISC) processes cembedded multiplier
blocks optimised for Digital Signal Processing (DSP), Digital Clock MandB€M) blocks
for clock distribution and embedded dual-port SRAM.

The fundamental programmable element across all Xilinx device families is thigOwmble

Logic Block (CLB). Each CLB in turn comprisessficesas shown in Figure 2.1.

!Notably Virtex-4 and Virtex-5 from Xilinx Inc., and Stratix-Ill from Alter&orp.

12

Background

TCW' Cout
N EE—
Slice () 1\MUXCY
X1Y1
4-Input LUT D
-
Slice [& L
X1Y0 -
C 3 H
Switch S T =
Matrix Shift (e Z —
3 0 1\MUXCY
o
Slice E]
Koyl 8 4-input LUT)
FF
Slice
X0Y0 >
TC.H Cin
CLB Element Slice Element

Figure 2.1: Xilinx CLB and slice elements

These slices provide the essential structures required for synatg@mal combinatorial logic
design. Each slice contains two flip-flops - the basic storage elementsrichreyous logic
designs, and two 4-input Look-Up Tables (LUTSs) each capable of impigntgeany boolean
function of four inputs or less, as illustrated in Figure 2.2. The simple 2-itP&" and
“AND” primitives in this example are emulated in the FPGA by using the inputs diredtly
the LUT address. Each of the 16 LUT locations stores a value requireartectly resolve
the logic function for a given input address, such that the LUT is effelgtia direct hardware
implementation of the truth table associated with the logic function. Understandsiga$ic
4-input granularity (and indeed the FPGA target architecture in gerisrafjfen important in
realising efficient FPGA implementations. Perhaps unsurprisingly, autheesnoted that Very
Large Scale Integration (VLSI) designs optimized for traditional ASIC ptats do not always

perform well in FPGA logic and vice-versa [25, 26].

The basic programmable logic elements are supported by a hierarchy gfapnmable
interconnect betweeswitch matrices In the Virtex-1l Pro local fast interconnect lines
run internally in the CLB connecting LUT outputs to LUT inputs as shown in Fgaul.
Conceptually above this layer, there are 16 direct connections betvedgimbouring CLBs,
and a series oflouble lineswhich route signals to every first or second block away in four
directions. In similar fashionhex linesroute signals to every third or sixth block away in
four directions, and finally a series @ing linesdistribute signals across the whole device.
Additional dedicated routing is provided for system clocking and high ¢paé&hmetic

operations.

13

Background

Output
f

5
°

f=(aorb)and (cord)

LuT

ab cd

—» o 1

el Bl Bl Bl L= (= (= (= R Bl Bl B =l (=) [l el ko
a|a|o|o|=|=|o|of=|~|o|o|=|=|o|ola %
= |O| =[O |O|=|O|=|O| = O] = o= 0O|a

alalalalalalala|lo|lo|lo|lolo|lo|o|o|v

alalalolalalalo)alal-a|lololololo

Truth Table

Figure 2.2: A simple boolean logic function realised in a LUT

2.3.2 The FPGA and ASIC/ASSP Design Flows

As discussed briefly in Chapter 1, the advantages of an FPGA-basexshah over ASIC/ASSP
equivalents are perhaps best discussed in the context of their tiespizsign flows, shown
in Figure 2.3. Both flows start with a functional specification, and desidry ertypically
using a Hardware Description Language (HDL). Although schematieebdgsign entry is
still supported by contemporary FPGA design flows, it becomes difficult toage for all but
the simplest designs. At present, Verilog and VHDL ((Very High Spe¢eghated Circuit)
Hardware Description Language) are the dominant HDLs, the latter usedgtiout the
remainder of this dissertation. A discussion of the relative merits of these twguadges
is beyond the current scope, although some discussion on appropitey style follows
in2.3.3.

During the design capture phase, two main categories of HDL code araltypiaitten in
parallel. Register Transfer Levedr simply RTL code encapsulates the design proper, and is
intended to be processed in the next stage of the flow bynghesigool, which maps the
functional design onto logic primitives in the target architecture. On the bdrebehavioural
code is not itself intended for synthesis, but rather used in conjunctionavitimulationtool

for functional verification of the design. Such code is usually descrisedtestbench The
early phases of the FPGA and ASIC/ASSP flows thus follow a similar iterativeegs. The

design is specified and coded, verified in a testbench and synthesised.

14

Background

Functional Functional

Specification Specification
4 Y
Design Capture in Design Capture in
HDL < HDL
> Behavioural » Behavioural
) Simulation \ Simulation

Synthesis Synthesis 4—‘

Static Timing Analysis and
Equivalence Checking

Y

Y Y

Place and Route 4—‘ Floorplanning
Static Timing > Hand-off to
) Analysis 3 Foundry

SRTILLI Gl Place and Route
Verify in Circuit «— Static Timing Analysis and

Equivalence Checking

3 ™ Model 2"/3" Order Effects

Verify in Circuit

(a) (b)

Figure 2.3: Generalised FPGA (a) and ASIC/ASSP (b) design flows

Thereafter the flows begin to differ. The high NRE costs associated witlC/ASSP
fabrication mean that it is extremely important that the desigax&tlyas originally specified
before committing to manufacture. Theoretically, after initial functional vexifo is
successfully completed, the design should remain functionally equivaedtldy implication
correct) through to manufacture. In reality, the numerous translationsgirdisations from
RTL to physical design in multi-million gate designs (including insertion of /O arsd te
structures, logic and drive strength optimisations and manual net list ebpaimgevitably
introduce bugs. As a result, complex formal equivalence checking itpets become
necessary in the ASIC/ASSP flow [27, 28] to ensure that functionalrityest every stage in

the flow is maintained.

Timing performance is critical in any logic implementation, and achieving tincliogurea
key goal for designers of large digital systems, regardless of platfdima. timing challenge
is generalised in Figure 2.4. A typical digital system comprises flip-flopse@isters) as the
basic storage element, and combinatorial elements (gate primitives in ASIGR$ABSTs in
FPGAs) used to implement the logical and mathematical functions demandedfbpdtienal

specification. The storage elemenisH; and F'F; in the figure) hold their current data value

15

Background

at their outputs until the next clock edge occurs (flip-flops are rising @¢dggered in this

example) when the outputs are updated with the current input value.

In practice, two things work against the system designer here. Firstlgttinage elements
demand that the data on their inputs be held stable for a minimum time before theedipek
arrives (the setup tim&,,) and for a minimum time after the clock edge arrives (the hold time
ty). Effectively, this means that the data must be sampled within a valid windaw(sim grey

in the figure). Secondly, combinatorial logic can only operate at finite spatdechnology
families suffer a data delay, which is typically much larger than any delays on associated
clock nets. As shown in Figure 2.4, if this delay becomes too large, timing viotatian

occur, whereby the clock edge does not fall within the valid sampling window

D1 Qw I E Dz Qz
" | ———
"\ .
FF, FF2
clk
Combinational logic with worst
case delay &
Global clock on routed
on priority net

Data sample point for FF,
clk ;

« X X

D2 ;
& OK, Sample valid i
1
1
|

1
; i i g
i >le »! i
i i

i
D2 : i

i X X
violation + i 1 1]

3 Too large, setup

Figure 2.4: The problem of combinatorial delay in digital systems

Managing timing issues as system complexity and speed increase is challe@agitg
Static Timing Analysidools are used in both FPGA and ASIC/ASSP flows to automate
the process. The process is simplified in the FPGA domain by the fact thathttsical
location of the programmable logic elements in the device is fixed, and the parasitic
associated with the programmable interconnect have been pre-chaettesuch that a

single (though often iterative) timing analysis phase suffices. In contfestASIC/ASSP

16

Background

flow includes afloorplanningstage (when the designer decides what logic blocks go where),
into which iterative timing analysis must also be folded. Finally, the ASIC/ASSR i#0
further complicated by its dependence on foundry availability for deviceufiaature, which
introduces risk and delay (incorporating additional equivalence ahgelfter place and route,

and modelling of parasitic effects) before the design can finally be veiifieicuit.

The FPGA design flow reflects the fact that the devices are inherentlygiegnmable. Design
errors can be rectified by downloading a new bitfile, and do not requsiécan re-spin. The
FPGA design flow is thus much less verification driven than the ASIC/ASSRagnt, and
simpler as a result. One must be careful not to oversimplify the case heteetraalumes for
ASICs/ASSPs clearly indicate that they represent the most cost efféetihnology in many
applications. Nonetheless for lower volume, high-complexity networkingtisols; where
new standards continuously emerge and evolve, FPGAs appear t@ affere cost effective,
lower risk solution for many Network Equipment Manufacturers (NEMs)aa reflected in

Aliathon’s current customer base and product portfolio.

2.3.3 Design Trade-Offs and Guiding Principles

Whilst the research projects on Forward Error Correction and PaClesisification which
follow in Chapters 3 and 4 by definition target different application domé#iey, both represent
an attempt to optimise FPGA systems by balancing classic design trade-offse frhde-offs
are effectively universal - reflecting the zero-sum game of finite cépeled and available logic
resource - and independent of one’s target application. Generabksmg, one may trade
additional logic resource for system clock speed, though this is subjéahiaishing returns

as the limits of the process technology are approached.

2.3.3.1 Logic Utilisation, Clock Speed and Processing Time

Consider the timing problems illustrated previously in Figure 2.4. Recall that wittnga
¢ through the combinatorial logic path, the setup time was violated and reliablatimmeof
the flip-flops in this circuit could not be guaranteed. There are two agpes to achieving
timing closure for this design; reducing the system clock speed to give a waiepling
window, or reducing the worst case delay through the combinatorial logicsetup and hold

times are met. Assuming that the design specification prohibits a slower clockpteecase

17

Background

combinatorial delay can be reduced ipeliningthe logic as shown in Figure 2.5. Pipelining
refers to the insertion of additional synchronous elements (flip-flops) itacdmbinatorial

logic path, such that the worst case delays between these elementsaezted

D+

FFy

Combinatorial logic with Combinatorial logic with
worst case delay §/2 worst case delay §/2
Global clock on routed

on priority net

FF, FF,

clk

Figure 2.5: Pipelining the logic of Figure 2.4 to improve timing

Assuming that the flip-flop is inserted at a point exactly half way along thepd#tathe worst
case delay in this system is now halved, and the maximum allowable clock frege#ectively
doubled. This improvement in clock speed comes at the cost of additiomethiynous logic
utilisation which is negligible in this example, but could be significant in wide d#tapahere
multiple bits of additional storage are required. Further, the additional fljpifi the data path
means that it now takes an additional clock cycle for data to pass from #gensynputs to
its outputs. This increasddtencycan become significant in systems with multiple pipeline

stages, particularly if the data is sensitive to absolute delay, as in voiceear afiplications.

Logic utilisation can also be traded against processing time, in terms of the nomteck
cycles required to complete a given computation. For example, say onedvtambeiltiply two
polynomials of length, a common requirement in encryption or coding systems. One could use
a single multiplier and produce one polynomial coefficient result per clgclecthus taking
| clock cycles to produce the complete result. Alternatively, one could usaladf| parallel
multipliers and produce the same result in a single clock cycle. Clearly theappstach is

dependent on the demands of the target specification.

2.3.3.2 Abstraction and Technology Independence

In addition to the trade-offs just discussed, the work which follows is infied by the

following best-practice guidelines followed at Aliathon Ltd. Namely that all MH&burce

18

Background

code should be written at an appropriate leveabs$tractionand that all VHDL source code
should betechnology independento elaborate the first point, consider the very simple 4-bit

comparator circuit and VHDL implementation shown in Figure 2.6.

Circuit VHDL entity comparator is
port (a,b : in std_logic_vector(3 downto 0);
f :outstd_logic);
end comparator;

a0 bo a; by a by asb; entity and_2 is

port (a,b : in std_logic; architecture rtl of comparator is
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ f :outstd_logic); componentand_2
end and_2; port (a,b :in std_logic;
architecture rtl of and_2 is f :outstd_logic),
begin end component:
f<=aandb; componentand_4
end rl; port (a,b,c,d :in std_logic
Wo wy W, ws f . : out std_logic);
entity and_4 is end component:
port (a,b,c,d : in std_logic; signal w1,w2,w3,w4 : std_logic;
f :outstd_logic), begin
end and_4: g0: and_2 port map (a => a0, b =>b0, f => wO0);
architecture rtl of and _4 is g1: and_2 port map (a => a0, b =>b0, f =>w1);
begin g2: and_2 port map (a => a0, b =>b0, f =>w2);
f<=aandbandcandd; g3: and_2 port map (a => a0, b =>b0, f =>w3);
end rtl; g4: and_4 portmap (a=>w0,b => w1, c =>w2,d
f => w3, f =>f);

end rtl;

Figure 2.6: A 4-bit comparator coded with low level abstraction

The VHDL used here is at a very low level of abstraction - the details ofitheitstructure are
very closely reflected in the code. Gate primitives are written as componahigastantiated
in the higher level comparator architecture with interconnecting wires explidéfined as
signals. For all but the simplest circuits this approach quickly becomes itgaiaend
counter-productive, generating large volumes of code. Fortunatehgemporary synthesis
tools allow designers to write VHDL at a much higher level of abstraction, vattiidence that
the hardware structures produced will still be as intended. Thus the catapaode could be

re-written as shown in Figure 2.7, with identical results.

entity comparator is
port (a,b : in std_logic_vector(3 downto 0);
f :outboolean);
end comparator;
architecture rtl of comparator is
begin
f<=a=b;
end ril;

Figure 2.7: A 4-bit comparator coded with high level abstraction

Not all examples are so clear cut, and what constitutes an appropriateofesfestraction
for any given design is subjective. On one hand, coding at too low & tesalts in large

code bases which are difficult to maintain, debug and re-use. On the wtngrabstract code

19

Background

can be difficult to understand, and may not be interpreted as intended Byritieesis tools.
Aliathon guidelines thus recommend writing VHDL at the highest level of abtra which

the synthesis tools will support.

Maintainingtechnology independenaaplies that one must not write HDL which results in a
synthesised circuit unique to a particular target architecture. As an éxasgy one wanted
to implement an asynchronous first-in-first-out (FIFO) buffer - aneamgly common data
structure in digital systems design. The Xilinx Virtex-4 family of devices includegrated
FIFO logic, which can be inferred in synthesis by setting appropriate atsgbin HDL.
Whilst efficient, using this dedicated logic in an IP core immediately locks that icoo the
Virtex-4 architecture and limits flexibility for Aliathon’s end customers. Thukere possible,
all logic structures are implemented using generic resource - availablesatndtiple target

architectures - even if this incurs a penalty in terms of absolute logic utilisation.

2.3.4 An FPGA-based Configurable Network Interface Card

As a precursor to the main research phases of this project, an FP@A-pasted circuit

board (PCB) network interface prototype was developed [29]. Thisldpment was intended
principally as a support prototype for the subsequent work on P&lkssification, and is
used in Chapter 4 to compare a hardware implementation adedt based classifier with
theoretical predictions and software generated results. Further, autbet of this project,
Aliathon had no in-house platform for hardware verification of their IResc a gap which
this development was also intended to fill; hence its general purposetinfiase. The design
was taken from concept through schematic capture, PCB layout, m&mafand eventual
deployment at beta-test locations in customer installations. The basic sylsikrdlagram is

shown in Figure 2.8.

The system is built around a Xilinx Virtex Il Pro XC2VP50 FPGA, with a suping

infrastructure designed to be applicable to the widest possible rangetartiad network
applications. With the FPGA as its principal component, the PCB architecturasedion
a 12 layer stack-up to accommodate high density interconnect - with contiollgelance
for good signal integrity on high bandwidth interfaces to the memory compoaent$o the
network transmission modules. The system operates from a single 12 wat popply which
is tightly regulated on board using tailored small footprint switch-mode poweples and

additional load regulation for noise-sensitive high speed circuits.

20

Background

QDRI DDRII
(72MB x 3) (256MB x 2)

L— 7

[A [
[A

A
32 MB 512 MB
NOR Flash NAND Flash

» Power PC
STM 1-16, OTU-1, FPGA Fabric x2) 10/100/GbE
10/100/GbE SFP 1.0-2.5Gbps
(x2) SFP (x2)

i

1.0-2.5Gbps RS-232 (x2) GPIO (x8)
Serial VO (x4)

Y
Y

A A

Y
Y

Xilinx XC2VP50

Figure 2.8: Top level PCB architecture of an FPGA-based network interface card

Integral to the flexibility and capability of the system is the supporting memorgstrincture.

Three 72Mb Quad-Data-Rate Il (QDR-II) SRAM devices are directiynarted to the FPGA
to provide extremely high bandwidth memory access. The data interface todbeges is
32 bits wide, running at 166MHz with access on both edges of the systeftdaleliver an

aggregate data throughput of 10.624Gbps. Additional memory densitgvglpd by 512MB

of Double-Data-Rate Il (DDR-II) memory, with access speeds up to H6M

The choice and balance of these emergent memory technologies is furidatoghe range
of potential applications the system can support. The high throughputiprbisy the QDR-II
devices facilitates real time, full bandwidth processing of the data on theorletnterfaces.
The DDR-Il devices provide superior memory density in an extremely smatpfimt for
buffering large amounts of data, essential in applications such as difedrdelay measurement
or packet storage. Such a balance of speed and density on its memomgceseehsures that
the FPGA can perform close to optimally across a wide range of communicétioctfons. In
addition, PCB footprints for the memory architecture have been carefublyechto allow the
memory capacity of the system to be easily expanded as latest deviceleasedeor reduced

for lower cost solutions to less demanding applications.

Two fully configurable optical interfaces are based on Small-Form-Fd&itgygable (SFP)
transceiver modules which mate directly with the optical fibre. These modulegrate

the transimpedance amplifier and laser diode driver required for optigasrission in

21

Background

an extremely compact footprint. The system is thus compatible with all the keyabptic
networking standards up to 3.125Gbps. The SFP modules can be easilyesivaut of their
host connectors, giving the platform a completely general purposé-dérd interface, easily
configured for a host of optical performance requirements rangimg fong range Dense
Wavelength Division Multiplexing (DWDM) systems through to low cost, single rshort

reach applications.

Two further SFP modules serially connected to the FPGA provide additiggialbandwidth
access over fibre or copper. These ports are again designed taptetaly general purpose;
optimal for configuration as 10/100/Gigabit Ethernet (GbE) electrical faxtes for remote
redundant operation of the platform, but equally amenable to optical ctvibe A fully
configurable backplane interface is provided by four programmable5@83@2s channels,
output via a high frequency connector for support of a range asmibility standards such as
PCI-Express or Infiniband. Additionally, Real Time Operating SystenQ®)Jldevelopment is
supported by two IBM microprocessors embedded in the FPGA, and comptiedrizy 512MB
of NAND Flash memory to provide an extremely powerful hardware/sofwar-design
fast-prototyping and development platform. Processing power carabidyréncreased using
additional modules in parallel, connected by a data pipe across any of thddglwidth

interfaces previously discussed.

The entire PCB platform occupies a footprint of only 150mm x 80mm, allowing &modules
to be accommodated in a traditional 1U rack-mount enclosure; an aggbegateidth capacity

of greater than 80Gbps.

22

Chapter 3
Forward Error Correction

3.1 Introduction

There are many reasons why one may wish to encode data. These iretudiéyq30], where
one may wish to encrypt data to prevent attack from an unauthorised tuitg gfficiency,
where one may wish to optimise use of the available channel capacity usinggiees such
asHuffmanencoding [31]; or reliability, where one seeks to counter the effectsigkron the
transmission channel. Forward Error Correction (FEC) [32] is a teclenichich falls into the
last category. FEC adds additional information in real time to the originalnmdtion to be
transmitted over a channel such that at the receiver, the combinationardiveal information

and the additional information can correct errors in real time.

There are two types of codes in common use for error correction amdaemtrol; block codes
and convolutional codes [32,33]. The encoder for a block codilebvthe information up
into message blocks &finformation bits each. There are thus a total 2Jf different possible
messages. The encoder transforms each message into a codewodisofete bits. Thus,
the notation if, k) is often used to describe a code. The encoder for a convolutionalaied
acceptk-bit blocks and produces an encoded sequengehifs. However, in this case each

encoded block depends on both the current message wor previous message words.

The codes considered in this research are all block codes, which fantigal application
in a wide range of storage and communications equipment. Of particular intétebe a
special group known as the Reed-Solomon codes [34], which havedpeeified for use by
the International Telecommunication Union in its recommendations for the Optiaakport
Network [11].

1Assuming, for now, a binary code.

23

Forward Error Correction

3.2 Finite field theory

The algebraic framework on which error correcting codes are baseatisf finite field$. The
properties of such fields have some remarkable consequences foeding &imd application of

coding techniques. The basic taxonomy of field theory [32, 35] is intredibere.

3.2.1 Groups

Let G be a set of elements. An arbitrary binary operatioon G is one which assigns to any
pair of elements andb, a uniquely defined third elemeat= a * b in G. When such a binary
operation exists ofs, thenG is closed undex. For example, if5 is the set of all integers, then

G is closed under real addition. Every real addition of two integers resutshimd integer.
A setG on which a binary operation is defined is called a group if the following conditions
are satisfied:

e The binary operation is associative, such that(b x c) = (a x b) x ¢

e G contains an identity elemepfsuch thatt xe =exa =a

e Any elementain G has an inverse, suchthat o’ = a’ xa =e
The number of elements in the group defineitder. The set of all integers is thus a group
of infinite order. Of more practical interest dimite groups with a finite number of elements.

The group definition outlined above may be expanded to introduce the aigslgstem which

is of most interest to coding theorists - theld.

3.2.2 Fields

Afield F is a set of elements with two operations, additier) and multiplication(-) satisfying

the following properties:

e Fis closed unde#- and- such tha{a + b) and(a - b) are inF wheneveia andb are inF.

e The operations are commutative, suchthatb =b+aanda-b =b- a.

20r Galois Fields, after Evariste Galois their discoverer.

24

Forward Error Correction

e The operations are associative, such thatb) +c = a+ (b+c) anda- (b-c) = (a-b)-c.
e The operations are distributive, such that(b+c¢) =a-b+a - c.
Furthermore, the additive identity element 0 and the multiplicative identity elemenstiaxist
in F satisfying the following:
e a+0=aforallainF.
e g-1=qforallainF.
e For anyain F, there exists an additive inverse elemetin F such that + (—a) = 0.
e For any nonzero elemeatin F, there exists a multiplicative inverse element' in F

suchthat - a~ ! = 1.

A field with a finite number of elements is commonly known as a finite, or Galois Fidié. T
simplest example is the binary field of elements [0, 1] often denote@ by2), and closed

under modulo-2 addition and modulo-2 multiplication as shown in Figure 3.1.

Modulo-2 Addition Modulo-2 Multiplication
+ 0 1 . 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Figure 3.1: Simple modulo-2 operations

Galois’ fundamental result [35] which allows one to work with generalisgiteffields beyond

the restrictions of the binary case is stated without proof as follows:

Theorem 1. If and only if q is a prime power (i.eq = p”, wherep is prime anch is a positive
integer), then there exists a fiefdF'(¢) of orderqg. Furthermore, ifg is a prime power, then

there is only one field of that order.

Additionally for any prime powemg, and any positive integem there exists a finite field
GF(q™), called the extension field @ F'(¢). Such extension fields are the platform on which
many practical coding applications are constructed. In general a aade be constructed

from any Galois Field7F(q), but in practice codes with symbols frof#'(2) or its extension

25

Forward Error Correction

fields GF(2™) are most widely used, since they represent an elegant mapping to the binar
world of digital transmission systems. As a precursor to considering the&rcotion of such

extension fields, the conceptiofeducible andprimitive polynomials must be introduced.

3.2.3 Polynomials over Galois Fields

As will become apparent, it is frequently useful in the analysis of errorecting codes
to consider computations with polynomials whose coefficients are from GaieidsF For
example, a polynomiaf (x) of degreen, with coefficients from the binary field& F'(2) could

be written as:

f@) = fo+ fix+ foz® + - + fra™ (3.1)

where each coefficienf; is 1 or O, the elements @FF'(2). Polynomial arithmetic over Galois
Fields follows the commutative, associative and distributive rules of traditjpolgnomial
arithmetic, with the addition, subtraction, multiplication and division of coefficieetsoming
modulog operations, wherg is the order of the Galois Field. Polynomials therefore provide a

convenient and familiar framewaork for the analysis of error correctirgso

3.2.3.1 Irreducible Polynomials

A polynomial p(z) over GF(2) of degreem is said to be irreducible ove& F'(2) if it is
not divisible by any polynomial ove€' F'(2) of degree less tham but greater than zero.
Considering the simplest examples again, of the four polynomials of degred 2.2 + 1
andz? + x are not irreducible since they are either divisibleday = + 1. Howevers? +z + 1

is not divisible by any polynomial of degree 1, and is thus irreducible.

3.2.3.2 Primitive Polynomials

An irreducible polynomialp(z) of degreem is said to be primitive if the smallest positive
integern for which p(z) dividesz™ + 1 isn = 2™ — 1. It is difficult to distinguish primitive
polynomials by inspection, but they are of fundamental importance in théraotien of Galois

Fields. A key property of primitive polynomials in this context is stated withowatopin

26

Forward Error Correction

Theorem 2 A more detailed analysis of the properties of primitive polynomials is presented

in [36].

Theorem 2. Any primitive polynomial oveiG F(2) of degreem dividesz?" —1 + 1.

3.2.4 Construction of Extension Fields Based o6'F'(2)

Beginning with the two elements 0 and 1 fr@##'(2), and following [32] one may then define
a new primitive elemend,, and a sequence of multiplicatio(i§ to generate a corresponding

infinite sequence of powers afas follows:

0-0=0,
0-1=1-0=0,

1-1=1
0O-a=a-0=0,

This leaves the infinite set of elements = {0,1,a,0?,a% a*,...,a7,...}. One now
imposes some conditions on the set. First the set is restrict a@ements. One then defines

a primitive polynomialp(x) of degreemoverGF'(2) and imposes the condition thafo) = 0.

Sincep(x) is primitive, it dividesz?" ~! + 1 (Theorem %, thus:

27" 1 = ga)p(a) (32)

27

Forward Error Correction

Replacingx with the primitive elemendv in 3.2 yields:

"t 41 =g(a)pla) =0

Finally, adding 1 hodulo-3 to both sides of 3.3 yields:

m__
2m-1 _ 4

Under the imposed conditions, the field thus becomes finite:

m__
F*=0,1,0,0% 0%, ...,a%" 2

(3.3)

(3.4)

(3.5)

It may be readily shown [32] that the resulting field is a Galois Field. Whilst tleeqaling
analysis appears to be rather abstract, it nonetheless yields a fundaarehtzery useful

practical conclusion. That under the condition whefe) = 0, one may use a primitive

polynomial of degreen over GF'(2) to generate an extension figleF'(2™).

Example

Consider the generation of a simple extension fiGlH#(23) using a primitive polynomial
p(z) = 1+ z + 3. Settingp(a) = 0yields1 + a + o® = 0 and thusfiodulo-3 o =1 + «
which can be used to generate the higher powers of the field. Variowdastarepresentations

for GF(23) are shown in Figure 3.2. The required sequence of multiplications to derieea

field is as follows:

0-1=1-0=0,
1-1=1,
O-a=a-0=0,
l-a=a-1=q,
ad=a-a,
ad=1+aq,
o= a=(1+a) a=a+d?
=at-a=(a+a?) - a=a’+a®=1+a+a?

=’ a=C+a)-a=+at=14+a+a+a®?=1+a

28

Forward Error Correction

Power . . N-tuple
. Polynomial Representation .
Representation Representation
0 0 000
1 1 100
o o 010
o’ o 001
o 1 + o 110
(),4 o + az 011
(15 1 + o + (12 111
(16 1 + (12 101

Figure 3.2: Power, polynomial and n-tuple representations:tf (23)

The n-tuple representation of the field elements is simply a shorthand vefsienpmlynomial
representation. If a coefficient in the polynomial representation is 1, ttiegorresponding
bit in the n-tuple is set. For example+ o corresponds td10, and1 + o corresponds
to 101. All three representations for Galois Fields are widely used througheuitérature.
Polynomial or n-tuple representations are more convenient for coimgjdealois Field addition

or subtractioR, since these are simple modulo-2 operations on each powerkdr example:

ot +a®=0114111 =011 zor 111 =100 = a® = 1 (3.6)

In contrast, the power representation is often more convenient whesideoimg Galois Field
multiplication or divisiort, since these operations may be computed by addition of indices [32].

For example:

+a=a =a=1+a=110 (3.7)

Two specific extension fields afF'(2) will be of particular interest in the analysis which
follows. The first of these(F(2%), is extremely useful for prototyping and testing coding
applications since calculations are of a manageable size, and the propértidy(2?) are
equally applicable to larger fields. Additionally of interest will 6&(2%), from which the

Optical Transport Network Reed-Solomon codes are derived.

3Modulo-2 addition and subtraction are identical operations.
4Galois Field division is equivalent to multiplication by the inverse of the divisor

29

Forward Error Correction

The complete field& F'(2%) generated by primitive polynomialz) = 1+ 22 + 23 + 2% + 28,
andGF(2*) generated by primitive polynomialz) = 1 + 2 + 2* are given in [32].

3.3 Coding Overview

Some basic properties of the block codes around which this researctseasl laae now
introduced. In introducing these concepts it is easier to restrict discussitally to

binary codes; the key properties of such codes scale easily to the meezfplonon-binary
equivalents, which will be considered in due course. Assume initially thatdhemunications

system to be considered follows the traditional structure shown in Figure 3.3

Noise

e i Channel

Information ~ Channel ~ Transmission » Channel - Information
Source Encoder Channel Decoder Sink

Figure 3.3: A basic communications system

In block coding, the binary information sequence from the source isdentmto message
blocks of fixed lengttk, usually denoted by. The encoder then adds additional information
to the message blocks to producamsmitted codewordf lengthn(> k), usually denoted by
v. This additional information (sometimes described agtmity bits oroverheadl can then be
used to detect and correct errors in teeeived codeword, which may arise due to degradation
of the channel signal-to-noise ratio. Such errors are typically repiesgas arerror vectore.

If the gain of the chosen coding scheme is sufficient to reverse the effdee channel noise,

the decoded messagewill be identical to the original information sequenae

3.3.1 Useful Properties of Block Codes

Consider the classic single-error-correcting code example shown ineR3gdL This is &7, 4)

Hamming code from the first set of error correcting codes to be devi|&Fg

This code has a number of key characteristics which make it extremely attreoti
implementation in hardware. Although the example shown is trivial, its key ptiepealso

apply to the more complex, more powerful codes deployed in many real w@pgtications.

30

Forward Error Correction

Message Codeword Message Codeword
0001 1010001 0000 0000000
1001 0111001 1000 1101000
0101 1100101 0100 0110100
1101 0001101 1100 1011100
0011 0100011 0010 1110010
1011 1001011 1010 0011010
0111 0010111 0110 1000110

1111 1111111 1110 0101110

Figure 3.4: The Hamming7, 4) block code

The code idinear - the modulo-2 sum of any two codewords is also a codewsydtematic
- the message word is present unaltered in the right-most digits of the catjeavmicyclic -

any cyclic shift (left or right) of any codeword is itself a codeword.

These properties map intuitively to hardware synthesis, particularly to wéhetl structures
such as shift registers and simple combinatorial circuits (a modulo-2 addenfgy an xor
gate, for example). Techniques applicable to linear, systematic, cyclis emdehus the focus

of this research.

3.3.1.1 The Generator Polynomial

One of the fundamental characteristics of cyclic codes is the existencarofjae codeword
around which the entire code can be constructed. The significance opdlyisomial is

encapsulated in two key theorems (again stated without proof) below.

An excellent treatment of polynomial arithmetic in the context of cyclic codewéngn [32].
Discussion here is limited to that required to clarify nomenclature used in tHgsenaf

encoding and decoding techniques which follows.

Theorem 3. For an(n, k) cyclic code,C, there exists a nonzero code polynomial of minimum

degreen — k which is unique.

Theorem 4. Following fromTheorem 3if g(z) is this nonzero code polynomial of minimum
degreen — k in an(n, k) cyclic codeC, then any other binary polynomtak a codeword irC

if and only if it is a multiple ofg(x).

Information messages and codewords are routinely represented wdymgipial arithmetic,

°A polynomial with coefficients front: F(2).

31

Forward Error Correction

identical to that used to describe Galois Field elements. Typically, the messhgetwoded
u is given byu(z) and the resultant codewoxdby v(x). For example a binary codewowd=
10101010 is the same agxr) = 27 + 2° + 2 + z, a message wond = 0111 is the same as
u(z) = 2%+ z + 1.

With this convention in mind, and following on froftheorem &ndTheorem 4it may be noted

that every code polynomialz) in an(n, k) cyclic code can be expressed in the following form:

v(x) = u(x)g(z) = (ug +urz + . .. + up_12) g(x) (3.8)

whereu(x) is the message to be encoded afd) is the resultant codeword. A cyclic codé
is therefore completely specified by the nonzero polynomial of minimum degfeg which
is thus termed thgenerator polynomialand often presented in one of the following shorthand

formats:

2t—1 o 2t '
g(@) = [@) =" g (3.9)
=0 =0

3.3.1.2 Minimum Distance and Error-Correcting Capability

A final fundamental property of block codes, which is directly related to #reor-correcting
capability, is theminimum distance The Hamming Distance between any two codewords is

defined as the number of places in which those codewords differ.

The minimum distance of a codgis defined as the smallest of the Hamming distances between

any two distinct codewords in the code:

Amin(C) = min{d(z,y)} z,y € C,xz £y (3.10)

Example

If C'is a simple binary code as shown in Figure 3.5, then the Hamming distance betwveen
andc, is 3, since they differ in 3 positions. In fact, for this example the Hamming distanc

between any two distinct codewords is 3. Thus the minimum distance ief3. It may be

32

Forward Error Correction

00100
00011
11111
11000

C1
C2
Cs
Cq

~— —— N’ S

Figure 3.5: A trivial binary code

shown [32, 36] that the number of errors which a code can detect @mect, t is directly

related to its minimum distance as follows:

= (i~ 1) (3.11)

This error-correcting capability completes the taxonomy required to formatlycampletely
describe a binary linear block code. For example, for any positive iniege 2, there exists a

Hamming code with the following characteristics:

e Block length:n =2 — 1

Information symbolsk = 2™ —m — 1

Parity symbolsn — k =m

Minimum distanced,,,;, = 3

Error-correcting capability= 1

3.3.2 From Single to Multiple-Error-Correcting Codes

Clearly the scope of practical application for a single-error-correctinde is limited.
Fortunately, there exists an elegant generalisation of the Hamming codemrecting
multiple errors, discovered by Bose, Chaudhuri [38] and indepdlydanHocquenghem [39],

and thus known as the BCH codes, defined as follows.

For any positive integers:(> 3) andt(< 2™~!), there exists a binary BCH code with the

following characteristics:

33

Forward Error Correction

e Block Length:in =2™ — 1
e Parity Symbolsn — k < mt

e Minimum Distanced,,,;, > 2t + 1

This code is capable of correcting any combinationhaffewer errors in a block of digits, and

is thus called d-error-correctingcode. Recalling that is defined as a generalised primitive
element inGF'(2™), the generator polynomiaj(z) of a BCH code is then defined as the
lowest degree polynomial ovérF(2) which has the powers af up toa?’ as its roots - that is
g(a®) =0for1 <i <2t

3.3.3 From Binary to Non-binary Codes

The simple Hamming code in Figure 3.4 is an example of a binary block codesdtame bit
per code symbol, and can correct 3 bit errors. Furthermore, the/ti@i codes offer a useful
and elegant extension of the Hamming codes. However, such codes iataiited practical

use over high bandwidth optical transmission systems where bit erroBfaR) thresholds are

extremely demanding.

3.3.3.1 Extending the BCH Codes

To meet these exacting standards, the BCH codes may be further extgndsihg multiple
bits per symbol, rather than just one, to dramatically increase error correxi detection
ability. In fact, if p is a prime number anglis any power ofp, then there exist codes from the

Galois FieldGF'(g), called theg-ary codes, withy bits per symbol.

The Reed-Solomon codes [34], named after their discoverers, axampke of such codes, and
represent a key non-binary sub-class of the BCH codes. Reedioloodes have been widely
adopted in modern communications systems, despite the fact that at the time disgtewery,
no practical applications were known. The RS(255,239) code is of pkatielevance to this
research, being the code standardised for use in the Optical Trahsfaork. RS(255,239)
uses 8 bits per code symbol, and can correct 8 symbol errors. Tlaatade of this is best

demonstrated by example.

Consider a stream of 8 code symbols from the RS(255,239) code, withitaareor per symbol

34

Forward Error Correction

as shown in Figure 3.6. 8 bits are in error, thus 8 symbols are in error athe ddit errors can

be corrected; x denotes a bit error.

syml sym2 sym3 sym4 sym5 symo6 sym7 sym8
00000x00]00x00000]00000x00]000x0000[000000x0]0x000000[x0000000{00000x00

Figure 3.6: Non binary code with 8 symbol errors - 1 bit error per symbol

Now consider a stream of 8 symbols from the same code in Figure 3.6, witte ditthin error.

sym1l sym2 sym3 sym4 sym5 sym6 sym7 sym8
X Ix XXX|XX XX|XXX x| XXXX|XXXXXXXX|XXXX |xxXXX

Figure 3.7: Non binary code 8 symbol errors - 8 bit errors per symbol

Although there are now 64 contiguous bits in error, there are still only 8 eyerbors, so all
of the erroneous bits can still be corrected. This ability to deal with long ofiecentiguous
error bits is extremely useful in communications networks, where intermittalts fanay lead

to bursty error profiles.

3.3.3.2 The Reed-Solomon Codes Defined

For any choice of positive integesandt, there exists a—ary BCH code of length = ¢ —1,
which is capable of correcting any combinationtobr fewer errors and requires no more
than2st parity-check digits. Withy = 2, one again obtains the binary BCH codes described
previously. The Reed-Solomon codes are the subclass of BCH codedifth s = 1. In
general, a-error-correctingReed-Solomon code with symbols fra#¥’(¢) has the following

properties:
e Block Lengthin =¢ —1
e Parity Symbolsn — k = 2t
e Minimum Distanced,,;, = 2t + 1
RS(255,239) is thus a code with symbols frGh’'(256), requiring 8 bits per symbol for distinct

representation of each field element. A complete tablé Bf256) elements, as generated by

primitive polynomialp(z) = 1 + 22 4 23 + z* + 2% is given in [32]. Each information block

35

Forward Error Correction

for encoding is 239 symbols long, with a resultant codeword 255 symbads [bhe code is

therefore capable of detecting and correcting 8 symbol errors, asaliedtin 3.3.3.1.

In considering the arithmetic and manipulation of non-binary codes it is comasonijth the
binary case, to use polynomial notation. In the simple example of binary gheégsolynomials
take their coefficients frond£'(2); every coefficient is either a 1 or a 0. For the non-binary
codes, the polynomials take their coefficients fréf#'(¢). These coefficients are usually

defined by their power representation, as in the examples shown below:

24

u(z) = oz +abz? + a3 4. + o3 (3.12)

o(@) = 1% + 02103 1+ oSt 44 16,25 (3.13)

3.4 Forward Error Correction in the Optical Transport Network

In addition to the network management functions mentioned in 2.2 the G.709 Optcelport
Network also specifies capacity for FEC as shown in the Optical Transmitr(OTU) frame

structure of Figure 3.8. Byte numbers are annotated.

1 14 15 3824
1
2 Overhead
3
4
ODUK(Optical Data Unit)
1 14 15 Y 3824 3825 4080
1
g Overhead RS(255 239 FEC
4

OTUk(Optical Transport Unit)
Figure 3.8: OTUK frame structure

Each of the OTUR sub-rows is 4080 bytes long, and may be subdivided into 16 interleaved

255 byte Reed-Solomon calculations as shown in Figure 3.9. The first b@&lhrow 1 is

Sk refers simply to line rate, see Table 3.1.

36

Forward Error Correction

mapped into first byte in sub-row 1, the second into the first byte in sul®raad so on until
the sixteenth byte is mapped into the first byte in sub-row 16. The processvthes around
such that the seventeenth byte from OTU row 1 is mapped into the seconuh lsytie-row 1,
the eighteenth into the second byte in sub-row 2 and so on. Each of th©Tddrows is

constructed and deconstructed in this fashion.

This interleaving significantly enhances the burst-error performantecofode. Recall that
the non-interleaved RS(255,239) code may detect and correct up tmi@bwgrrors, or 64
contiguous bit errors. For this to occur in any of the sub-row FEC calouks, 1024 contiguous
bits would have to be in error in the OkUrame structure, since the interleaving distributes
these errors evenly between the sub-rows. Thus the interleaved aodietect and correct up

to 1024 contiguous errors in an OKlframe.

In wireline transmission systems this corresponds to an effective codingo§& to 8dB.
For very high bandwidth optical networks with transmission speeds up thg8@is acts
to counter signal-to-noise ratio degradation due to fibre loss, chromatiersigp and other

aberrations.

Effectively this means that network operators can achieve improvedntission distance
without increasing optical power, or improved bit error rate marginssadtte existing network

span.

1 239 255
[Information Bytes [Parity | FEC sub-row #16

1 / 239 255

[Information Bytes [Parity |FEC sub-row #2

1 4/ 239 255
[Information Bytes | Parity FEC sub-row #1

| Information Bytes | Parity Bytes | OTU Row
12....16 3824 3825 4080

\ 1 14 15 3824 3825 4080

Overhead RS(255,239)FEC

OTUk(Optical Transport Unit)

Figure 3.9: Byte interleaved FEC as specified by ITU-T G.709

The frame structure defined for the Optical Transport Network is fixedl independent of

line rate. At higher speeds, the period of transmission for each frameatss. The

37

Forward Error Correction

Type Nominal Bit Rate Line Rate (Mbps) Frame Period (us)
OTU-1 255/238 * OC-48 2,666.06 48.971
OTU-2 255/237 * OC-192 10,709.23 12.191
OTU-3 255/236 * OC-768 43,018.41 3.035

Table 3.1: OTU type and capacity

currently defined transmission rates are based on OC-48, OC-192 @nb& each scaled
for the additional FEC overhead. Note that the fractional scaling of ttades is not exactly
255/239, since additional bytes (unrelated to the FEC functionality and sonsetiriggred to

as “stuffing” bytes) are added when mapping the client signal oveiidhd

3.5 Forward Error Correction for 43Gbps Systems

The research detailed here focuses on OTU-3 systems, runningrexepgtely 43Gbps. Such
systems present a number of unique challenges to both electronic sysigmeds and optical
network providers, given the speeds which must be accommodatedftinme processing and

network monitoring.

Allowing adequate margin for system jitter, the current target FPGA silicorajmlgle of
running at approximately 170MHz [24, 40]. This means that on-chip xted need to be 256
bits (32 bytes) wide. This processing parallelism maps directly to silicon ateawider the
data interface the larger the implementation. This in turn presents a challeitige figh-speed
designs typical of communications systems, as routing delays and the |&yegicaequired

for multi-bit processing make it difficult to achieve timing closure.

Additionally, since there are 16 interleaved Reed-Solomon calculations g &Jk row,
processing data 32 bytes wide delivers two bytes from each Reed-Sotmitnilation in every
clock cycle, which adds further to the need for parallel processinmes@nd control hardware
to accommodate the line rate. This research addresses all of these isisiestigating ways
to gracefully process FEC in 43Gbps systems, in the context of both imgcadd decoding

architectures.

38

Forward Error Correction

3.5.1 Reed-Solomon Encoding

If u(x) is an arbitrary message polynomial, it may be shown [32, 36] that thereraegteps

to systematically encoding(z) to produce a corresponding codeword’inv(z). These steps
are as follows:
e Premultiply the message polynomiglz) by 2" —*

e Divide the productu(z)z"~* by ¢(z), the generator polynomial af’, to obtain the
remainder polynomial(z).

e Form the codeword(x) = b(z) + 2" Fu(x)
Whilst these operations at first appear convoluted, they map elegantly teaa fimedback
shift-register (LFSR) structure. Premultiplication of the message polynomial sanple

shift operation, whilst Peterson and Weldon [41] have presented dedetieeatment of how

polynomial long division with a fixed divisor maps to an LFSR, such as thatvshin

Figure 3.10.
—» — —»é—)—» —»@—» —»é—» >

Input Output

Figure 3.10: Circuit for dividing 2® + 2° + 2% 4+ 23 + 1

The LFSR structure is readily extended to polynomials with coefficients fsxdemsion fields of
GF(2). The non-zero feedback taps must now become Galois Field multipliers,rireation
blocks must become Galois Field adders and the storage elements must stake noudtiple
bits per symbol. Otherwise, the steps involved in systematic encoding of Kdedion
codewords are identical to the binary operations.

The architecture for a standard division circuit RS(255,239) endsddtown in Figure 3.11.
The message symbols to be encoded are shifted into the LFSR as shown éwgttetturned
on) and simultaneously shifted onto the transmission channel. The messalgelsyare thus
multiplied by feedback coefficients corresponding to the generator poligtho Once all the

message symbols have been shifted in, all the Reed-Solomon parity digitsdevealculated

39

Forward Error Correction

— T T e

2(0) gl 2(2) * Kk @ g(135)
P0) p(l) L »@—» p(15) > +

X u(x)

N Codeword

Parity Symbols

Figure 3.11: StandardRS(255, 239) encoder architecture

and are stored in the registers. The feedback path is broken by turffitiee @ate and the

parity digits shifted onto the transmission channel to complete the codeword.

Given the relative simplicity of the traditional Reed-Solomon encoder strictufFigure 3.11,
previous research in this field has been biased towards optimising therpanice of the
arithmetic units rather than the architecture itself, which for most applicatioferper
optimally. In particular the optimisation [25,42,43] and synthesis [44] of finidfi
multipliers, which represent the computational bottleneck and thus the critical gtimin
path in any Reed-Solomon implementation, have both been afforded sighitfant.
Other areas of recent research interest include reconfigurabtelensc[45] which can be
dynamically programmed to implement different codes or improve efficiencyrate adaptive

variants [46].

The research detailed here maintains a more architectural focus. At theftinvestigation,
very high performance Galois Field arithmetic blocks optimised for FPGA hanelw
had already been developed by Aliathon Ltd. Furthermore, investigation diymamic
reconfiguration or rate adaptability was not deemed appropriate givefixdgk nature of
G.709 encoding. In considering this fixed encoder structure, the O3jk8ific case presents

a number of unique design challenges which this research seeks tsaddre

3.5.2 A New Approach to Reed-Solomon Encoding

The structure presented in Figure 3.11 is intrinsically a single-symbol gsoag engine;

only one symbol at a time may be fed into the shift-register. This presentsuttific at

40

Forward Error Correction

OTU-3 transmission speeds. Given the limitations of silicon speed, the onnteifaces for
processing 43Gbps optical rates are 32 bytes wide. As previously itedtraach sub-row
in the OTU-3 frame comprises 16 interleaved FEC calculations. Thus, on gygtem clock

cycle, two bytes from each FEC calculation are delivered and must lbegsed in real time.

Consider the operation of an OTU-3 sub-row calculation based on a -sipgibol encoder as
illustrated in Figure 3.12. For simplicity, the figure shows small input sub-@v&symbols
each, labelled alphabetically. In reality, the incoming messages will alwayprige an odd

number of symbols; a significant point which will be discussed again in duese.

sub-row buffer

half sub-row buffer

— e
incoming symbols —» bldlfln

sub-row 2 sub-row 1

i|k|mjo ajcleld byte-wide encoder 1 byte-wide encoder 2

Pipeline Stage 1

j I {n|p b|d]|f|h ——{ ‘ ‘x‘x‘x‘x‘
sub-row buffer

- half sub-row buffer

— nne

- annn
incoming symbols —» ilTi{nlp

sub-row 3 sub-row 2 +

s|u|w i|k|mj|o byte-wide encoder 1 byte-wide encoder 2

Pipeline Stage 2

r{tivi|ix| |j|!l|n|p]| — ‘ ‘

sub-row buffer

half sub-row buffer

g|ls|ujlw
——incoming symbols —» t ” m nnn

r v
sub-row 4 sub-row 3 ‘

y|ajc e CIN 2 byte-wide encoder 1 byte-wide encoder 2 p?[}ity
z b |d|f r|t]v]x

Next sub -row

Figure 3.12: OTU-3 encoding based on single symbol encoders

To reiterate the fundamental difficulty in using a single-symbol engine - iryeleck cycle 2
input symbols arrive and only one may be processed. Thus to keep utheiithcoming data,
one must introduced parallel encoders, data buffers and pipelined Ingie current example
the first sub-row to arrive contains input symbalb,c,d,e,f,g,hThese symbols arrive in four
clock cycles during pipeline stage 1. During this processing window, alh&sls are written

to a sub-row buffer, and symbadsb,candd are fed to the first encoder.

In pipeline stage 2, the next sub-row arrives comprising symktdgd,m,n,o,p As before these
8 symbols are written to the sub-row buffer and symlgls andl are fed to the first encoder.
Also in pipeline stage 2, since symbag,gandh from the first sub-row to arrive have not yet

been processed, these are fed to a second buffer and procgsteddecond encoder. This

41

Forward Error Correction

second encoder must be initialised with the parity values produced by therfasder during
pipeline stage 1 for the stage 2 calculation to be valid. At the end of pipeline siay the
parity symbols associated with the first sub-row to arrive are valid. Sulese¢ sub-rows are

processed in identical 2-stage fashion.

An OTU-3 encoder core based on the architecture shown in Figure ®dlt whus require 32
LFSR structures in parallel, 16 full sub-row buffers and 16 half saviodouffers, the buffers
utilising 32 embedded block-RAMs. The architecture also introduces acsuib-worth of

additional latency and requires relatively complex pipelining and contrad.log

Clearly a reformulation of the traditional Reed-Solomon encoder capalpeoogssing two
symbols per clock cycle would be useful in addressing this complexity. riekson [47] has
followed this approach in formulating a word-wise encoder limited to generatogparity

symbols, based on an analysis of the behaviour of a traditional enceeletwem clock cycles.

p(0) »@—» p() |
Vi Wi

Figure 3.13: Simple encoder for analysis over two clock cycles

For the simple example given, assuming that the message symbol inputs todbderesren;
andm,, respectively, Fredrickson notes that the contents of the regjst@randp(1) after

two clock cycles may be given by the following equations:

p(0) = gog1(wi +mi) + go(vi +mMis1) (3.14)

p(l) = g%(wi + ml) + gl(vi + mi+1) + go(wi + ml) (315)

Additionally, Fredrickson has noted that the introduction of a fixed offsedll the powers of
« in any field-specific encoder realisation can be used to reduce the nwihGeailois Field

multipliers required.

42

Forward Error Correction

Recall the generalised expression for the code generator polynonsigivean by Equation 3.9

as:

21 o 2 ‘
g(z) = H (z — afot?) = Zgﬂz
i=0 i=0

For the encoder of Figure 3.13, defined for a single-error-corigctinle with symbols from

GF(256) the generator can be expanded as follows:

g(z) = (z — ajo)(x _ aj[)+1) — 22 (ajo + Oéj0+1)$ 4+ q2otl (3.16)

Hence the individual generator coefficients corresponding to the LfE&fback taps may be

given by:

g2 =1; g1 =al a0t gy =2ot! (3.17)

Noting that the field for this example G F'(256), the fixed offsetj, can be chosen such that
either gy, or go equal 1, thus removing the Galois Field multiplier at that stage in the LFSR
circuit. Thus in one possible embodiment wiih = 127 the go multiplier is eliminated. In

the other possible embodiment wifh = 230 the g; multiplier is eliminated. Fredrickson
demonstrates by inspection that the latter yields a more efficient hardwate®spwith a
critical path traversing two Galois Field adders and one Galois Field multiplieh@srsin
Figure 3.14.

Whilst this field-specific optimisation technique is relatively easy to apply to thoedar
example with a simple quadratic generator polynomial specified by [47], rbes more
difficult to apply to larger generators where the coefficients comprise muligpras ina.

Furthermore, identifying which coefficient elimination will result in an optimardweare
solution becomes a non-trivial task, and the resultant architecture db@sap intuitively to

the traditional encoder structure of Figure 3.11.

43

Forward Error Correction

Vit mig +witom;

go(wi + mj)
&o

p0) p) —

go(vit my +w;+my) gow;tmy) +vitm, +witm

Figure 3.14: Reformulated two-symbol encoder fder) = 22 — = + %

3.5.3 A Modified Reed-Solomon Encoder for OTU-3

An alternative two-symbol Reed-Solomon encoder is proposed here.stating point for
development of the new encoder is similar to that adopted by Fredricksoalysés of the
behaviour of a traditional encoder system over two clock cycles. Byidgra new generalised
expression relating the parity symbol values to two input symbols rather tiggnitds possible
to construct an encoder with a guaranteed optimal critical path delay whiateigendent of the
Galois Field used and the size of the generator polynomial. The new appsdaas inherently

scalable and does not require any offset to be introduced in the GaltdsaFiilhmetic.

The resulting architecture is more complex, in the sense that additional peraltplications
are introduced. However the new feedback coefficients remain césistdrich may be
pre-computed. Since the newly introduced multiplications are in parallel with rigenal
generator feedback taps, the critical path of the new encoder is the saisepaedecessor,
traversing two adders and one multiplier. Consider the upper segmentokaaised encoder

structure as shown in Figure 3.15.

Here,p(m) represents the upper-most parity symbol in the codepémglis an arbitrary parity
digit. Messagen, is shifted into the encoder first, followed by message After one clock

cycle, the value stored in(n) is given by:

p(n)o = gn(p(m)o +mo) +p(n —1)o (3.18)

44

Forward Error Correction

Gate

g(n-1)

— | p(n-2) p(n-1)

Figure 3.15: Most significant symbols of a Reed-solomon encoder

After a further clock cycle, message, has been shifted into the encoder, and the value stored

in p(n) is given by:

p(n)1 = gn(p(m)1 +m1) +p(n — 1)1 (3.19)

This can be expanded to produce a generalised expression relatinigjteara parity symbol

to two message symbols:

(1)1 = gn(gm(p(m)o +mo) + p(m — 1)o +m1) + gn—1(p(m)o +mo) + p(n —2)o (3.20)

p(n)1 = (gngm + gn—1)(@(M)o + mo) + gn(p(m — 1)o +m1) + p(n — 2)o (3.21)

Reformulating the generalised expression to yield Equation 3.21, one adifyrenplement
an encoder structure based on the new arithmetic to compute parity digits dBspig two

symbols simultaneously, as shown in Figure 3.16.

8(1)g(15) 8(2)g(13) 8(15)g(15)
+g(0) +g(l) x % &9

2(0)g(15) 2(0) g(1) 8(2) * ok ok a(13)

p(0) p(l) p2) p(15)

from
. from p(14) 4@
- p(13)
my J

my

Figure 3.16: A modified Reed-Solomon RS(255,239) encoder for OTU-3

45

Forward Error Correction

Having now developed an encoder capable of processing two Réedi@osymbols per clock
cycle, there remains one further barrier to an OTU-3 compliant solutiotringically, the

number of symbols per message word in any Reed-Solomon code is odsl. iff jpuocessing
such messages two symbols at a time it is necessary to deal with an odd cyaeyimessage
word, when one of the input symbols to the encoder is non-valid, as illudtiateigure 3.17

for a simple RS(15,9) code.

In this example, data is presented directly to the two symbol encoder fromThe3dine
interface. For the RS(15,9) code, nine information symbols and six nutlymymbols (to
be replaced by the contents of the encoder registers at the end ofaaclation) for each
message word are presented to the encoder inputs. The symbols ofttheeisage, denoted
ml, andpl, are presented first, followed by the first symbols of the second mestamgsed
m2,. Since the encoder processes two symbols at a time (on input channels2), ahe
fifteenth symbol (null parity) of the first message overlaps with the firstrmation symbol of
the second. This results in an incorrect calculation of parity symbols foretbensl message

word.

Start of Message

| 1
l 1

1

1 1

| 1

1

1
1

e

Invalid Data

Figure 3.17: Invalid data overlap in a two-symbol encoder

There are a number of possible ways to deal with this. For example, withuatgehuffering
one could implement a standard encoder in parallel with the two symbol vandrgwitch to
the single byte stream during the odd cycles. This would add a significantrarablatency

and redundant hardware.

The solution proposed here for OTU-3 is to implement a wrapper, designigdaround the
encoder core, which formats the G.709 compliant data in such a way thatd¢bder always
processes an even number of symbols. The wrapper does this by thmmeéa leading zero
symbol (which does not change the values stored in the parity registeisydhe odd cycles.
Since the code is systematic, this leading zero also appears on the outpatreata from
the encoder. When this happens, the wrapper removes the zero symti@} 0 any device

interfacing to the encoder, the data stream remains G.709 compliant.

46

Forward Error Correction

The encoder and wrapper have been implemented in VHDL and tested siagidural
test-bench modules, with the output parity symbols verified against a kn@sd-Bolomon
tool from Bell Labs [48]. The new encoder utilises approximately 350 slicempared with
approximately 170 for the single symbol variant when built for the Virtexrid Family of

FPGA devices, running at clock speeds greater than 200MHz. Howsstiee only 16 of the
new engines are required for OTU-3 (compared with 32 of the traditiamgihes), and no
control logic is required to transfer data between cascaded encodes stiae arithmetic logic

requirements of both solutions are nominally equivalent.

The principal advantage of the new architecture is the embedded memaorg.séke OTU-3
encoder proposed here completely removes the need for any interienibgfbf sub-rows, thus
saving 32 block-RAMs and removing the latency introduced in the single-glypipelined

implementation.

3.5.4 Reed-Solomon Decoding

Decoding Reed-Solomon codes is arithmetically more complex than the eqtuieatding,
and thus typically represents the performance bottleneck in FEC systemmaih processing

blocks in a typical Reed-Solomon decoder are shown in Figure 3.18.

Received Syndrome Locator Error
Polynomial Polynomial Polynomial Polynomial

A(x)
Hx) s(x)) >
> Syndrome » Key Equation Chien & Forney
Calculator Solver »| Calculator

Ax)

e(x)
-

Corrected
Polynomial

Evaluator
Polynomial

Delay Buffer

v

Figure 3.18: A typical Reed-Solomon decoder system

3.5.5 Syndrome Calculator

Calculation of a special polynomial known as gymdromas an integral part of many decoding

schemes for block codes. Appreciation of the significance of the symelpmlynomial requires

A slice is a standard Xilinx FPGA logic block, see [24] for details.

a7

Forward Error Correction

a brief review of some further background coding theory. Some eqatitich will prove
useful in subsequent analysis are stated here without proof. Faaitedegreatment the reader
is referred to [32, 35].

In the analysis of block codes it is common to use matrix notation (in addition to tirequial
representation used thus far). For example, the cyclic code geneyagéd)b= 1+ + 2> has

a corresponding generator matrix given®y

1101000
0110100
0011010
0001101

Figure 3.19: Generator matrix foig(z) = 1 + = + 23

This matrix G is generally not in systematic form, but can be reformulated by simple row
operations, and presented systematically. In its general form, this matrix enayitben in

terms of a sub-matrif and an identity matrix such thatG = [P 1], as follows:

|
Poo Dol oo e POS kel | 100...0

Pio Pri o Poonkr 010...0
G=7 propas o v P2y kel | 001...0

Pi1,0 Pki,i v v Prels nkel | 000...1

P matrix k x k identity
matrix

Figure 3.20: A systematic generator matrix

If the generator matrix is stated in this form, a corresponding parity checlomaddp exists,
given by H = [I,,_x PT] whereP? is the transpose of the matrix shown above. Having
defined the parity check matrkt, the syndrome is given (without proof here) as the following

(n — k)-tuple, whereH” is the transpose dfl andr is the received vector:

s=r-H ' =(v+e -H =v.HT +e.HT (3.22)

It may readily be shown that- H” = 0. Thus the syndrome is dependent only on the received
error vectore. This is what makes it so important as a decoding mechanism - since resgardle
of the transmitted codeword, one has a way of determining (within the limits of tbgeoh

scheme) the error vector.

48

Forward Error Correction

Furthermore, returning once again to the familiar polynomial notation, it magilyebe
shown [32] that the syndrome components can be related directly to theegeesror vector

as follows (wheren is the number of errors):

i
L

si=Y ej(a) =ey+era +ea(a)?+...... + en_1(af)"! (3.23)

i
o

The syndrome coefficients are thus readily calculated using a simple digisguit similar in

basic structure to a single encoder coefficient, shown in Figure 3.21.

r(x)

Figure 3.21: A simple syndrome calculator circuit

3.5.6 Key Equation Solver (KES)

The task of returning a valid error polynomial from a syndrome polynomiahisnherently
difficult one. Assuming that the syndrome polynomial from the latest redeiodeword has

been successfully computed, then:

2t—1
s(x) = s1+ s2x + s3x? 4 ... syl = Z Sip12" (3.24)
i=0

From Equation 3.23 it may be noted that the syndrome coefficients themselyedana
represented as a summation of received vector terms ifihus, substituting Equation 3.23

into Equation 3.24, the syndrome polynomial may be expressed as a dootteation.

2t—1n—1

s(z) = Z Z eja(iﬂ)jxi (3.25)

i=0 j=0

Noting thate; is only non-zero ifj is an error locatiorij € M) one may simplify and reorder

this summation to give:

49

Forward Error Correction

2t—1

Z e]oﬂ Z ot (3.26)

jEM

Expanding the inner sum of Equation 3.26 fully one obtains the following g&ame

progression:

2t—1 PRV
Z Azt =1 + alx + a?l x? +...... + a(%_l)jx%_l = 1- (043:13)

> T (3.27)

Substituting the sum of this geometric progression into Equation 3.26 one ofbiaiiadowing:

1 _ a2tjx2t
= eo SRy (3.28)
JjEM
eja’ ejada® g2t w(z) u(z)a?
5()]Z]\:/[1—adz Z 1—adz I(x) l(z) (3.29)

From Equation 3.29 it may be seen that) is the product of all the termd — a’x) as; runs

through the error location&/:

W)= J] (- olz) (3.30)
jeM
The roots ofl(x) are the inverses of the powets for whenj is an error location, thugz)
is commonly referred to as therror locator polynomial, since its solution yields the error
locations. Therein lies the difficulty for practical systems - since Equatid®istBrough 3.30
are based oa priori knowledge of the error vector, which a practical real-time decoder will

not have.

From Equation 3.29 one may also derive the definitions of two other sigrtificdynomials:

w(x) = Z eja’ H (1—a'x) (3.31)

jeM i€M i)

50

Forward Error Correction

u(x) = Z eja(ztﬂ)j H (1—a'x) (3.32)

jeM i€EM,i#]

Having determined the error locations usiiig), one can usev(x) to determine the error
values at those locationsu(z) is thus commonly known as therror evaluator polynomial
Equally, one could use(z) to determine the same error values, hen¢e) is sometimes
referred to as therror co-evaluator of theoretical interest though not actually required in
practice. Equation 3.29 is often restated without explicit refereneg:t in the form of the
polynomial congruen&eknown as Berlekamp’s Key Equation [49], after its discoverer. The
locator is commonly denoted ky(x) in the literature; the notation adopted for the remainder

of this analysis.

o(x)s(z) = w(z) mod z** (3.33)

This Key Equation is aptly named, being the cornerstone of BCH and Reledin
encoding. The Key Equation Solver (KES) block takes the syndrome a$ amal produces

the error locator and error evaluator polynomials as outputs. Since sodiitiba key equation

is mathematically intractable, the KES architecture is typically the most complex in any

Reed-Solomon system.

3.5.7 Chien Search and Forney Calculation

The final stage in Reed-Solomon decoding is to establish the error locatidtiseserror values
corresponding to those locations. Having established the error locdteropaial o(z) one
seeks to find its roots, which yield the inverse error locations. Sitizgis a polynomial with
coefficients from a finite field, it is practical (at least for fields of maréue size) to substitute

every possible field element as a root. An elemeéris a root ofo (z) if o(a’) = 0.

This direct substitution method was first utilised by Peterson [50] and laterafsed by
Chien [51] in the architecture shown in Figure 3.22. The technique is nowramly known
as the Chien search. The registers are initially loaded with the coefficieritee dbcator

polynomial:

8Two polynomialsf (z) andg(z) with coefficients from finite fields are said to bengruentmodulom if and
only if all coefficients of the difference polynomigl(xz) — g(x) are divisible bym.

51

Forward Error Correction

o(x)=1+01z+ o0z +o3a>+...... + oyt (3.34)

Multipliers for each power ofa are then clocked once, and the results of eéghn/)
multiplication summed and compared with zero. If the comparison is true, anlecaiion

has been found. The process repeats until all possible roots havésséed.

—

o1 G, * kK o
Test for
!
Yoa'=0
i=1
@ @ e @ l l
True— False — Not
Error Location Error Location
2

o o o

Figure 3.22: A chien search circuit

For binary codes, error correction is achieved simply by adding 1, m@&atahe appropriate
error locations. For the non-binary case (including the Reed-Solonoal®se an appropriate
error value must be determined. Forney [52] has formulated a solutidmgethe error values

y; to the evaluator polynomial and the derivative of the locator polynomial.

x9w(x)

yi = (3.35)

xo(x)
The derivative of the locator polynomial simplifies to the odd powers @), so the error values
may also be readily computed using simple systolic hardware structures. darrection is
finally achieved by adding the values calculated in Equation 3.35 modulo 2 witletkee/ed

data, and delayed to match the processing time of the engine.

3.5.8 Practical Reed-Solomon Decoding

The steps described above are integral to most practical Reed-Soloohitectures. As has
been shown, the Syndrome Calculator is a relatively simple division circuithriike the

encoder structure. Similarly, the Chien search and Forney correctiotidas lend themselves

52

Forward Error Correction

naturally to efficient hardware implementation. In contrast, the theoreti¢&idifes of solving
the Key Equation are mirrored in the various existing practical implementatiool,teat the
Key Equation Solver block remains the computational bottleneck in any desgsiem. The
search for an optimal heuristic KES solution has thus driven significaetireh effort in this

domain.

The literature also reveals some interesting approaches to developingnéfiicchitectures,
not exclusively focused on the Key Equation. Shen et al. [53] expl@tdimilarities in
structure between the syndrome calculator and encoder circuit to merfentttions into a
single hardware block. Seki et al. [54] have reported improvementsawempoonsumption and
logic size based on a time-multiplexed RS decoder structure. At the arithmetic 3énadlo
et al. [55] introduce a bit-parallel multiplier structure to improve the efficiesfcheir CMOS

implementation.

As in the case of the basic encoder functions, Aliathon Ltd. had previdesiioped a suite of
efficient arithmetic blocks for Reed-Solomon decoding. Considering thisjrakeeping with
the thesis statement outlined in 1.3, it was decided that the search for gdiogtanisations in
FPGA-based Reed-Solomon decoding should focus on possible angfdteémprovements.
Specifically, the goal here was to investigate possible optimisation technique3TiU-3
systems, for which the current literature again suggested the Key Equetianpromising

starting point.

3.5.9 Towards Optimisation of the KES Architecture

As discussed in 3.5.6 the Key Equation Solver (KES) block is typically the namaplex in

any Reed-Solomon decoder system. Two well documented approactastiorsof the Key
Equation dominate the literature. Massey [56] was the first to give a physiegoretation to
Berlekamp’s mathematics, reducing the problem (like Peterson beforegtofahift-register
synthesis. Their resulting heuristic solution has become known as the 8mipekassey

algorithm.

This approach and in particular its “inversionless” variants [57, 58Ji¢ivhemove the need
for the computationally intensive inversion of finite field elements), have gorgeopular
in contemporary implementations. In particular, Aliathon’s current KES itcture is

based on an inversionless Berlekamp-Massey implementation as specifieanvgte and

53

Forward Error Correction

Shanbhag [13]. Formal definition of this variant of the algorithm is giveAippendix A.

Equally applicable to solution of the Key Equation is the Extended Euclidearithigd 36, 59]
which applies iterative polynomial division to generate scalar multiples of tior &ycator
and error evaluator polynomials simultaneously. Formal definition of theorepsesented by
Pretzel [36] is given in Appendix B; the algorithm is an intuitive extensioRwélid’s division
theorem for finding the greatest common divisor of two integers - or patjais in the context

of coding theory.

The Extended Euclidean algorithm has traditionally been favoured in degoglementations
given its relative simplicity (the locator and evaluator polynomials are foundlgmeously)
which tends to yield very regular, systolic hardware structures andvediagimple control
circuitry. In contrast, the Berlekamp-Massey algorithm tends to yield monepkx, less
regular hardware structures and has been adopted in relatively fewnmepiations, even
though (in its inversionless form) it potentially delivers higher performasadations, which

eliminate the need for polynomial division.

Given the relative strengths of each approach, it is perhaps notisogp that more
recent research has sought to combine the attributes of the ExtenddideBncand
Berlekamp-Massey algorithms. Sarwate and Shanbhag [13] for exampésent a
reformulation of the inversionless Berlekamp-Massey algorithm to yield Eeafidike
regularity in the resultant hardware structures. Of particular interestisnctimtext is more
recent research by Truong et al. [12], which presents an algoritieredfter referred to as
the “hybrid decoding algorithm”) drawing on the mathematical bases of botlExtended
Euclidean and inversionless Berlekamp-Massey approaches. Thecdk&ms to achieve
decoding performance three times faster than that achieved in [58], andhws deemed a

good prospect for further investigation with a view to implementation in an FPGA.

3.5.10 The Hybrid Decoding Algorithm

The hybrid algorithm is similar in structure and initialisation to the Extended Euclidea
algorithm, but uses a combination of linear operations and a distributed multiptidzaized

on the Berlekamp-Massey algorithm to remove the need for polynomial divisio

54

Forward Error Correction

3.5.10.1 Formal Definition

Notation:

e Q(z): The Evaluator Polynomial

e A(x): The Locator Polynomial

d: A Working field element - commonly referred to as the discrepancy

~: A Working field element

k, l: Integer control variables

For each stage of the algorithm there are three working polynomials; éongbe in the case of
the evaluator in th&th iteration, one haﬁgf) (), ng)(@ andef) ().

1. Initialisation (Based on the Extended Euclidean algorithm).

Set0(@) (z) = x%min—1 whered,,;, is the minimum distance of the code.
SetA(@(z) = ®)(z) = 1.

SetQ®)(z) = ()wheres() is the Syndrome Polynomial.

Setk =1andl = 0.

2. Shift(b) polynomials one position left (equivalent to multiplicationd)y Increment.

b b
0" (2) = 0" ().
b b
Aé)(x) = AL)(x)x
k = k + 1 (if not first iteration)

3. Assigné and~ from upper coefficients dﬂ,(ﬁb) (z) and Q,(f) (z). Compute currentc)

polynomials using multiplication techniques from the Berlekamp-Masseyitigor

x) = (5.9,(:)(9:) + v.Q,(cb) (x)

2
A (@) = A9 (1) + 7.0 (2)

If £k =d— 1then STOP.

55

Forward Error Correction

4. Conditionally translate workinga) polynomials for next iteration and update

If § #0and2l =k — 1 then

Set |=k—1
a b a b
set 0\ (z) = O () andA{") () = AP (x)
else
set 0, (z) = O (2) andA}Y, (z) = A (x)
end if.

5. Update workingd) polynomials for next iteration

b c b ¢
set’) (z) = 0\ (z) andA (2) = AP (x)
Go To 2.

3.5.10.2 \Verification

The first stage in the investigation of the algorithm proposed in [12] wasrify ibat it was
functionally correct. Initially this was proven by hand, using a RS(15,8eemrd which uses
4 bits per symbol and is thus relatively easy to compute manually. The detait&thg/éor an

example with a known error vector and syndrome is shown in Figures 323.24.

Note that numbers shown correspond to the powet of the field element coefficient in any
given position. The numbers along the top represent the order of thesponding position.
For example, the final polynomial in theposition (the final entry in the table of Figure 3.24)
is given byA©) (z) = a'3z5 + ax? 4+ o%2%. Note also the areas of corresponding shading
reflecting where the delta’Y and gamma~) values multiply each coefficient in theandb
polynomials in Stage 3 of the algorithm. The arrows show where a left shilfeafpolynomial

has been applied.

The results produced by this example were shown to produce the cerrectiocations and
values. The algorithm was subsequently simulated in VHDL using behavimadel$ with
known correct codewords, producing identical results to those prdvity a known-good

behavioural Berlekamp-Massey equivalent.

®Not intended for logic synthesis.

56

Forward Error Correction

Evaluator Polynomial
13 12 11 10 9 8 7 6 5 4 3 2 1 0

~
<

N
o

w|

o

o T o
A
~

oof =

NI
©

~

N

o
o
A
N
N
=
o
N
N
o
N
N

N
N
—
N
o
A
-
o
-
~
o
-
N

N
N
~
o
A
(o]
-
o
~
N

3
N
~

o
4
<
)
-
w
N
g

o
w
~
o
[3
N
o
®
©

Figure 3.23: Detailed working of hybrid algorithm for the evaluator polynomial

Locator Polynomial

k s 7 13 12 11 10 9 8 7 6 5 4 3 2 1 0
a
710 0 : « | 0
¢ 0
. | 0|
2 1 12 b - 0
c 12
a 0
3 [1 12 . —
. 9 7
.
7|2 7 b P—) 7
c 1 5114
.
5 2 7 b - 1 5|14
. 8 [12] 12
a 1 5 14
6 3 7 b - 8 [12] 12
. 0 |13 1] 9

Figure 3.24: Detailed working of hybrid algorithm for the locator polynomial

57

Forward Error Correction

3.5.11 VLSI Implementation

Once a degree of confidence in the basic operation of the hybrid algdratrneen established,
the next stage was to consider the practical aspects of any FPGA hardwdementation. A
VLSI structure based on a direct implementation of the hybrid decodingitigohad already
been proposed [60, 61] as illustrated in Figures 3.25 and 3.26 for theatwaand locator

computations respectively.

d-1 d-2 1 0

9 SWi \g SWo-2 SWi

Figure 3.25: VLSI architecture for evaluator computation based on a hybrid decoding
algorithm

d-1 d-2 1 0

A4, T A% e— e oo A®, T AV e

J\—' g SWor J\—Q‘ SWq. 0 SWi N SWo

vy, * f/ e o o S
@ *

Figure 3.26: VLSI architecture for locator computation based on a hybrid decodingriéfgo

The architecture comprises banks of registers to store the coefficientseofvorking
polynomials. Cascaded adders and multipliers implement the distributed arithnipticece

in Stage 3 of the algorithm, and the update decision for polynomrialquired in Stage 4 is

58

Forward Error Correction

represented in the figure as a series of switches (implemented as multiplexers)

The resultant architecture is highly regular, and thus potentially a goatidzgte for hardware
implementation. However the structure proposed requiges- 4) registers,(8t + 4) finite
field multipliers and(4¢ + 2) finite field adders in total to compute the locator and evaluator

polynomials, where is the error correcting capability of the code.

Thus although the direct implementation of the hybrid algorithm completes in 2hly
clock cycles, initial comparison with Aliathon’s existing solution suggested dnaFPGA
architecture based on the former would be too large to be a credible alernttith this in
mind, further study of the operation of the hybrid algorithm was undertakéh a view to

identifying an improved architecture suitable for implementation in an FPGA.

3.5.12 Towards an improved KES architecture

Whilst a direct implementation of the hybrid algorithm does not yield a particukfigient
solution for OTU-3 systems, investigation of the algorithm’s behaviour adies correctable
range of error vectors yielded some interesting results pointing the way twpt@mised

hardware solution.

A synthesizable VHDL implementation of a Key Equation Solver based on thedglgorithm
was developed, and embedded in a test system comprising known behbvimdels of
the Syndrome Calculator, Chien Search and Forney Calculation blockscoRparison, an
existing Key Equation Solver (based on the Berlekamp-Massey algoritldnk@own to be
functionally correct), was also embedded in the test code. A behaviencalder was used
to generate valid RS(255,239) codewords. These codewords weuptesal with known error
vectors of fixed order from a single error t@rrors (where agairt, was the error correcting

capability of the code) and presented as inputs to the decoder.

The behaviour of individual coefficients in the evaluator and locator mmtyials was then
observed on a per-iteration basis until the algorithm terminated. Coefficinith were
non-zero and therefore had to be computed during any given iteratientalmlated as shown
in Figures 3.27 to 3.34.

59

Forward Error Correction

Evaluator Locator
15 015

A

2

OO |N|O|[O|AM|[W]|N

A
o

13

14

15

16

olo[o]s]o]v[o]s [o]v|o]s o]v|o|s[o]s|o]v|o]s]|o]w|o]s]o]n|o|v]o]w

Figure 3.27: Non-zero coefficients with 1 symbol error

Evaluator Locator
15 015

A

[y

O|lo|N|O|JO|AM|[W]|N

a
o

2
=Y

-
N

13

14

15

16

olv[o]v|o]v[o]s|o]v|o]s]o]v|ols[o]s|o|v[o]s|o]e|o]s]o]v|o|s]o]w

Figure 3.28: Non-zero coefficients with 2 symbol errors

60

Forward Error Correction

Evaluator Locator
15 015

A

2

OO |N|O|[O|AM|[W]|N

A
o

13

14

15

16

olo[o]s]o]v[o]s [o]v|o]s o]v|o|s[o]s|o]v|o]s]|o]w|o]s]o]n|o|v]o]w

Figure 3.29: Non-zero coefficients with 3 symbol errors

Evaluator Locator
15 015

A

[y

O|lo|N|O|JO|AM|[W]|N

a
o

2
=Y

-
N

13

14

15

16

olv[o]v|o]v[o]s|o]v|o]s]o]v|ols[o]s|o|v[o]s|o]e|o]s]o]v|o|s]o]w

Figure 3.30: Non-zero coefficients with 4 symbol errors

61

Forward Error Correction

Evaluator Locator
15 015

A

2

OO |N|O|[O|AM|[W]|N

A
o

13

14

15

16

olo[o]s]o]v[o]s [o]v|o]s o]v|o|s[o]s|o]v|o]s]|o]w|o]s]o]n|o|v]o]w

Figure 3.31: Non-zero coefficients with 5 symbol errors

Evaluator Locator
15 015

A

[y

O|lo|N|O|JO|AM|[W]|N

a
o

2
=Y

-
N

13

14

15

16

olv[o]v|o]v[o]s|o]v|o]s]o]v|ols[o]s|o|v[o]s|o]e|o]s]o]v|o|s]o]w

Figure 3.32: Non-zero coefficients with 6 symbol errors

62

Forward Error Correction

Evaluator Locator
15 015

A

2

OO |N|O|[O|AM|[W]|N

A
o

13

14

15

16

olo[o]s]o]v[o]s [o]v|o]s o]v|o|s[o]s|o]v|o]s]|o]w|o]s]o]n|o|v]o]w

Figure 3.33: Non-zero coefficients with 7 symbol errors

Evaluator Locator
15 015

A

[y

O|lo|N|O|JO|AM|[W]|N

a
o

2
=Y

-
N

13

14

15

16

olv[o]v|o]v[o]s|o]v|o]s]o]v|ols[o]s|o|v[o]s|o]e|o]s]o]v|o|s]o]w

Figure 3.34: Non-zero coefficients with 8 symbol errors

63

Forward Error Correction

From these results, it was observed that as the locator grew in sizBicienes$ in the evaluator
were removed, such that the number of occupied coefficient positionsyilgigen iteration
reached a maximum @2¢ + 2). It was further noted that because the locator polynomial grows
in a predictable manner, one may take the opportunity to right-justify its nanexafficients,

as shown in Figure 3.35 (where the locator coefficients occupy the righfmooon of the
polynomial), such that all of the information required to complete the algorithmbaastored

in (2t + 3) registers per concatenated polynomial.

K 19 0
1

2

10

11

12

13

14

15

SN ERNERENENERERENERERENENERERNERER

16

Figure 3.35: Proposed coefficient justification for worst case error vector

A further improvement to the existing algorithm can be made, which whilstinffanarginal
performance improvement in absolute terms, is of key significance to OTydt8mes. Using
the initialization conditions specified in the original definition [12], the algorittumpletes in

2t iterations, wheré is the error correcting capability of the code. However by appropriate
transformation of the Syndrome Polynomial inputs and working variablespdssible to skip

the first iteration (since all the information required for the second iteratigmiasented at
initialisation), and allow the algorithm to produce a valid result ev@ty— 1) clock cycles.

64

Forward Error Correction

This improvement is integral to the viability of the new decoder for 43Gbpesys At
43Gbps, one receives 16 Reed-Solomon codewords in 127 clockscymecessing two
symbols per cycle). Using a decoder based on the inversionless BafdaWassey algorithm
- previously developed at Aliathon Ltd. - 32 engines are required comgrapproximately

350 slices each to give a total utilization of 11200 slices.

For the RS(255,239) 8-error-correcting code, a prototype Key titmu&olver which stores
the evaluator and locator as a concatenated polynomial and performgjtliedepolynomial
justification has been developed. The architecture decomposes to ac$emniekiplexers and
demultiplexers which control the datapath into the arithmetic blocks associateithevithiginal

algorithm. The structure is shown for a single coefficient in Figure 3.36.

Pma INIT_VAL Pmb INIT_VAL

init —— init
J

A
J selectb

Y

4\$ justify

A A Y

Pn+1)@

(shifted) <+ justify

4 Y A

Pn+1yb

L PorP || (shifted)

Figure 3.36: Modified KES architecture for a single coefficient

Selection logic determines whether the currewcbefficient remains unchanged, or whether it
is assigned the previousvalue, as defined in Stage 4 of the original algorithm. Additional
selection logic then determines whether the coefficients of the locator sheylgstified in
the current iteration. The new KES architecture can also exploit the modiiigalisation

proposed above to complete calculation$2h— 1) clock cycles.

65

Forward Error Correction

The prototype KES can thus process 1 codeword in 15 clock cycle§ codewords in 240
clock cycles. Therefore with 2 of the new engines, comprising approxiyna@o0 slices
each?, one may solve the key equation with a total utilization of 4000 slices, or 36%eof th

original utilisation figure - a significant improvement.

10Byilt for Xilinx Virtex Il Pro.

66

Chapter 4
Packet Classification

4.1 Introduction

Packet Classification is a key enabling function for an increasing numbeetaorking
applications, and in fact embodies a diverse range of techniques. mdkegeneral terms,
classification applications seek to identify a data packet based on somecsigprifiple within
its header or payload, and associate some action with this identificationt bBlef&2] propose

the following definition:

Given a set of rules or policies defining packet attributes or contesutket
classificationis the process of identifying the rule or rules within this set to which
a packet conforms or matches.

Within this broad categorisation, packet classification techniques varycor@ance with the
numerous application areas. Internet Protocol (IP) routing and swifcRinality of Service
(QoS) provision [63], network security and intrusion detection [64)-flmv! context and
monitoring [65, 66], server load-balancing, filtering and firewalls, anérgingcontent aware

applications are all driving a large body of contemporary research ifietlale

These diverse application areas create a number of challenges foygtemsdesigner.
Continued growth in the internet (thought conservatively to be a yeaean doubling [67])
has brought increased network traffic volume and system line rates, t vémigrging
applications sensitive to delay and jitter demand packet forwarding peafore significantly

beyond traditionabest effortcapabilities.

As an example, a typical OC-192 routing link at 10Gbps receiving minimum<4izbyte
packets would require a classification decision every 32ns [68], baseal rule database
typically in the tens of thousands. Similarly, contemporary flow monitoring systans

10Gbps throughput supporting 160,000 subscribers and up to 4 millioa [&8Y.

A flow is a group of related packets, typically linked by some addressingramality.

67

Packet Classification

To more clearly delineate these application areas, and place the contriblitlia esearch
in context, it is helpful to distinguish between three key types of Packesifitagion; String
Matching Longest Prefix Matching (LPMandExact Matching

4.1.1 String Matching

The huge increase in internet traffic volume has been mirrored by a comragm@crease in
the volume of malicious traffic such as viruses, worms and distributed ddsi@ahdce (DDoS)
attacks, all of which can have a significant effect on network perfoom4§70]. Such exploits

typically utilise both the packet header and the payload.

Thus Network Intrusion Detection Systems (NIDS) must have the capabilityetdifgd data
of interest which may be of variable length, and may occur at any offgbtnathe packet.
Furthermore, the payload content may be malicious only in certain conteigsmiieed by the
packet header fields. The problem decomposes to one of String Mataliegeby one seeks

to find occurrences of a string or regular expression within another doigxt.

Thus NIDS typically comprise some basic packet filtering capability based @mpaicket
header, plus a set of signatures, or strings of interest. Classificagmnde on establishing
a cross-product between these two types of match. For example, baseddentifying a
suspect protocol and destination port combination via an exact match iat¢ketgheader, one

might instruct a string search for an associated malicious signature in tlemgay

4.1.2 Longest Prefix Matching

The initial standardisation of the Internet in September 1981 specified Hut @evice
connected to an Internet Protocol (IP) network should be identifiabla vaique, 32-bit IP
address value. This decision meant that there were 4,294,967,296 unigtreet Protocol
version 4 (IPv4) addresses available. In the early days after stisai#on this seemed like
a virtually unlimited address space, and was subdivided into three prirazdpia¢ss classes -
Class A (intended for very large organisations with potentially millions of cotaiehosts),
Class B (intended for medium-sized organisations with potentially hundrett®mo$ands of
connected hosts) and Class C (for smaller organisations of a few ltliodnmected hosts).
Addresses within these ranges were assigned to organisations orstrequglly without

much consideration for how addresses might be efficiently allocated.

68

Packet Classification

By 1993, the inefficiencies in thislassfuladdressing scheme started to become significant,
creating the likelihood of near-term exhaustion of the Class B networkeaddspace,
problematic growth in the the size of backbone router tables and the possibiigmplete
exhaustion of the IPv4 address space in the longer term [71]. Whilstkirgogroup for IP
Next Generation (to emerge later as IPv6) would address the latter apacenterim solution
was required to solve the Class B exhaustion and router table issues aftesrcthe form of
Classless Inter-Domain Routing (CIDR) [72].

CIDR eliminated address classes, and supported the concept of atigmeghereby a single
router table entry could encompass many individual network addressasGIDR block
Consider the simple example of Figure 4.1. Four router table entries shacomfraon
left-most address bits qrefix 130.5.63 and a common rule to route with high priority. Thus,
the entries can be aggregated with a wildcaddirfdicating that the router does not care what
the right most address bits are (since the same rule is actioned regarfdibescontents of
these bits).

Four router table entries can thus be replaced with one, assuming oneeheeptbility to
identify wildcard entries within IP addresses. CIDR addresses aradalgnassigned in a
way which reflects the topology of the network, thus thegest prefixin the routing table
which matches an incoming packet’s address is generally tied to a forwatdiéngpresenting
the most efficientnext hopfor that packet. So, if the incoming packet had destination
address 192.168.24.30, and the router forwarding table contained tiines €192.168.* and
192.168.24.*, the latter would be returned as the longest prefix match. LEMitpies are
pervasive in Media Access Control (MAC) address-based switciegnchronous Transfer
Mode (ATM) switching and IP filtering, with matches based on the IPv4 “Befupf source

address, destination address, source port, destination port anubitaager protocol.

Address Rule
130.5.63.2 Route with high priority, port 2 Replcs Address Rule
130.5.63.3 Route with high priority, port 2
130.5.63.4 | Route with high priority, port 2 130.5.63. | Route with high priority, port 2
130.5.63.5 Route with high priority, port 2

Figure 4.1: Address grouping with prefix and wildcard

69

Packet Classification

4.1.3 Exact Matching

Packet routing and forwarding techniques hold an obvious importancefwork operation, a
fact reflected in the volume of research dedicated to Longest PrefiiMatations. However,
in addition to this fundamental operational level, there are a number of ajmtisancluding

network monitoring, analysis and QoS provision which require more tharefixfirased

forwarding decision.

Developed by Cisco Systems, Inc. in 1996 and now the dominant interneitomiog
technology, Netflow [65] facilitates a wide range of networking applications including
accounting and billing, traffic engineering and network security. Pagtetassimilated into
flow records based on seven unique keys (the IP 5-tuple as disdns4€d? plus a Type of
Service (TOS) byte and Input Logical Interface field (ifindex)) e$a keys then drive collation
of information on a per-flow basis - how many packets are associated witffidhawithin

a given sampling window? When was the flow created and destroyed? phtitatols and
service types are being utilised? These questions can be answered @amyekact match on

the fields of interest.

There are other applications where an exact match is important. Asymelwdinansfer Mode
(ATM) for example, transfers data in 48 byte cells. Thus, to transferefapgckets from
other protocols over ATM, the transmitter needs to fragment the data, amddbieer needs
to reassemble it in the correct order. This Segmentation and Reassemlity {i8#tion is
based on an exact match of the Virtual Channel Identifier and VirtuallBeattifier field in the
ATM cell label. Similarly, QoS applications such as IntServ and Diffserv implerpelicies
based on exact matching of fields in the packet header. More recehtbka the emergence of
Pseudo-Wire-Emulation-End-to-End (PWE3) [14] for the provision wdrgnteed bandwidth
over a packet network. The emulation of traditional wireline services aadbl/T1 over the

internet will also be driven by exact match techniques.

4.2 Complexity in Packet Classification

In a generalised sense, the task of packet classification has beemtshwawve high theoretical
complexity [73]. To understand this inherent complexity, it is useful to idgrdgiinumber

of performance metrics which need to be considered in the design of tpeleksification

systems [62, 68, 74].

70

Packet Classification

4.2.1 Space, Time and Power Complexity

Space complexity refers to the upper bound on the space required éseapa rule or filter
database. Low storage requirements allow packet classification rulesdioreel in lower
cost, higher bandwidth commodity static RAM (SRAM) or even embedded SRAMas
rulesets become bigger and more complex, more expensive higher ddgaiynic memory
technologies (DRAM) may be required to support them. Practically, orkesdedmplement
a packet classification scheme in the smallest, lowest cost memory technolaitpble,

commensurate with the required line-rate performance.

Time complexity refers to the upper bound on the maximum number of stepsles cgquired
to make a classification decision. Typically these steps or cycles are mentamysaimes.
In many practical scenarios, one seeks to classify at the line rate of theiimg data (up to
40Gbps in emerging core routers). Thus, one seeks to minimise the nunmbemalry accesses
required per classification decision. Power complexity refers to the uqmperd of the product

of the number memory accesses required and the power dissipation cowmpery access.

4.2.2 Update Complexity

Update complexity refers to the upper bound on the maximum number of sigyisec to
perform an atomic insertion or deletion of a rule or filter in the database. dkbloae routers
and certain firewall applications this may be a less critical metric, where tulpdates happen
much less frequently than normal classification operations. Howeverutarsowith per-flow
queuing or network flow monitoring applications, flows may be created amdwed much

more frequently, such that the dynamic update performance becomes intporta

4.2.3 Massive Linearity and Massive Parallelism

The trade-off between space, time and power is ubiquitous in electrorn&nsyslesign, and
unsurprisingly drives much of the literature on packet classification. rEisisarch space may
be approximately bounded by examining the logical extremes of the perfoemaetrics just

discussed.

Consider a classification databasenadntries. Any existing entry may or may not match the

current entry being processed. Such a match could be establishecansixpaustive search

71

Packet Classification

where one must compare the current entry against every existing entng iclassification
database. One could compare the current entry with each entry in thesatsdéguentially,
accessing one database entry per memory access time. This massivelgdaresrhas space
complexity O(n) (requiring nominally one location in memory space for each entry in the
database) and time complexif)(n) (requiring one memory access time for each entry in the

database and a search through the entire database in the worst case).

Alternatively, one could compare the current entry with the entire databassingle memory
access time. This massively parallel search has space complgxity but time complexity
O(1). This is in fact the approach taken in Content Addressable Memories &}ANhich
dominated early lookup systems, and latterly Ternary Content Addreddahieries (TCAMS)
which added the ability to store wildcard bits required for massively paratiaegest Prefix
Matching. In comparing linear and parallel approaches to exhaustvelsit is also important
to note that computational complexity scales linearly with parallelism. So althoudiméae
and parallel searches have the same nominal space compigxity the latter is far more

computationally expensive.

Match Line

Word‘ Line

Write Enable

1 1 1

(@) (b)

Figure 4.2: Standard SRAM(a) and TCAM(b) cells

4.2.4 Towards the Middle Ground

In reality, both massively linear and massively parallel approaches t@®pelassification are
impractical. As core and edge router tables expand to accomodate hsindrbdusands of
entries and more complex policies, and flow monitoring requirements extendeaotiadly

millions of subscribers, the time taken to linearly search through every p@ssitich candidate

72

Packet Classification

becomes prohibitive at all but the lowest line rates. (T)CAMs are notregea either,
suffering from high cost per bit compared to standard memory techndkiggpdard TCAM
cells are almost 3 times bigger than an equivalent SRAM cell [75]), stareggciency, high
power consumption, limited scalability to long input keys, and limited density [76}erG
the limitations just outlined, it is unsurprising that much of the published work amket
classification in fact occupies the algorithmic middle ground betweeriva tiaear search on
one hand and a brute-force architectural solution on the other. Thisfisdbg of the research

which follows.

Of the three technigues discussed - string match, longest prefix matckaatareatch - the last
has been identified as of particular commercial interest to Aliathon Ltd. Thelafawnent
of an FPGA-based exact match technology offers balanced risk ahditat progression
for the company, facilitating the immediate enhancement of legacy produci&sTfdr and

simultaneously creating a platform on which to build a suite of packet-primegiéscores in the
future. This commercial emphasis is reflected in the following discussionnArgeoverview
of contemporary string matching techniques is followed by a discussion (in a Hitbie

detail) of current longest prefix match techniques. Finally, the stateeséithin exact-match

classification is discussed, as the principal background material fouthent project.

4.3 Techniques for String Matching

As already discussed in 4.1.1 the ability to search through packets and ydeotigntially
malicious content is integral to Network Intrusion Detection Systems, andtegpim account
for 70% of total execution time in Snort [77]. Classical string matching teclasigriginally
pioneered for text-based search functions (the UNHEp command for example) are thus

gaining renewed significance as the basis for compact and fast stringgingatechniques.

4.3.1 Aho-Corasick String Matching

Based on the Knutt-Morris-Pratt algorithm [78], the seminal Aho-Cokasichnique [79]
provides algorithms for the construction of an efficient finite state patternhingtenachine.
The authors summarize the problem as followsstAing is a finite sequence of symbols. If
K =y1,ys,....., yr is afinite set of strings callekkywordsandzx is an arbitrary text string, one

seeks all substrings afwhich are keywords ik, even if these substrings overlap.

73

Packet Classification

STEP 1 K4 aaaabaaaabaaaaab
X aaaaa

Compare first symbol in x with first symbol in K4
result = match, so go to next symbol in x

STEP 2 K, aaaabaaaabaaaaab
X aaaaa

Compare second symbol in x with second symbol in K 4
result = match, so go to next symbol in x

STEP 5 K, aaaabaaaabaaaaab
X aaaaa Compare fifth symbol in x with fifth
symbol in Kq result = NO match, so
shift x right by one symbol and start
again
STEP6 Ki aaaabaaaabaaaaab
X aaaaa

Compare first symbol in x with second symbol in K1
result = match, so go to next symbol in x

Figure 4.3: A ndve string matching algorithm

As a simplified initial illustration, consider a ive algorithm to search for a single text string
“aaaaa” within a larger portion of textaaaabaaaabaaaaab’as shown in Figure 4.3. After

mutually left aligning the two strings, each symbolirnis compared with its aligned symbol
in K7 in turn until a mismatch is found, whereupanis shifted right by one symbol and the

symbol-wise comparisons begin again.

This shifting mechanism is where the Knutt-Morris-Pratt/Aho-Corasick @qugires
dramatically improve over the g implementation. Observing the repetition of the “a”
symbol inx and K it may be noted that there is no chance that a match will be returned
by STEP 6 (or indeed by the next three shiftszijj The first mismatch thus results in

a multi-symbol shift as shown in Figure 4.4. This optimised pattern shifting based

74

Packet Classification

pre-processing the strings of interest is designed intoéxé-statdogic in Aho-Corasick state

machines.

STEP6' Ki aaaabaaaabaaaaab
X aaaaa
Compare first symbol in x with sixth
symbol in K1 pre-processed as the
required shift after a mismatch

Figure 4.4: Pre-processed optimised pattern shift

4.3.2 Boyer-Moore String Matching

Better still is the Boyer-Moore algorithm [80], which does not rely on titjoa in the search
string for performance improvement over dveasearch. Figure 4.5 illustrates a Boyer-Moore
search in another simple examflsearching for the string “pill” within a longer string “the

caterpillar”.

Boyer-Moore analyses the search stringrom right to left, whilst shifting it (again on the
basis of the symbol match result) from left to right aloRg. Optimal shifts are based on a
pre-processed array containing an indication, for every possibledyiibnd where it exists

in the search string, and thus how far the string can be shifted in the ehe@ntiematch. More
generally, if the length of is M, one starts by comparing thast symbol inz with the Mth
symbol of K1,K,, . If there is a mismatch, one looks for thghtmostoccurrence of<;,, in

x and shifts accordingly. If{;,, does not occur in the search string at all, then one can safely

shift it right by M symbols before the next comparison.

If one assumes that on average the majority of possible characters dppear in the search
string, then the number of character comparisons required approd¢hiéswhereN is again
the length of K1 and M is the length ofz; an improvement over The Knuth-Morris-Pratt

algorithm which requireV comparisons.

4.3.3 Contemporary String Matching Solutions

Some recent work in string matching builds on the classical techniques skstums 4.3.1 and

4.3.2. Wu and Manber [81] note the difficulty in extending the Boyer-Magperoach to the

2From www.cee.hw.ac.uk/ alison/ds98/node78.h@#lison Cawsey.

75

Packet Classification

STEP 1 K
X
STEP2 K,
X
STEP3 K
X

the caterpillar

pill
Compare last symbol in x with fourth symbol in K4
result = NO match. There is no “space” symbol in x ,
so it is safe to shift right by four symbols

the caterpillar

pill Compare last symbol in x with eighth
symbol in K4 result = NO match. There
T is no “e” symbol in x, so it is safe to
shift right by four symbols again

the caterpillar
pildl

Compare last symbol in x with twelfth T
symbol in Ky result = match. Start
working backwards through x

STEP 4 K
X

the caterpillar
pill

Compare third symbol in x with
eleventh symbol in K result = NO
match. Since there IS an “” symbol in

STEP5 Ki
X

I
I
Compare last symbol in x with thirteenth T

the caterpillar
pil

symbol in K1 result = match. Working
backwards through x in STEPS 6,7 and 8
returns the complete string match

Figure 4.5: Boyer-Moore pattern shifting

multi-string matching problem, where (as in Network Intrusion Detection Systenesyeeks
to match potentially tens of thousands of patterns. They note that when thareay strings
to match, is becomes likely that most of the possible symbols will match in at least time

search strings, reducing the number of multi-symbol shifts possible amddirg performance.

They propose the impaosition of a minimum pattern length, and a novel stringrpoessing
stage to preserve the speed of the Boyer-Moore approach for multi-strdtiching. The
Aho-Corasick approach has also been subject to more recent optimjsai@bly by Tuck
et al. [82], who apply the ideas of node and path compression (in the apj88] and [84],

discussed in 4.4.3) to dramatically reduce the size of the hardware implemenitafém of

76

Packet Classification

the original. Clark and Schimmel [85] also leverage the use of finite state neschmirtheir
design of multi-character decoders optimised for FPGA logic, claiming 10@egermance

for current data-set sizes.

4.4 Techniques for Longest Prefix Matching

Taylor [76] has already presented a good taxonomy of packet clas&ifictechniques
applicable to Longest Prefix Matching. An exhaustive review is notatgkhere, since
longest prefix techniques are not the focus of this project. Nonethé&egest prefix matching
dominates the literature, and no discussion of packet classification wouclohipgete without

some reference to this large body of work.

Contemporary techniques in this domain owe much to Gupta and McKeown velvagh
identified that the classification problem was unsolvable in the worst ca$esigjgested the

use of heuristics based on the inherent structure of routing databases.

4.4.1 Recursive Flow Classification

Leveraging and improving on techniques based on a cross produciciefpfields [87],
a seminal contribution in the application of heuristics to the packet classificptmslem
is Gupta and McKeown’s Recursive Flow Classification [88]. The tealiiy based on
exploiting the empirically determined structure in any given dataset. The aututalyses

of real datasets returned a number of interesting characteristics, namely:

e That typically a maximum of 8 fields were specified in classifier rules. Salestnation
address, source/destination transport-layer port numbers, typeragte field, protocol

field and transport layer protocol flags.

e That 17% of all rules had only 1 field specified, 23% had 3 fields speafieds0%had
4 fields specified.

e That the transport-layer protocol field is restricted to a small set of values

e That it is common for many different rules in the same classifier to share aarurhb

field specifications.

77

Packet Classification

Network Layer Network Layer Transport Layer Transport Layer
Destination (32 bits) | Source (32 bits) | Destination (16 bits) | Protocol (8 bits)
152.163.190.69 152.163.80.1 * *
152.168.3.0 152.163.200.157 eq www udp
152.168.3.0 152.163.200.157 range 20-21 udp
152.168.3.0 152.163.200.157 eq www tcp
152.163.198.4 152.163.160.0 gt 1023 tcp
152.163.198.4 152.163.36.0 gt 1023 tcp

Table 4.1: A simple classifier dataset

The final point is illustrated by the simple classifier dataset of Table 4.1, tdkently
from [88], and is the key observation in establishing a heuristic for reduclassification
complexity. The authors view the classification task as one of reductione@@maposition).
For example, in the case of the transport-layer destination in Table 4.1, abteyhat although
the field is nominally specified over 16 bits, there is considerable structuregetition) within
the field. In fact, the possible values can be represented as only teymsew=80}, {20/21},
{> 1023} or {all remaining numbers in the range 0-65%3%Allocating a unique code (or
equivalence class identifier - eqlD) to each of these sets requires josbitsy hence the

reduction in complexity.

These equivalence class identifiers form the basis of the lookup, illu$tratégure 4.6. For
the simple dataset of Table 4.1, each incoming packet is split up into its consfitlds. The
destination address, source address, transport-layer port asgdratayer protocol are used

directly as indices into four parallel memories.

The contents of these memories have been pre-processed to returnrda equivalence
class identifier. There are three unique destination addresses; 152(1.69,1152.168.3.0 and
152.13.198.4. Thus the eqglDs can be encoded using just two bits. Bytitapét can be seen
that two-bit eqIDs are sufficient for each of the other fields in the finsise lookup. Similarly,

in the second phase lookup it can be seen that there are four uniquaations of source and

78

Packet Classification

destination address encoded using three bits, and four unique combsnattivansport-layer

port and transport-layer protocol, encoded using three bits.

In this case, eqlDs from the first-phase destination and source addoésip, and eqlDs from
the first-phase transport-layer port and transport-layer protoc&lfmare concatenated and
used as indices into the second phase memory. The eqID returned frosetlisd phase

lookup is the unique six-bit identifier for the current packet.

RAM 2 biteqID
#1

Sbitindex | RAM | 3 biteqID

RAM 3 biteqlD

Source Address 4‘—> 42
Destination Address y
6 bit packet
(—"w
Destination Port A
2 biteqlD
Protocol :L> RAM

4 bitindex RAM | 3 biteqlD
#6

PACKET

RAM 2 biteqlD
i Phase 2

Phase 1

Figure 4.6: Example lookup using recursive flow classification

Recursive Flow Classification offers good throughput performamgaroximately 30 million
packets per second with a 125MHz system clock in pipelined hardwarg athine cost
of memory inefficiency; the solution does not scale well to large classifiidditionally,

the pre-processing requirements make system update difficult when updsages happen

frequently.

79

Packet Classification

Network Layer Network Layer
Filter Destination Source
Prefix Prefix
F, 0* 10*
F, 0* 01*
Fs 0~ 1*
Fs 00* 1*
Fs 00* 11*
Fe 10* 1*
F, * 00*
Fs 0~ 10*
Fo 0* 1*
Fio 0* 10*
Fi 111* 000~

Table 4.2: A simple classifier dataset specified over source and destination adutngs

4.4.2 Grid of Tries

A popular approach to classification is the construction of a decision tre&® The incoming
packet is split into bits or groups of bits, and these are used to make brgmigtisions in the
trie structure. The rules or filters are typically stored in the leaf nodes dfttheture. Again,
following [76] consider the simple filter set specified over source antirdgi®n addresses in
Table 4.2.

Shown in Figure 4.7(a), the top half of the simple Set Pruning structure faseden [89]
represents all the possible destination address prefixes in the clasgifiepointers into the
source address space from each node where a prefix match in thetiestaddress space
occurs. For example, consider a bitwise search for the destinatiorgspanc00 * /11x.

One makes twaero (left-hand) transitions from the root node, where a pointer (P1) into the
appropriate source address sub-trie is found. One then makemeydght-hand) transitions
until a leaf node which contains filter F5 is reached; the best match for 8tandgon/source

pair.

Whilst such a structure is an elegant visualisation of bitwise classificationngfiscient, with

filters duplicated at multiple leaf nodes. To improve efficiency Srinivasah 87] proposed

3From information réieval.

80

Packet Classification

Destination
Address

Destination
Address

Source
Address

Source
Address

Fz

Figure 4.7: Set Pruning (a) and Grid of Tries (b) structure for the classifier of Tabk

the Grid of Tries, Shown in Figure 4.7(b) where only one instance of Biéehis stored in the
structure, with searches directed by switch pointers to potentially matching filthis results
in reasonable memory efficiency and search time; the authors quote 2MB gnatitisation

to implement a classifier of 20,000 IPv4 filters (considering source artohdgsn prefix fields

only).

A weakness of the Grid of Tries approach is poor scalability to classifieyord two
dimensions, where replication of data structures becomes necessavgvetafter studying
the characteristics of core router classifiers used by Tier 1 Internagt8&roviders, Baboescu
et al. [68] argue that two dimensional classification remains powerful. y Extend the
heuristics of Recursive Flow Classification by noting that packets typicaltghmat most a
few distinct source-destination prefix pairs present in any ruleses, Tintheir Extended Grid
of Tries scheme, even if the classifier is large, after pre-filtering onceedestination prefix,

one is left with a set of remaining filters which is small enough to be searchezartlyn

Scalability to multiple field classification is addressed in another seminal schempesed by
Lakshman and Stidialis [73]. Considering again the destination and sorefireg shown in
Table 4.2. In the Bit Vector scheme, two tries are constructed, one foregtandtion prefixes

and one for the source prefixes as shown in Figure 4.8.

81

Packet Classification

00000010000

Destination Prefixes

11100011110 000000010000

11111011110 000000010000

00000110000

00000010001

Source Prefixes

00110100100

11111011110 .00111100100

10110101110
01000000000

00000010001

Figure 4.8: Bit Veector structure for the classifier of Table 4.2

Each node in the structure is labelled with anbit vector, whereN is the number of
filters in the classifier. Biy in this vector is set if the corresponding filter in the classifier
matches the prefix corresponding to the node. For example, in the destipegiontrie the
left-most node corresponding to prefifi« is labelled11111011110 since it could match filters
Iy, Fy Fs, Fy, F5, Fr, Fg, Fy and Fig. When a multi-field packet header arrives in the Bit
Vector scheme, the trie for each field is traversed to return the bit vectrdabresponding to
any match in that trie. A multi-field match is then returned based on the bitwise ictiersef

these bit vectors.

Baboescu and Varghese [90] improve on this scheme, again by applyiegristic approach
to the base algorithm. They note that in the databases they investigated (afehefdl 00,000
filters) that packet headers typically matched at most four filters. Asudt résey conclude that
vectors in the original bit vector scheme are typically very sparsely ptaziiaith set bits, and
reading 100,000 bits per node is inefficient. They propose aggregabitg of the original bit
vector into a single bit (which represents thiéwise orof the aggregated bits) to reduce the

required memory accesses.

82

Packet Classification

4.4.3 Expanded Tries - From Controlled Prefix Expansions to Tre-Bitmap

Some elegant extensions to thibit structure of Figure 4.7 have been proposed, in the form
of expanded omultibit tries, which seek to process multiple bits at a time to reduce the number
of memory accesses required per classification. Consider another sichpéfief prefixes in

Figure 4.9.

Prefix Name Prefix
P1 &
P2 1
P3 00*
P4 101*
P5 111~
P6 1000*
P7 11101*
P8 111001*
P9 1000011 *

Figure 4.9: Simple prefix database

To process these prefixes say, three bits at a time, one needs to dealefikigmgths which
do not fit naturally into multiples of three bits. Srinivasan and VarghesgHéde proposed
the technique of Controlled Prefix Expansion to accommodate precisely émarsz. The idea
is to extend a prefix likd« (P1) into all its possible three bit expansionsd0, 101, 110 and
111. In this case, the expansioh8l and111 collide with prefixes P4 and P5 respectively. To
account for this P1 is given lower priority, since P4 and P5 represenotigest prefix match.
Expansion prefixes which collide with existing longer prefixes are in fdtindant, and may

be discarded.

The nodes of a three-bit expanded trie with Controlled Prefix Expansidhd simple prefixes
of Figure 4.9 are shown in Figure 4.10 [84]. Each node element has tiienOne entry
holds a rule or filter matching the prefix (simplified to the prefix name in the figamd)the
other is reserved for a pointer to a child node in the trie. The search tersiwhen a null

pointer is reached.

For example, consider searching for an inpuit010. The first three bitd11 are used as an

index into the root node of the trie, where prefix P5 is stored. Since tloeiatsd pointer

83

Packet Classification

is not null, P5 is not the longest prefix match and the search continues, ifajjdiae pointer

into the right-most child node. The second three bits in the searcld Kewyre used as the
index into this node, where prefix P7 is stored. Since the associated psintdl, the search
terminates, returning P7 as the longest prefix match. The authors quatgestequirements

after optimisation for the North American Mae-East exchange databasauaide500KBytes.

Prefix Pointer

000 P3

001 P3

010 P1

011 P1 -

100 pp—1——

101 P4 -

110 P2

111 P5 \\

Prefix Pointer Prefix Pointer
000 P6 - 000 -
001 P6 — 001 P8
010| P66 - 010 p7
011 P6 - 011 P7
100 - - 100 -
101 - - 101 -
110 - - 110 -
111 - - 111 -
Prefix Pointer

000 =

001 -

010 -

011 -

100 P9

101 P9

110 P9

111 P9

Figure 4.10: A multi-bit trie with Controlled Prefix Expansion

The Lulea scheme [83] improves on the basic multibit trie structure by redtisengmount
of data stored at each node using a technique called Leaf Pushing.r Rathetoringootha
rule and a pointer at each index in the node, only one of these are stdrezllinlea Trie. In
the event that a filter and a valid pointer coincide, the filtgnishednto all the free locations
in the downstream node indicated by the pointer. The search terminatesawiadid filter is

found.

84

Packet Classification

Prefix/Ptr

000 P3

001 P3

010 P1

011 P1

101 P4

110 P2

111 P5 \

Prefix/Ptr Prefix/Ptr
000 P6 000 P5
001 — 001 P8
010 pe 010| p7
011 P6 011 P7
100| P2 100(ps5
101 P2 101 P5
110 P2 110 P5
111 P2 111 P5
Prefix/Ptr

000 P6

001 P6

010 P6

011 P6

100 P9

101 P9

110 P9

111 P9

Figure 4.11: A multi-bit trie with Controlled Prefix Expansion and Leaf Pushing

Storage efficiency is improved further in the Lulea scheme by defining &tibrat each node
which indicates where filters have been duplicated and thus removes tthéonstre those
filters explicitly. Consider again the structure in Figure 4.11. The nodedbeaompressed
as shown in Figure 4.12. The first instance of given filter is stored explieitig its presence
indicated by setting the corresponding bit in the vector. Aoypsecutiveduplicates which
follow are not stored explicitly, but indicated by setting the correspondinin tifte vector to

zero. The bit vector thus becomes a signature for the filters stored ghamynode.

Decoding according to the Lulea scheme is best illustrated with a simple examuhsid€r
searching for an input11111. Since (in this case) three bits at a time are being processed, the
first three bits,111 are used as an index into bit seven of the bit vector in the root node of the

trie. Then, starting from the left most bit in the vector, the number of bitsleéguane, up to

85

Packet Classification

Prefix/Ptr

P3 Bit Vector

P1 | (0)(1)(2)(3)(4)(5)(6)(7)
[1[of[1]o[1[1]1]1]

P4
P2
Prefix/Ptr Prefix/Ptr
P6 Bit Vector P5 Bit Vector
0)(1) (2)(3)(4)(5)(6) (7) P8 (0)(1)(2)(3)(4)(5) 6) (7)
/[pe |[1]1]1]0][1]0]0]0] pz | [1]1]1]o][1]o]o]0]
[P2 P5
Prefix/Ptr Bit Vetor
- (0)(1)(2)(3)(4)(5)(6)(7)
ss—| L1[ofoJo[1]o]of0]

Figure 4.12: Node compression by bit vector in the Lulea scheme

and including bit seven, are counted. The result in this case is six, sotibents of location

six in the compressed root node are accessed.

Location six in the root node contains a pointer to the right-hand child notle.néxt three
bits of the input,111, are used as an index into the bit vector of the child node, again bit
seven. Counting from the left again, there are four bits set to one, tihatda four in the
child node is accessed. Location four returns filter P5 - the longesk prefich - and the
search terminates. The Lulea scheme requires some 200KBytes to accdmtheddae-East

database, a significant improvement on Controlled Prefix Expansion.

Eatherton et al. [84] propose some further enhancements to the multi-®iheshust described
with their Tree-Bitmap structure. They note that Leaf Pushing makes it virtirafipssible
to bound system update times (since in the worst case the entire structureameayohbe
re-written), and eschew it in favour of a novel two-bitmap encoding fmwhenode. With

storage requirements of the same order as the Lulea approach, thesal#ior support for

86

Packet Classification

25 million lookups per second with on-chip SRAM, and guaranteed updaterpance - at
least 10,000 updates per second. The Tree-Bitmap approach had glnstry popularity,
and is implemented in Cisco’s 40Gbps CRS-1 Router [92].

4.5 Techniques for Exact Matching

Exact matching poses some interesting challenges. On one hand, the iaghliftes! by the
fact that one need no longer accommodate the complexities of variable lemgitkep, and
(initially at least) the classification task is restricted to packet headers. Quitteg one must
now consider application areas where the use of heuristics may be imppssibkone may
have naa priori knowledge of the traffic profile. Rather than establish efficient classifi@sed
on a known ruleset in a firewall or router database, one may now beedda classify packets
which, in the worst case, may exhibit little or no correlation in the way they apjmethe
network. Additionally (and particularly in the context of flow monitoring) cociens may
be set up or taken down much more frequently than say, a firewall filtevaadtl be updated.

Thus update complexity becomes increasingly important.

451 Trees

Tree-based techniques (discussed already in the context of longdst match) are also
applicable to an exact match search. Bennett [93] has proposed antategpping of one such
tree structure into RAM. Consider the simple case of looking up the 32 bit4Gx2E384534

“2E3845 “2E38453"/ 4 it \'2E384534”
lookup

s

illustrated in Figure 4.13.

Figure 4.13: Multi-stage lookup as specified by Bennett

The basic idea here is not new. The input key is partitioned into sub-btdckaltiple bits, and

a partial match is established on one sub-block in each stage of the lookussAs reported

“0x denotes hexadecimal representation

87

Packet Classification

in the event of a mis-match in any of the sub-block lookups. Described lautiher as a neural
network, the structure is effectively a multi-way trie, with each sub-blockupa node in that
trie. What is more interesting is the way this structure is implemented in hardwarbairthe

author calls scattered memory deviskhown in Figure 4.14.

The five RAM blocks have 16 address bits and thus 65,536 addresseatiois. Considering
again the lookup of 0x2E384534 (and assuming this data is indeed alteagly in the system)
the first sixteen bits 0x2E38 are used as the address into the Level 1 R#M.2 bits stored at
this location represent a pre-programmed offset into the Level 2 RAN&. i$hihen combined
with the next 4 bits of the input (0x4 in this case) to form the complete pointer inthekiel 2
RAM, where another 12 bit offset is found, and the process repEataparators at each level

in the search indicate a match or mismatch, the latter terminating the search.

Tal and ltzchak [94] propose another interesting variation on a treetsteufor packet
classification which they call ook-Ahead TreeThey note that the number of bits of interest
in a typical single tree node is significantly less than the number of bits whictypamlly be
transferred in a single memory access. They thus propose an alterr@tiiguous memory
model which allows multiple nodes to be accessed in a single cycle to bridge thigga

efficiency.

4.5.2 Hashing

Processing data through a hash functiohashing- is useful in a variety of applications
including cryptography - where one seeks to create secure digitaltsigaafor sensitive
electronic information; cyclic-redundancy-checking (CRC) - where seeks to verify the
integrity of data which may have been corrupted over time or space; amchation retrieval -

where one seeks efficient access to stored data via some index into &aetias known as a
hash table

45.2.1 Simple Hashing for Packet Classification

In general terms, dash function or algorithm is one which transposes or substitutes the
bits of some input data to produce a repeatable pseudo-random outph. fuBigtions are
deterministic that is if two outputs from such a function differ, one can say with certdlmy

the inputs which generated these outputs also differ. On the other hatdfumetions are not

88

Packet Classification

RAM 1
16 bits | po LEVEL 1
DATA O
RAM 2
12 bits
4 bits | ADD LEVEL2
DATA_O
RAM 3
12 bits _|
4 bits _| ADD LEVEL3
DATA_O
RAM 4
12 bits,_ |
4 bits_ | ADD LEVEL4
DATA O
RAM 5
12 bits
4 bits,_ | ADD LEVEL5
DATA_O

e N L» Result

2E384534
Lookup Input

Figure 4.14: Multi-stage lookup implemented in RAM

injective that is if two outputs from such a function are the same, one cannot sagevitinty

that the inputs which generated the outputs were the same.

Hash functions are typically defined in terms ad@mnain- the possible inputs to the function,
and arange - the possible outputs. Often hash functions will have an infinite domain, and
a range determined by some practical constraint - memory capacity beingal tyxample.
Although it is possible for a hash function to have a domain and range whéictha same
size (in effect a one-to-one mapping, with a unique output for evergilplesinput), it should
become apparentin the discussion which follows that such function$ laréted applicability

to packet classification.

Consider a packet classification scheme based on arbitrary 32-bit.ifhee are thug3? =
4,294,967,296 possible input permutations, corresponding to over 4Gb of requiredgsor
were one to permit a unique memory location for every possible input. Matthédomain

and range sizes would require a prohibitive amount of storage. Haisitinggcompressed range

89

Packet Classification

offers a more promising way forward. Say, for example, that one us@scéion which takes
any 32-bit input and generates an 8-bit uniformly random output signatfi one allocates
memory storage in a hash table based on this output signature rather thaniopuhdata,
one need manage ordy = 256 memory locations. A perfect hash function will (with perfect

uniformity) distribute every possible input in the domain across this 256 loceditge.

Clearly, there is a catch. One cannot simply take an arbitrarily large domaicoampress it for
free. In reality collisions occur, as shown in Figure 4.15. Consideingrsscheme in which the
32-bit input is simply truncated to 8-bits to generate a storage location (ignfovmow the
fact that the range distribution of such a scheme would be poor). In timaidowhere all 32
bits of the input data are considered, Key 1 (0x1E5822CF) and KepEFPFCF) are clearly
different. However, after truncation to 8-bits into the compressed rd¢ee] (OxCF) and Key
2 (OxCF) become indistinguishable, resulting in a memory collision when onedri¢se the

range index to store the information.

Domain Range
0
‘KEY 1 “KEY 17
11110010110000010001011001111 —» 11001111
(Ox1E5822CF) (OXCF)
. Truncate °
L] L]
L] L]
“KEY 2" ‘KEY 2" Collision
1111110111111111110111111100111+—» 11001111 >
(OXFDFFDFCF) (OXCF)
4,294,967,295 255

Figure 4.15: Memory collision in single hashing

Collision resolution thus becomes an integral part of any hashing basedchiiion retrieval.
Knuth’s ubiquitous techniques ohainingandopen addressinfp5] are well documented in the
literature. With chained collision resolution, each entry in the hash table idigéfly a pointer
to a linked-list which contains all of the inputs which collided at that locatione Tdokup
operation thus becomes a traversal of a linked list in some additional menearg spserved

for collision resolution, a technique employed in [96] for per-flow bandiwiéservation.

Open addressing schemes includeear ProbingandDouble Hashing In the former, in the
event of a collision in the hash table, one seeks to place the colliding data iextavailable
location, so if locationz is occupied one tries location+ 1, then locationz + 2 etc. This

can lead to an undesirable lack of uniformity knownchsstering This effect is mitigated

90

Packet Classification

in double hashing by generating a memory offseising a secondary hash of the input data.
In this case, when location is occupied one tries locatian + p. Tal and Rachamim [94]
propose a similar approach, using two independent hash functions amptitedata, one to
generate a table address and another to generate a data signature stoicdiat that address

to accelerate retrieval.

Clearly the performance of any hash-based packet classificatiomedbelosely coupled with
the probability of collision in that scheme, since whatever collision resolution adetime
implements will require additional memory accesses compared with a collisiereo&up.
The design of hashing systems thus poses some classic engineeringftsadss the size of
the hash function’s range approaches the size of its input domain, theezhaf collision are
reduced (since one is applying minimal compression) - and lookup timestareseb at the cost
of memory. Reducing this range saves memory resource, but increasgsatices of collision
and degrades lookup performance. Similarly, cryptographic strengthfoactions will give
near perfect random distribution and reduce the likelihood of collisianyiibe more difficult

and costly to implement than simpler CRC-based equivalents.

4,5.2.2 A Simple Probability Model for Single Hashing

In framing the behaviour of a single hashing system a little more preciselyghedntly used
“balls into bins” model is a useful analogy [97]. The basic question is b@afs: One starts
with m balls andr bins. For each ball, one chooses a bin, uniformly at random, in which to
place the ball. When the balls have been exhausted, what can one sayhehaumber of balls

in each bin? Or analogously, if one starts withdifferent packet headers for allocation into a
hash table of, entries, what can one say about the number of packet headersatsdadth

each hash table entry when all the headers have been allocated?

Such questions have generated a battery of detailed mathematical analysidided by
Gonnet [98] and Larson [99]. From such analyses one gains ititegeigsight into the
loading behaviour of the balls and bins experiment, and by analogy the aolbgibaviour
of a single-hash based classification system. One key result is of partictdeest in the

discussions which follow and is stated without proof below.

Single hashing produces a binomial distribution in each hash bin, which in thédianRoisson

distribution. That is, if there amebins andmitems hashed into them, such that one may define

91

Packet Classification

aload factora = m/n, then the probability that a given bin he#ems in it, P(k) is given by
Equation 4.1.

Pk) = & 4.1)

4.5.3 Contemporary Hashing Techniques

Hashing has inspired a significant body of contemporary researchckepalassification.
Authors have noted that in terms of lookup times, hashing performs veryomediverage,

but poorly in the worst case, when multiple collisions occur and multiple memassaes are
required to resolve the lookup. Whilst the use of strong cryptograplsic fuanctions reduces

the likelihood of such collisions, they are difficult to compute within the minimum eack
time, typically taking multiple clock cycles to produce a result [1L00]. An alteveaipproach
proposed by Srinivasan and Varghese [91] is to compute a suitable sef@éfthash function
based ora priori knowledge of the entries to be hashed. Such computations can takel severa
minutes, making them impractical for systems with frequent dynamic conteategpduch as

TCP flow monitoring.

More promising are solutions based on multiple hashing, introduced by Bradé
Karlin [101], which have been shown to perform better than single hgstimtheir multiple
table scheme, items which collide in the first table percolate through to a locatioseicoad
hash table determined by a second independent hash function; items wallide & the
second percolate down to the third, and so on. In the event of an iterolgimg through the
entire available hash space, a partial re-hash of the input items is compb&duthors make
the point that such re-hashing is seldom required. Lim et al. extend thisagh by using a
small CAM, which may be accessed in parallel with the hash tables, to accorebdaems

which have overflowed [102].

Also leveraging the advantages of multiple hashing, two contemporary ajy@®#0 packet
classification appear to perform particularly well. The first approaels asstructure called a
Counting Bloom Filterand the second, an algorithm for improved load balancing known as

d-left These are now considered in more detail.

92

Packet Classification

4.5.3.1 Counting Bloom Filters

A Bloom Filter [103] is a hash-based data structure which indicates whetheot a given
item is a member of a set. The basic idea is illustrated in Figure 4.16. The item tabe isto
hashed using independent hash functions. Each hash function generates thesadtlashit in

a bit vector of lengthn. Each bit in the vector addressed by a hash function is set, effectively
creating a signature for the item and indicating its presence in the set. Iteatsigm can
overlap however, resulting of the possibility false positiveresults, where one item signature

aliases with another.

Input Data

@ T > m-bit vector

|

k hash functions —

Figure 4.16: A Bloom Filter

Bloom Filters have previously been used in both deep packet inspectibioagest prefix
matching applications [104,105]. By implementing a Bloom Filter in high bandwidth
embedded memory, one can identify very quickly when an item is not presém set, and
thus remove redundant and time consuming searches into off-chip menmnever, as Song
et al. [106] point out this does nothing to improve performance in the ahantthe bloom
filter indicates the presence of an item, and an off-chip search is initiatexy. thbs proposed

an improved structure called@ounting Bloom Filter

In this embodiment, which they labeBasic Fast Hash Tablecach bit in the original vector is
replaced by a counter. Upon insertion of a new item, each counter addrieg a hash function
produced by the item to be inserted is incremented. To query whether aniitetm is already

in the set, one computes the requisite hash functions, and tests that alltbesadiccounters are

93

Packet Classification

non-zero. Consider the simple example of Figure 4.17, Wwith 3 hash functions addressing

an array ofm = 12 counters.

2 el x [J»[w K 1
0 — 2
X 3 > x [vV [d» w [X 3
1 > Z 4
y 0 — 5
2 —> X [v KX 6
z 0 — 7
1 > Z 8
W 2 » z [+ w X 9
0 — 10
1 —+»{ ¥ X 11
0 — 12

Figure 4.17: Packet classification with a Counting Bloom Filter

Items x,y,z and w are inserted sequentially. When a new item arrives, édloh oounters
addressed by the corresponding 3 hash functions is incremented aftérthetored in a
linked-list corresponding to that counter. Thus, in this scheme, eacheatdms is stored

in the systenk times.

The search procedure for an item is similar. When an item to be querigdsarone computes
the k& hash functions and interrogates the counters addressed by each.eletit that all the
counters are non-zero one knows (notwithstanding the possibility ofagalstive, which can
be tuned to be low) that the item is stored in the system. The authors note thavéssiing

the linked list associated with the counter with the lowest value, one can minimiserthiger

of external memory accesses required to resolve a lookup. For exaaggl® considering
Figure 4.17 after all insertions have been completed, if itei® queried, count values of 3,
2 and 1 will be returned from counters 3, 6 and 11 respectively. Ghgasunter 11 as the

lowest valuey can be retrieved in a single memory access.

The authors go on to propose a number of optimisations, pruning and imgjane structure to
reduce storage and offering a probabilistic analysis which indicates tkia ivorst case, any
item may be retrieved in a single memory access with a optimal filter configuratienhdsh
space is implemented in external DRAM memory, and the counters stored loc&RGr

embedded memory.

94

Packet Classification

45.3.2 From d-random to d-deft

Also based on multiple hashing are two related load balancing algorithms krexivraadom
andd-left, which combine hashing with an element of choice regarding where aniteputs
actually allocated. First analysed by Azar et al. [107], d-random spéts trash table locations
into d sections, each addressed by ond bfaish functions. The loads in each of the addressed
hash table locations are examined, and the current item inserted in the logakidhe lowest
load. Figure 4.18 compares a simple 2-random example with single hashitige 2Arandom
case, the current item hashes into location 5 in the left hand table and lot&8tiarthe right
hand table. The load (indicated by the circles in the figure) is 2 in both birdsrdamdom, such

ties are broken arbitrarily.

00O

O
O O
112 (3|4 |56 |7 |89 |[10[1[12[13|14|15|16

(a) Single Hashing Inputltem O
@)
Q Q Q
O O O O ©)
1 2 3 4 5 6 7 8 9 (10|11 12|13 [14|15 | 16

(b) 2-Random Hashing Input ltem O

Figure 4.18: Single hashing (a) and two-random hashing (b)

The Always-Go-Leftor d-left algorithm first proposed by &tking [15] is very similar to

d-randomexcept that in the case of a tie in the examined load, rather than allocate the item

95

Packet Classification

arbitrarily, it is always placed in the left-most bin. Batfrandomandd-lefthave been analysed
using abstract and complex witnhess tree arguments [15, 108, 109] wifichbounds on the
likely maximum load in the system after a fixed number of items have been alloeatdd,
latterly using differential equations [16,110-112] to yield numerical loqaesults for the

entire hash table.

Both d-randomandd-left algorithms offer significant performance improvements over single
hashing. Even in the simplest embodiments whkte 2, d-randomhas been shown to provide
an exponential decrease in the maximum observed load [107]. The asynimrettiuced when
breaking ties ird-left has been shown to improve the load performance still further [112]. This
improved load balance has obvious implications for packet classificatiwar faollisions mean

fewer external memory accesses and faster lookup resolution.

4.6 Towards an FPGA-based Packet Classification Engine

Reiterating the design goals alluded to earlier, the focus of this researcinigestigate and
design an FPGA-based packet classification engine with primary applidatas on exact
matching. Ideally one wishes to design such an engine with minimum time, spaoey, siod

update complexity - in other words, one wants to be able to classify potentially rsiltibn
flows at equipment line rates using reasonable amounts of FPGA resoutexternal SRAM
or DRAM. Additionally, whilst the emphasis remains on exact matching capabditythis

project, one nonetheless seeks to develop an approach which couldentigitze other lookup

paradigms discussed.

Tree structures and hashing schemes appear to offer the most promégiedomvard. Trees
allow lookup performance to be specified in a completijerministicfashion. For example,
if one designs a multi-way tree to lookup keys of 64 bits, with 8 bits comparedddt level

in the structure, one can guarantee traversal of the entire tree in 8 stepdernal memory
accesses, and thus provide a hard upper bound on worst-case touksp Therein also lies
the weakness in the tree-based approach, since lookup performammesisted to the length
of the input key. Assuming that external memory access widths remainxamp@ately constant,
longer input keys mean additional sequential memory accesses per loolkagply a problem
for system scalability to IPv6, where the additional address space al@resriat lookup keys

will be almost 300 bits long (compared to 104 for the standard IPv4 5-tuple).

96

Packet Classification

With hashing-based schemes, even when average performance g goadually impossible
to make guarantees about the lookup time in the worst case, since onégaaramtee collision
free operation. Thus hashing is often said tonba-deterministic However, with the advent
of advanced hashing techniques as discussed in 4.5.3 one can &petereninistic operation
with very high probability. Further, the lookup performance of hashirgetlaschemes is not

correlated with input key length; an important benefit in the move to IPv6.

Commercial considerations are also significant in identifying a way forwemg, since
Aliathon Ltd. must remain free to release products based on whatevéfickim technology
is developed in the course of this research. The patent space is ofuf@rsnificance.
For example, the optimised Tree-Bitmap technique developed by Eathertoh ehas
been patented by Washington University [113], and the use of CountimgnBFilters in
classification applications is covered in two patent applications assigned balGlelocity
Incorporated [114, 115].

With all the above points in mind, the-left approach was selected as the best candidate for
further investigation. Whilst its applicability to packet classification has beggesied by
Broder and Mitzenmacher [16], it has received little further attention inesylssnt published
work, despite promising initial results. Further, whilst hinting at the suitabilitg-téft in a
dynamiccontext (where items are frequently deleted and inserted in the system)thugsau

leave some interesting questions unanswered.

4.6.1 Understanding d-left: A Numerical Analysis

In the following discussion, the numerical approach introduced by Mitzeherg110] and
elaborated in conjunction with Broder [16] is followed, since this yields ail@etaumerical
approximation of the expected loads across the entire hash table, rather bivaind on the
expected maximum observed load in the system. As should become apparerd,Hardware
design perspective, such numerical results are extremely usefulofarience, let us initially
consider ad-left model whered = 2, since this is the simplest case to analyse, and the

incremental performance gains have been shown to diminighsaiscreased further [16].

In this casen hash bins are divided up into 2 groupsipbins each. Ley;(t) be the fraction
of then hash bins that contain at leassitems and are in the left hand group afteritems

have been allocated. Similarly, let(¢) be the fraction of the:x hash bins which contain

97

Packet Classification

at leasti items and are in the right hand group whehitems have been allocated. Thus
yi(t),zi(t) < 1/2 andyo(t) = 29(t) = 1/2 V t. If one choses a random hash bin on the
left, the probability that it contains at leasitems is thus given bﬁf/(%) = 2y;(t). Identically
if one choses a random hash bin on the right, the probability that it contaleasd: items
is 2z;(t). Mitzenmacher incorporates these simple probabilities into two differentialtemns
(for ¢ > 1) which describe the behaviour of a 2-left system as the number ofrbarsl the

number of allocated itemst approaches infinity.

dy;(t)
dt

= 2(yi—1(t) — vi(t))(2zi-1(t)) (4.2)

dzl- (If)
dt

= 2(zi-1(t) — (1)) (2yi(1)) (4.3)

To explain these equations, recall the basic operation oRtledt algorithm. The item to
be inserted will be hashed using two independent hash functions. Tthénl@ach hash bin
addressed by the hash functions will be examined and the new item allocatexiitash bin

with the lowest load. In the event of a tie, the new item will be allocated left.

Let dt represent the interval of time in which one item is allocated in the hash tablg; (Fpto
increase in this interval, the item to be inserted must choose a bin on the lefxaittly: — 1
items (with probability given byy;_1(t) — 2y;(t)) and a bin on the right withat least; — 1
items (with probability given b®z; 1 (¢)). The probability of both these events occurring in the
given time interval is simply the product of the individual probabilities, asigim equation 4.2.
Similarly, for z;(t) to increase over the intervdt, the new item must choose a bin on the left
with at least: items and a bin on the right witkxactly: — 1 items, with probability given by

the product as given in equation 4.3.

For convenience of notation, Mitzenmacher then proposes combining tWwesequations
in terms of a single sequencg(t), where theeven: terms represent the left-hand table
probabilities and thedd: terms represent the right-hand table probabilities, suchutliat =

x9;(t), andz;(t) = x9;+1(t). So (fori > 2) one obtains equation 4.4.

d.l‘z' (t)
dt

= A(@i-2(t) — zi(t))(wi-1(¢)) (4.4)

98

Packet Classification

So, say one wanted to calculate the fraction of bins in the left hand table wdhatdaast 1,

y1(t) = x2(t). Substituting into equation 4.4 yields:

dl’g (t)
dt

— 4(xo(t) — w2(0)) (1 (1)) (45)

Sincezy = yp = 5 Vtandz; = 2o = § V ¢ then:

d.%’g (t)

=1-2 4.6
2 v (4.6)

Equation 4.6 is easily solved as an initial value problem sing®) = 0, and has a general

solution given by:

zo(t) = % {1-e?} (4.7

Thus as the number of items allocated tends to infinity, the fraction of the totaMiimiad at
least one which are in the left hand table tend%:,tas one would expect. In similar fashion, one
can obtain general solutions for the higher ordeterms, although asincreases, the nested
x;_o andx;_1 terms make the arithmetic progressively more difficult to deal with. Behaviour

of the termse; throughz; is shown graphically in Figure 4.19.

Given the initial system scaling, one can then userthterms to analyse the loading at points of
interest in any given allocation. For example, the loading profile createbgft allocation
of n items into2n hash bins could be found by evaluating theterms att = % the profile

created by an allocation of items into4n bins by evaluating the; terms att = i and so on.

Clearly it is impossible to derive a complete analytical solution here, since;thector is
infinitely long. However, the analysis presented in [16] shows that factaral 2-left systems,
the fraction of bins with load of least falls extremely quickly with increasing i (in fact
approximately aQ‘“i) such that high loads are unlikely. Thus, one may truncate thector
and still obtain very accurate loading predictions for systems of practigakist. Furthermore,
one can avoid the complexities of the higher ordeterms by generating numerical, rather

than analytical, solutions to the differential equations.

99

Packet Classification

0.6

04a

|

IRRERLS

0.4

NV aread
LSS S
NS S

0

\\

A

Fraction of bins with load at least i

Time (t)

Figure 4.19: Expected behaviour of the (¢) terms from the 2-left differential equations

The Euler and Runge-Kutte approximations [116] are classical methodbtiining numerical
solutions to differential equations where general solutions are impossildifioult to find.

The former is used to generate the numerical results in this research.

4.6.2 Existing Numerical Results

In [16] the authors present some promising comparative results, illustrid@ngerformance
gains of thed-left approach over single hashing. Table 4.3 shows these results farldie
case, where entries represent the fraction of the hash bins withel@aadlyi. For the2-left
case, these results have been generated numerically, using Equatibar4hk single hashing
case, one can establish the expected loading from Equation 4.1. NotettieR-leftequations,
although ther; terms reflect the fraction of bins with load leasti, by simple subtraction one
can calculate the fraction of bins with loastactly:. For example, if the fraction of bins with
load at least 373(t) = 0.45 and the fraction of bins with load at least#,(¢) = 0.27 then the
fraction of bins with loadexactly3 is given byzs(t) — z4(t) = 0.45 — 0.27 = 0.18.

Recalling that the ratio of the number of items to be hashetb the number of available

hash bins: is theload factora = *, one can see from Table 4.3 that in both cases, as the

load factor decreases, the loading performance improves. Intuitivelynaght expect this

since a more sparsely populated hash table will obviously produce feMiesians (or bins

100

Packet Classification

Number of Items Number of ltems
i n/2 n 2n 3n 4n i n/2 n 2n 3n 4n
1] 3.0e-01 | 3.7e-01 | 2.7e-01 | 1.5e-01 | 7.3e-02 1| 4.4e-01 | 55e-01| 2.1e-01 | 4.0e-02 | 6.9e-03
2 | 7.6e-02 | 1.8e-01| 2.7e-01 | 2.2e-01 | 1.5e-01 2 | 3.0e-02 | 2.2e-01 | 5.0e-01 | 2.0e-01 | 4.3e-02

Load
Load

3 | 1.3e-02 | 6.1e-02 | 1.8e-01 | 2.2e-01 | 2.0e-01 3 | 8.6e-06 | 4.4e-03 | 2.6e-01 | 4.8e-01 | 1.9e-01

4 | 1.6e-03 | 1.5e-02 | 9.0e-02 | 1.7e-01 | 2.0e-01 4 | 9.2e-16 | 5.2e-08 | 9.1e-03 | 2.7e-01 | 4.7e-01
5 | 1.6e-04 | 3.1e-03 | 3.6e-02 | 1.0e-01 | 1.6e-01 5 | 1.4e-42 | 1.2e-21 | 5.0e-07 | 1.2e-02 | 2.8e-01
(a) (b)

Table 4.3: Expected fraction of bins with load exactlwith variable number of items allocated
into n bins by single hashing (a) and 2-left hashing (b)

with multiple loads). However, relative to single hashing, and particularhaegm as the load
factor becomes more favourable, it may also be seen from Table 4.3 tHatattiag falls off

much more quickly when usingrleft For example, with a load factor (%f (that is, allocating
5 items into n bins) the fraction of the bins with load exactly %.ix 10~* when using single
hashing, but onlyt.4 x 10~*2 when using@-left

The authors of [16] illustrate how these numerical results correlate withsyesiems by
simulating the underlying allocation process in software. As an example, tresider the
case of allocating 32,000 items into 32,000 bins. The numerical results pifeatist2 x 103

of the bins will have load 4 or greater. Thus over say, 10,000 runsrénhesach run, 32,000
items are allocated) one would expect to see around 16 or 17 bins with IGdte4uthors in

fact observe a maximum load of 4 in 14 of the 10,000 simulated allocations.

4.6.3 Numerical Results at Improved Load Factors

In [16] the authors consider results for a limited number load factors dowmllyo%. A
natural question to ask is howdaleft allocation performs at more favourable load factors. This
was chosen as the starting point for further investigation. Using an IragrBuler numerical
method with an approximation interval 6f0005, the numerical results published in [16] were
successfully replicated. By the same method, an additional set of resultatbfactors of

1. 1.3, 35 andg; were computed. A comparison with single hashing is again obtained using

Equation 4.1 and the results are shown in Table 4.4.

101

Packet Classification

Number of ltems Number of ltems
i n/64 n/32 n/8 n/4 n/3 i n/64 n/32 n/8 n/4 n/3
1 0.0154 | 0.0303 | 0.1103 | 0.1947 | 0.2388 1 0.0156 | 0.0312 | 0.1245 | 0.2445 | 0.3181

Load
Load

2 | 1.2e-04 | 4.7e-04 | 0.0069 | 0.0243 | 0.0398 2 | 5.8¢-08 | 9.1e-07 | 0.0002 | 0.0027 | 0.0076

3 | 6.3e-07 | 4.9e-06 | 2.9e-04 | 0.0020 | 0.0044 3 | 3.8e-23 | 1.5e-19 | 1.9e-12 | 5.2e-09 | 1.2e-07
4 | 2.4e-09 | 3.9¢-08 | 9.0e-06 | 1.3e-04 | 3.7e-04 4 | 1.0e-63 | 8.1e-54 | 3.1e-34 | 9.8e-25 | 6.4e-21
(a) (b)

Table 4.4: Expected fraction of bins with load exactlwith variable number of items allocated
into n bins by single hashing (a) and 2-left hashing (b) at improved load factors

These results show that at more favourable (lower) load factors,abidn of bins with higher
loads in ad-left allocation is dramatically lower than when using single hashing. For example,
with a load factor ofﬁi4 (that is, allocatingg; items into n bins) the fraction of the bins with

load exactly 4 i£.4 x 10~ when using single hashing, but orily) x 10~53 when using2-left

The improved load factors discussed here are of direct practical semif, since it appears
that hash table capacities of practical interest are readily supportedirbsnt generation
memory components. For example, a system capable of classificati®h @0 unique IPv4
5-tuples of 104 bits each, allowing a load factorg)i/vould require64,000 x 104 x 8 =
53.25Mbits of RAM. Such a hash table could be implemented using 2 32Mbit QDR-ANMR
devices. Similarly, a system with identical 5-tuple capacity, but a load fatf:téj to further
reduce the expected number of collisions could be implemented using 2 25B61Bitl|
DRAM devices.

So how does one resolve the collisions that remain? The numerical resyggsssahat with
an appropriately chosen load factor, the number of colliding entrieglite#t hash table will
be small. This raises some interesting possibilities for an FPGA-lhéefticlassifier. More
specifically, a natural question is - given advances in high-bandwidBAF¢mbedded memory
technology (up to 12Mbits of embedded block RAM is available in emerging ds\ic17])
and an appropriately chosehleft topology to reduce the number of collisions, might it be
possible to resolve all these collisions on-chip, and thus create a lookupanism offering
the advantages of both determinacy and storage efficiency? The discwsch follows is an

attempt to answer this question.

102

Packet Classification

4.6.4 From Static to Dynamic Systems

All the previously published numerical results based on analysis usirgyetitial equations
have been for what might be termsttic allocations That is, one starts with a finite number
of items to be hasherh, and allocates these items into a finite number of hashbjrater
which the process terminates. One then examines the load distribution in then syElés
model is useful in illustrating the performance improvements over single hlipshind is a
reasonable analogy for router or firewall applications where systelatep are infrequent and
can be handled by re-hashing. In applications such as TCP flow monitooingver, flows
may be set up and destroyed frequently, such that the dynamic perfceroéithe system is

critical. One must therefore consider how to better define and model siyataanicsystem.

Existing analyses do not provide the numerical results required to detettmeifieasibility of a
dynamicd-left system in FPGA hardware. In [16] the authors propose the followinguiya
system. Up to some arbitrary point in timg only the insertion of items occurs. For< ¢

the system is thus described (as before) by Equation 4.4. Aftersertions and deletions vary.
The probability that an event is an insertiorpisand the probability that an event is a deletion
is1 — p. Items to be deleted are chosen uniformly at random from all items. Therauthes
modify Equation 4.4 to account for deletions by noting that the total numberrokiia the
system is given bEjzoj(ZQj + x9;41), and that the number of balls that can be deleted that
cause a reduction in; is { Floor {4} } (z; — z;42), whereFloor indicates “the largest integer
less than”. Hence the equation describing the behaviour af therms comprises an insertion

and deletion term as follows:

‘ 1- Fi i i — T
dxl = 4p($i,2 — l‘i)l‘i,1 — (p) { O'OT {2}} (.T T +2)
dat > j>0d (@25 + w2541)

(4.8)

In [16] the authors consider lookup systems where all the items (includisg tlibich collide)

are nominally stored iexternalhash memory. The contents of external memory are read into
a line ininternal local cache, where comparison with the queried data occurs. Failurehin su
a system occurs when collisions cause the data fetched from externalrynerexceed the

capacity of the local cache line. Theaximurmload in the system is thus the critical metric.

In an illustrative example, the authors consider initially allocating 32,000 items &@®Q bins

using 2-left, and thereafter either deleting or inserting an item, each with gaepoebility, until

103

Packet Classification

either a load of 6 is observed or 10,000,000 steps (where a step is ainmeera deletion)
are completed. They observe that the (numerically predicted) fractiom®fth load at least
six after thestatic allocationof items is only7.2 x 1071, so that the system should absorb a
large number of subsequent insertions and deletions before a load at#ialy observed. In
fact, over 100 trials, 10,000,000 steps were completed 75 times, althoughalest number

of steps before a load of 6 was observed in a trial was 121,805.

The authors go on to note that the maximum number of items one expects to be ystdma s
appears to be a significant factor in dynamic operation. Similar analysemsafric systems
have been presented in [15, 109], suggesting that if the number of itemdyimamic system
is bounded, then the maximum load in that system is also bounded, with highbpitgba
Specifically, from [15] the following is stated for an infinite sequence otiitisns and

deletions:

Suppose that at moAat- n items exist at any point in time. Then the always-go-left
(d-left) algorithm yields maximum Ioa@(ﬂ—qg) + O(h), with high probability at
any fixed time step

Analogous arguments are presented in [108] in the context of minimisingesting in
circuit-switched networks - the maximum observed load in the system is agairitiohl
concern here. However, in establishing the feasibility of an FPGA-bddefl system where

collisions are resolved internally, the maximum observed load is only paredfitiure.

4.6.5 Overflow Sufficiency

The system proposed here will enforce physical separation betwéema memory for the
primary hash space, and embedded internal FPGA memory which will betosedolve
collisions. The basic idea is as follows: Any items which collide with an existing/éntthe
external hash space will be stored in the embedded memory. On lookupté¢hnead memory
and embedded FPGA memory will be searched in parallel. Since one onlsteves one
item per hash location in external memory, the lookup operation will requiseame external
memory access tinie Although there may be multiple items to resolve in embedded memory,

this will be offset by much faster internal memory access times. The criticalanetthis

SFor 2-left, there will of course be two memory accesses, one left aadight, but these can be done in parallel.

104

Packet Classification

system is thus not theaximunload in any hash bin, but thtetal number of items which end

up in FPGA memory.

Bins with load O or load 1 are of no significance here - since these bindthex empty or
have an entry which is physically stored in external memory, and requirggernal resource.
However, bins with load 2 require 1 entry to be stored in external memodyaarolliding
entry to be stored in embedded memory, bins with load 3 require 1 entry to b staxternal
memory and 2 colliding entries to be stored in embedded memory, and so orosthiaterms
of embedded memory resource, of all these bins of higher load becomestib@ design
criterion. One must ensure that the available embedded memory capacitgi®eregeded or
information will be lost and the system will fail. In the context of single hastiogton and

Yeager [118] describe this criterion agerflow sufficiency

4.6.6 A New Study of Dynamic Systems

Thestaticbehaviour ofd-leftand the apparent boundedness ofitteximurmoad when the total
number of items is bounded in the dynamic case, suggest the intriguing postiitiorverflow
sufficiency may be achievable in FPGA memory. However none of the @amjy®viously
discussed offer any insight into the fraction of bins in the system whichinethe support of
embedded memory. An alternative numerical model of a dynahiéft system is proposed
here. Without significant loss of generality, one can restrict the dynaetienbour of the
system to produce numerical results which indicate the required embeddedryneapacity

for a given external load factor.

Once again, 2-left system is considered first, since this is the simplest to analyse. The key
simplification is to place a hard upper bouhtion the maximum number of items ever present

in the system. InitiallyM items are allocated usirgrleft such that the system is full. Then,
rather than considering an arbitrary sequence of insertions and dsletiohtheir respective
probabilities, since there is a hard upper bound on system capacity, maw rit@y only be
allocated when existing items are deleted. A simple way to model this is to assumettieat a
upper boundV/, existing items are removed (uniformly at random) and replaced bydrlefi
insertions, one at a time, such that the total number of items in the system remastart.

This would seem a reasonable approximation of worst-case behaviauedUiation modelling

the dynamic behavior of the; terms now simplifies to:

105

Packet Classification

dx i
dt

=4(xi2 — xi)2i 1 —

{Floor {1}} (z; — xiq2)
2 A (4.9)

4.6.7 Numerical Results for Dynamic Systems

Keeping the physical implementation in mind, from Table 4.4 it may be noted thatthéte
static allocation of items the majority utilisation of embedded memory locations will be due
to hash bins containing two items. For example, consider the static allocatiorofitedns

into 4000 bins usin@-left Since the load factor in this case}lisone would expect on average
0.0027 x 4000 = 10.8 of those bins to contain 2 items after a static allocation. Thus for
a typical allocation, 10 or 11 embedded locations are required to supgolbirth of load 2.
Since ther; terms fall off so quickly ind-leftthe equivalent utilisation for bins of load 3 is only
5.2 x 1077 x 4000 = 0.00002 such that on average, there are no bins of load three and thus no
cost in terms of embedded memory. Given that the majority utilisation of embeddedme

in the static case is attributable to bins of load 2, let us assume that this remairaséhiz c
dynamic systems and neglect any contribution from bins of higher loackinget validate

this assumption later using simulations of the underlying random processesyw, this keeps

the volume of data generated by numerical simulation manageable.

The system behaviour as— oo is approximated as follows. For load factorsiof}, 1, i, 45
and6—14 the loading after static allocation is obtained by running Equation 4 #4<ot, wheret,
represents the time at which system capacity is reachedz;Nadues at = ¢, are then used as
the initial conditions for the dynamic deletion and insertion phase, govesnedumtion 4.9 for

ts < t < t, wheret, is some arbitrary time at which the numerical approximation terminates.
A new set of numerical results were generated in exactly this fashion. zTkealues were
post-processed to yield the fraction of bins with load exactly 2 as the simulatigngssed,
revealing an interesting interaction between dhleft insertion of new items, and the uniform

random deletion of items at the capacity bourd the system appears to reach a steady-state.

Figure 4.20 shows the behaviour for a system with load faftoThe loading after the static
allocation is obtained by approximating Equation 4.4 up te 0.25 indicating that 0.0027 of
the bins will have load 2 at this point. After continuous insertion and deletidheasystem
limit, the fraction of bins with load 2 initially increases (creating an s-shapefilg);dout then
reaches an apparently steady-state value - approximately 0.0062 in thiJbasneasurements

were repeated for systems of differing load factors, shown in Figude M@te that since each

106

Packet Classification

Static allocation of Dynamic deletion/re-insertion
itemsuptot =0.25 of items aftert = 0.25

-\
A
||
NN
Y

0.002 \ X
L
/

]

factor 0.25

Fraction of bins with load exactly 2, load

i 0z 04 06 ns 1 12 1.4 16
Time (t)

Figure 4.20: Fraction of hash bins with load exactly 2 for a load factor ét with
deletions/reinsertions at the system capadify

halving of load factor yields approximately a ten fold improvement in the stetatg-loading,

a logarithmic scale is used.

The new numerical results are promising, suggesting that the propos€d\-B&sed
classifier may be viable even for very large systems. For example, sais aequired to
accommodate classification of 1,000,000 flows in a dynamic system. With a lotm fac
of é one needs 64,000,000 hash bin locations - implementable in DDR-DRAM. From
Figure 4.21 the maximum number of bins one would expect to have load 2 i give
2.23982 x 10~7 x 64,000,000 = 14.3, such that one nominally requires only 14 or 15

embedded memory locations to support the system.

4.6.8 Software Simulation of Dynamic 2-Left Systems

The authors of [16] note that (based on number theory dating back ttz Kut9]) the
probability of deviating significantly from the loads given by the differenéiguations falls
exponentially in the size of the system in terms of the number of hash/binBy inference
then, for practical systems of finite size, one would expect some defjregriance in the
predicted load. To investigate this variance, and test the validity of the stassgmption
(namely that for systems of practical interest, bins with load 3 or more havigjilégyimpact

on the required embedded memory resource) a system simulation was writte.in C

107

Packet Classification

0.1
N n - v v 0.048273776 Load Factor
< 001 - 0006235024
3 /A—*—’A—A—‘_—‘—‘i : —— 12
< 0.001 /4_4_ - 0000800888 —A— 1/4
S 00001 [" ” " " . A7630E-05 o B
s .
2 g5 - 1ne
5 [S— F36746E-0B —e— 1/32
° [, — + —+—— oo3mEny /64
5§ 1E-07 {
g 1E08
L ED9

1E'1D T T T T T T T 1

0 0?2 04 0B 08 1 12 14 1B
Time (t)

Figure 4.21: Fraction of bins with load 2 for varying load factor, with continuous deletion and
reinsertion at the system capacity

The simulation generates 32-bit keys, representative of packet fseagbich may be
randomised or sent sequentially to tbdeft classifier. Note that although IPv4 keys are
typically 104 bits long, key size is not critical here, since one seeks meralynderstand
the distribution of the loads. The simulation uses 2 table-based Cyclic Reunn@deck
(CRC) functions [120] to generate hash locations for item allocation, andpan-source
random number generator for uniform random deletion of items. The simulatanitors
the loads in every hash bin, and in real time computes the embedded mematy sa@gport
the system. Note that unlike the numerical approximations previously dis¢ubgesystem
simulation accounts for bins with load higher than 2. The embedded memoryaments
are periodically logged in an output file. To keep data volumes and simulatiscugan
times reasonable, only load factors hf!, 1 and ;- were modelled. The first set of results,
shown in Figure 4.22 reflect a system containing 16,384 items, with a variatviber of hash
bins. The second set of results shown in Figure 4.24 reflect a syst@@2¢f44 hash bins,
with a variable number of items. The predicted embedded memory requirementten

corresponding numerical simulation is shown as a dashed line on eaausabfi

108

Packet Classification

3000

(a) 16384 items into 32768 bins, load factor 1/2
2400

1800

————— ww —. 15818
1200 /
EOO /
o

Fa0

(b) 16384 items into 65536 bins, load factor 1/4

B00

450

.-4086 .

300

150

150

(c) 16384 items into 131072 bins, load factor 1/8

120

B A ﬁ“\jfwwﬂw._m
B

Number of Embedded Memory Locations Used

30
s (d) 16384 items into 262144 bins, load factor 1/16
20 Il\ 1| II] h
B O P L A T 4 L -2
10 i

r f ”FMW 1 K
Ll | | W

f ' 1
u] T T T T T
] 100000 200000 300000 400000 S0aoo00 00000

Event

Figure 4.22: Embedded memory utilisation for a 2-left classifier with 16384 items and \tariab
bins, under dynamic deletion and insertion of items

109

Packet Classification

0.02
0018
0016
0014
ooz

0.0
0.005
0.0085
0.004

0.002

0.03

0.025

0.0z

0.o1s

o.01

0.00s

Relative Frequency

Figure 4.23:

N (a) 16384 items into 32768
bins, load factor 1/2

L (b) 16384 items into 65536
bins, load factor 1/4

(c) 16384 items into 131072
H bins, load factor 1/8
1

i (d) 16384 items into 262144
ﬂ bins, load factor 1/16

1400 1450 1500 1850 1600 1650 1700 1750 1800

Normalised Embedded Memory Utilisation

Normalised variance from numerically predicted load for the systems shown
Figure 4.22

110

Packet Classification

20000
(a) 131072 items into 262144 bins, load factor 1/2
16000
S Py - 126545

8000 /
4000

3500
(b) 65536 items into 262144 bins, load factor 1/4
2800
- 2100
(O]
(2]
o 1400
2
g Foo
]
(&)
o
- o
Py
o
1S
()
=
el
% 300
k> (c) 32768 items into 262144 bins, load factor 1/8
3 250
IS
w
5
@
Ko}
IS
=)
z

30
(d) 16384 items into 262144 bins, load factor 1/16
25
a0 |L L1 | I |
=1 12478
. _._l . I_. L \, Y I_. . | . _!’Ii ______ /8
, L | ty
f ¥ 1
ul
ul 100000 200000 200000 400000 500000 £00000
Event

Figure 4.24: Embedded memory utilisation for a 2-left classifier with 262144 bins andiMaria
items, under dynamic deletion and insertion of items

111

Packet Classification

0.0t

0.009

| (a) 131072 items into 262144

0.003

m bins, load factor 1/2

0.007
0.006

0.005

0.004

0.003

0.002

0.001

0016

| i
A —
7 S .y WO (1T T

0014

| (b) 65536 items into 262144

0012

bins, load factor 1/4

0.0

0.005

0.006

0.004

0.002

0.06

0.05

(c) 32768 items into 262144

Relative Frequency

0.04

bins, load factor 1/8

0.03

0.0z

0.01

(d) 16384 items into 262144

bins, load factor 1/16

0.0

006

0.04

o.02

|

u]

/|

12300 12400 12500

12600 12700 12800 12900 13000 13100 13200 13300

Normalised Embedded Memory Utilisation

Figure 4.25: Normalised variance from numerically predicted load for the systems simown

Figure 4.24

112

Packet Classification

4.6.9 Interpreting the Software Simulation Results

Some care is required in interpreting Figures 4.22 and 4.24. They servestoaikionly the
relationship between the dynamic behaviour and steady state value réaaeal simulation

of the underlying random processes, and their equivalents predigtdte lmumerical model.
Since the embedded memory cost falls off so rapidly with improving load fatiey-axisin
each of the graphs must be appropriately scaled such that the behavi@amsition from static

to dynamic operation may be observed. Thus, in Figures 4.22 and 4.24\gittiee embedded
memory cost for load factoi% (subfigure(d)) appears to exhibit more variance than that for
load factor% (subfigure(a)), this is merely an artefact of scaling - in fact the oppasiree;

the variance in embedded memory cost improves as the load factor redsidesstrated in the

corresponding relative frequency plots, Figures 4.23 and 4.25.

4.6.9.1 Characterising Variance

Figures 4.23 and 4.25 comprise a set of normalised relative frequen®scThese are readily
constructed by postprocessing the data used in Figures 4.22 and 4@dtrady. When steady
state behaviour is observed, the embedded memory cost output is pdiyodarapled to
construct the corresponding relative frequency distribution. A loadifget is added such
that these curves are normalised around the expected mean value $tera 8§ load facto%

so the distribution shapes may be more easily compared.

As a specific example, consider how Figures 4.22 and 4.23 relate fonsysteload factor

3 and%ﬁ respectively. With 16384 items and 32768 hash bins (load fa})tﬁne steady state
embedded memory cost predicted by Equation 4.9 is approximately 1581n slydive dashed
line in Figure 4.22(a). With 16384 items and 262144 hash bins (load fqi;gdhe equivalent
cost is approximately 12, shown by the dashed line in Figure 4.22(d). Te tiakfor-like
comparison of the variance around these predicted means easiesetrodf81 — 12 = 1569

is added to each point in the load facE%r relative frequency curve, Figure 4.23(d). In other
words, although the embedded memory cost for a load factéér véries around a mean of 12
for this system, the distribution is shifted up th@xis for comparative purposes. Equivalent
offsets are added for the other load factors modelled, so that they mayripaoced on the same

scale.

From these plots it may readily be seen that choice of load factor is importastablishing

113

Packet Classification

well bounded embedded memory costs. The variance around the numepiealigted mean

in the observed embedded memory cost is notably more spread out at loigtid¢actors. In
particular, an undesirable high-side roll-off is observed at load fagztcm lower load factors

the situation improves significantly. For example, as shown in Figure 4.25, @&h42 hash
bins and 131072 items (load fact@} the difference between the highest and lowest observed
embedded memory cost at steady-state is approximately 600. With 2621dbihasand
16384 items, the difference between the highest and lowest observeddetomemory cost at
steady-state is approximately 30. This is consistent with the number theorgalioigh 4.6.8,

and suggests that for large systems, where load factors do@gp dcee realisable in DRAM,

variance will not significantly impact the efficiency of the proposed implentiemta

4.6.9.2 Comparison with Single Hashing

A comparison with dynamic systems based on single hashing yields veryréleuesults.
For each of the load factors previously discussed, an equivalensi@iitation based on single
hashing was constructed. Interestingly, with single hashing, during thenag phase of the
simulation steady state behaviour is reached immediately. This is what one ngiat,esince
the single hash function represents (approximately) uniform randomatibocof items, and
the deletion mechanism in the simulation is a uniform random number generagacehh
the dynamic phase each “event” is a uniformly random insertion followed imredyliby
a uniformly random deletion - with no net effect on the embedded memoryresgents.
The numerically predicted steady-state embedded memory cost for dynamnatiop of
single hashing systems is thus easily obtained from the basic allocation preslictiiven

in Equation 4.1.

Note that since the number of bins of load higher than two does not fall awayickly with
single hashing, these bins of higher load must be considered when talgulte embedded
memory costs. Figure 4.26 shows the steady state behaviour just dedoribesingle hashing
system with 32768 items and 262144 hash locations. In this case, Froidbgdd it may
readily be shown that approximately 1808 hash bins will contain two items, atd&hhash
bins will contain three items. Since for each of these bins of load three, two itamtbe
stored on-chip in the proposed implementation, the embedded memory cost 8 6. 52.
Contribution from bins of load four and higher is negligible. The total nunadlsigredicted

embedded memory cost for the system (shown by the dashed line in FigujeigtiPfis

114

Packet Classification

approximatelyl808 + 152 = 1960, which again correlates well with the steady-state value

reached in the system simulation.

2500

2000

1500

1000

200

|:I T T T 1
a 0000 100000 150000 200000

Number of Embedded Memory Locations Used

Event

Figure 4.26: Embedded memory utilisation for a single hashing classifier with 32768 items
and 262144 bins, under dynamic deletion and insertion

Correlating the results for the set of systems considered, one may sesinbatbins of
higher load fall away much more quickly when usigdeft, it outperforms single hashing -
dramatically so at better load factors. Measured in terms of the embedded yraystrequired
to support the system during dynamic opera@eleftis approximately 2.2 times better at load
factor;, 4.6 times better at load factgr 12.5 times better at load factgrand 41.8 times better

at load factorll—6, as summarised in Table 4.5.

4.6.9.3 Interim Conclusions

In interim summary, the correlation between the embedded memory requiremedistgxut
by numerical approximation and those observed in the simulation of the uimdergndom
processes appears to be excellent. The combination of the loading plog the static and
dynamic phases of operation, and the relative frequency distributiore @ftibbedded memory
cost during the dynamic phase provide a reasonably complete picturestehsypehaviour.
From these one may observe thag-deft system initially exhibits the predicted “s-shaped”

transition during dynamic operation and eventually reaches a steady-atate consistent

115

Packet Classification

Required Embedded Required Embedded
Simulation Memory Locations Memory Locations
(2-Left) (Single Hash)

16384 items into 32768
bins (Load Factor 1/2) 1582 3483
16384 items into 65536 409
bins (Load Factor 1/4) 1883
16384 items into 131072 985
bins (Load Factor 1/8) 9
16384 items into 262144
bins (Load Factor 1/16) 12 499
131072 items into 262144

bins (Load Factor 1/2) 12655 28162
65536 items into 262144

bins (Load Factor 1/4) 1634 7520
32768 items into 262144

bins (Load Factor 1/8) 157 1960

Table 4.5: Embedded memory requirements of 2-left and single hashing classifiers
simulated systems at varying load factors

with that numerically predicted. This validates the starting assumption that f@ygiems
considered, bins of load three make a negligible contribution to the total emteddmory

cost of the system.

As expected, variance in the embedded memory cost when the systeregeaehdy state
is observed. Again, at more favourable load factors, the relativaudrszy distribution
characterising this variance is notably sharper and taller - one couldlapethat for systems
of infinite size this distribution would be a line of height 1, centred on the nuiiéric
predicted steady state value. For systems of practical size with appropcatsen load
factor, it appears (at least from this small subset of simulations) thatiieanal embedded
memory required to accommodate variance and guaranedlow sufficiencyast — oo
will be reasonable; an assumption which will be tested later in comparing atypweto
hardware implementation with existing published work. Ultimately, for commercitesys
development more rigorous characterisation would be required hemeg sgstems of
millions of items and larger load factors over long measurement intervals - rigmious
qualification and verification effort is considered beyond the scopeeottinrent discussion.
Notwithstanding this need for more rigorous characterisation, it is cleatledt outperforms

single hashing as a dynamic classification paradigm.

116

Packet Classification

4.6.10 Defining Dynamic Systems Analytically

Noting that the numerical and system simulations discussed so far exhipifaxarurable
steady-state behaviour with well bounded embedded memory resoungieeregnts, it is
natural to inquire if one might establish a more general analytical modelidiescthe system,
such that firm conclusions could be drawn about the system behawaur-aoco. In short,
might it be possible to prove analytically that the system is unconditionally stablert it is
possible to derive an equation describing the observed system stesalyitsappears difficult

(if not intractable) to obtain a general solution from which any conclusioight be drawn.

To illustrate the complexities of any analytical approach, recall Equation Hi€hwdescribed
the dynamic system previously defined and modelled. One may separateudimedwhich,
for convenience, originally used the combinggt) notation) into two equations in;(¢)
(reflecting the fraction of bins with loaal least: in the left hand table) and;(¢) (reflecting
the fraction of bins with loadt leasti in the right-hand table)j}/ again represents the total

number of items in the system:

B oy (1) () 221 (1) — WO pent) 10)
dz;it) = 2(zi1(t) — zi(1) (2yi (1)) — i(2i(t) ;;iﬂ(t)) 4.11)

The embedded memory cost analysis is based on the fraction of bins witbXaatly:, given

by w;(t) as follows:

wi(t) = (yi(t) — yir1(t)) + (2i(t) — ziy1(t)) (4.12)

Differentiating, one obtains:

dwi(t) dyz(t) dyi (t)) le(t) dZZ' (t)
dt :{ a EE }+{ a 21_; } (4.13)

117

Packet Classification

Substituting Equation 4.10 and Equation 4.11 into Equation 4.13 and considaring
stationary (in time) point where apparent steady state behaviour of thensyscurs, one

obtains, after some algebraic manipulation:

dwi (t)
dt

= A%(zy)i—1 + AG(Awi(1) + Az(t))) =0 (4.14)

Where A and A? are the first and second difference operators [121, 122] with cespehe
loading spacé. The non-linearity introduced by thg/ product term means a general solution
to Equation 4.14 may be difficult or even impossible to find (since no standiededtial
solution forms are applicable here). Unfortunately then, at least by fwifpthe preceding
analysis, it does not appear feasible to draw conclusions about tleaditional stability of
the system. Given these difficulties, an alternative approach is to verigyttem empirically,
by considering more general operational models. In other words, tblisktdow stable and

robust the proposed system is, let us try to break it.

4.6.11 More General System Use-Cases

Up to now consideration has been given to a system which behaves inwahiglyis easy to
generalise and thus to model with a differential equation. That is, a dyndasisifter which

is empty att = 0, is filled to its capacity according to d@left allocation of items governed
by Equation 4.4, and then continues operation according to a “one-etinbprotocol at this
system limit, governed by Equation 4.9#as- oo. In real classification systems, operation is
unlikely to be so rigorously defined. For example, in the context of flow mdngpone may
wish to delete a flow for which no packets have been seen in a certain timainiéegwms in the
associated classifier will thus typically be time-stamped and deleted accordingh®ageing
protocol, which introduces the possibility bilk deletions and insertions in the system when

multiple items expire at the same time.

Since equations governing the insertion of items, and the deletion/insertiomnaf diea fixed
capacity have already been established, to consider more generalseseone need only add
an equation governing deletion in isolation. This follows naturally from Eqoati®, where
the insertion term may be removed such that the fraction of bins with load &t leader bulk

deletion is given by:

118

Packet Classification

(4.15)

dv; {Floor {}} (z; — ziy2)
dt M’

Note that)M is replaced withM/’ in Equation 4.15 since under continual deletion the number
of items in the system is no longer static, and must be accounted for in any inaimer
approximation. With three modes of operation (insertion, deletion, both) nesrergl system
use-cases may now be modelled, though one assertion remains in placegindless of how

items arrive or expire, the system has a fixed capddity

A system with 16384 items and 65536 hash bins (load fa@owas chosen for further
analysis. In the first use-cases considered, items are allocated up tgsteen apacity,
and deletion/insertion continues at the system limit (as before) until steatytsehaviour
is observed. One then perturbs the system by deleting and reinserting itdoakk,iragain

up to the system capacity, whereupon deletion and insertion at the systenetontmences.
Figure 4.27 shows the results for both numerical approximation and systaerason of this

behaviour for bulk deletion and insertion of 2000 items (subfigures @j@h and 8000 items
(subfigures (c) and (d)). Excellent correlation is again observegdes the numerical model
and the system simulation, and after perturbation the system reaches theteamhestate
previously observed. The number of embedded memory locations reqved exceeds this
value (associated with deletion and insertion at the system limit) - approximat@ljodthe

system considered.

To build confidence in the system, some further general use-casesmuglglled. Since
tailoring the software simulation for the systems of Figure 4.27 proved time ounguand

since consistent correlation with the numerical results had been establisivad decided to
use only numerical models for the remainder of the use-case analysisadebtional scenarios
were considered. In the first, system capacity was reached by comigunserting 2 items and
deleting 1. In the second, upon reaching the steady state at the systecitycagn additional
8000 items were added and deleted in bulk, followed by continual deletiomaedion at the
system limit - note that this use-case is actually illegal, since the system limit isced;daut

is included as an interesting perturbation of the steady-state nonethaldssthird, the 16384
items are inserted in two batches, with interim insertion/deletion phases. TBR9&items are
inserted, one then deletes and inserts items such that the number of items @842, one

then adds a further 8192 items, and recommence deletion and reinsertiersystdm limit. In

119

Packet Classification

the final scenario, the system limit is reached by staggered insertion 0fite¢dds followed by
deletion of 1000 up to 15000, with a final top-up insertion to 16384, follolmedeletion and

insertion at the system limit. The results are shown in Figure 4.28.

One may observe that, with the exception of the use-case where the systeindifiiberately
exceeded, the embedded memory location cost never exceeds the éalietgut by deleting
and inserting items continuously at the system limit. Even for the illegal use-ttaessame
steady-sate value is reached when the illegal items are removed. Thinsyalahe caveat that
more rigorous characterisation would be required as part of commeystalhss development,

it is asserted tha-leftis robust and stable under dynamic operation.

4.6.12 Simulations with Real IPv4 Data

As an additional check on the viability of the proposed implementation, real tRaces
including some from the National Library for Applied Network Research3]lwere used
as the input to a system simulation with 16384 items and 65536 hash bins. Ag,biefo
establish the apparent upper bound on the embedded memory requirdtesrgsyre allocated
by 2-left, with items subsequently deleted and inserted at the system limit. The traffic details

are summarised as follows:

e Figure 4.29(a)Random input data As previous simulations.

e Figure 4.29(b)Bell Labs Input Trace A one week contiguous internet access IP header

trace collected at Bell Labs research, Murray Hill, New Jersey.

e Figure 4.29(c)Leipzig Il Trace- An illustrated 1-day GPS-synchronized IP header trace
captured simultaneously at either side of the University of Leipzig's cehttarnet

access router.

e Figure 4.29(d): Salzburg FH Trace- A contiguous internet access IP header trace
collected at the University of Applied Sciences (Fachhochschule) @afsbpacket
capture point.

The results are shown in Figure 4.29 and suggest that repeatable rsidteat behaviour
with real IPv4 data as inputs to the system is achievable. The highest eetbextanory cost

(observed when using the Bell Labs traffic) was approximately 475, acedpvith a maximum

120

Packet Classification

value of approximately 450 when using random input data. In generalptinelation between
simulations using synthetically generated random keys and those usirdataas good. Use
of better hash functions, or additional random multipliers as suggeste@listibuld improve

repeatability across such simulations further.

121

Packet Classification

450

400)

250 U (a) Numerical simulation of
/ ¥ bulk deletion/reinsertion of

300 / 2000 items at the system

250 Hmit

200 /

150 f’
100 f
50 /

450

200 WM AL AW

350 -""'N \ P’w’ w
3 300 fl U (b) System simulation of
3 ‘(bulk deletion/reinsertion of
2 250 / 2000 items at the system
L2 oo limit
g)
[&]
o 150
2 /
S 100
2 /

a0

[0}
2 J
o [u]
§ 450
L 400 .
uEJ 350 \
B 200 / ‘\ r (c) Numerical simulation of
o / 1 bulk deletion/reinsertion of
'g 250 / \\ }; 8000 items at the system
2 limit

B \/
150
100

ol]

450

! [*

250 '(l\ J[(d) System simulation of

/ \1 ,/ bulk deletion/reinsertion of
=200 / \ / 8000 temsatthesysterm—
150 limit

100

o)/

o 30833 61666 92499 123332 154165 184998

Event

Figure 4.27: Embedded memory utilisation for a 2-left classifier with 16384 items and 65536
bins, showing bulk deletion and insertion of items

122

Packet Classification

450

400

380

300

250

200

150

100

a0

1200

1000

[=iuln]

BO0

400

=200

450

400

350

300

250

=200

Number of Embedded Memory Locations Used
[m]

150

100

50

A50

400

350

300

250

=200

150

100

50

(a) Insert 2 items and delete 1

/ continuously up to flow limit

) (b) Insert and delete 8000

/\ additional items above flow limit

A
J

/ (c) Insert items in two batches

(d) Staggered insertion of 6000 items/

deletion of 1000 items up to system limit

Time

Figure 4.28: Embedded memory utilisation for a 2-left classifier with 16384 items and 65536

bins, under more general use-cases

123

Packet Classification

s00
450
400
380
jcinlu]
250
200
150
100

=0

s00
450
400
350
300
250
200
150
100

a0

500
450
400
350
300
250

Number of Embedded Memory Locations Used
[m]

200
150
100

a0

S00
450
400
350
300
250
200
150
100

a0

Figure 4.29:

POA L, P N e
Vi M ™

r‘; (a) Random Input Data

f{ v (b) Bell Labs Input Trace

A ;!'“N*w"‘m. et peenfl f\,ﬁ*mdpw
I i Bl

;’f (c) Leipzig Il Input Trace

o

AV ALY W L
al W Tl

f (d) Salzburg FH Input Trace

u] 20000 A0000 BO000 S0000 100000 120000 140000 160000 150000

Event

Embedded memory utilisation for a 2-left classifier with 16384 items and 65536
bins, with IPv4 trace data as input

124

Packet Classification

4.7 A Prototype Hardware Implementation

The preceding analysis has produced some interesting and potentiallysefty outcomes.
The results obtained by considering dynamic systems, initially following a simjgevhereby
new items are added on a “one-out-one-in” basis and latterly considerirggganeral modes of
operation, suggest that an FPGA implementation basettlefiis viable and robust. Further,
it appears that at appropriate load factors, such an implementation witirpedramatically
better than single hashing. On this basis, and to facilitate comparison with otitentporary
classification approaches, it was decided to proceed to the investigatiomplementation
of an FPGA-based hardware prototype. Recall the solution proposgéé.b Items will be
allocated according to a-left insertion into two hash memories (nominally implemented in
external RAM). If the RAM location chosen I®leftis free, the item will be stored in external
memory at that address. In the event of a collision, the item will be stored@AF#nbedded
memory. Upon an item query, the external and internal memory spaces vaédrehed in

parallel.

To facilitate faster prototyping it was decided that, rather than develop adfsdrete
memory system, the prototype be implemented exclusively in embedded FPGA memory
Partitioning the prototype into areas of block RAM emulating the “external” hHables
(which would ultimately be implemented in discrete SRAM or DRAM) and a separated
block RAM fulfilling the collision resolution function, was deemed appropriatestablish
proof-of-concept. Modelling the system in this way removes the complexitypplementing
embedded memory controllers (a non-trivial task, especially in the DDR{DRAse), and
allows many more classification decisions in a given test interval, since emt&#M offers
higher bandwidth access. Note that the following discussion will still reféexternal” hash
tables (despite implementing the structures internally in this instance) since thedtides

locations in the prototype will behave exactly like their discrete equivalents.

Embedded FPGA memory is, of course, a finite resource. The prototgiensysize must
therefore be chosen appropriately such that the combined requirenfiehéstevo d-left hash
tables and the correspondiogerflowmemory do not exceed the embedded RAM capacity of
the chosen FPGA.

The required capacity for any given system can be estimated by the nahragans already

detailed. However in considering a dynamic system where the hash mentgoHision

125

Packet Classification

resolution memory are physically separate, one must extend the numerglgbkianby
introducing the concept of iteqpromotion- a prerequisite to maintaining memory efficiency

in the proposed implementation.

4.7.1 Promotion and Memory Efficiency

Consider the simple hash tables shown in Figure 4.30, following the balls intabalegy.
Subfigure (a) shows a generic (implementation independent) hash talgee thie bins have
theoretically infinite capacity. Thus, for example, although items 1,8 and l4lleailocated
to location Al, there is sufficient capacity to store them all. Every item maintgiesraanent
association with the hash bin it is allocated to. The deletion of items is as straigattbas
insertion. If say, item 5 were deleted, the load in bin A7 would reduce fram12 with item

10 still present in that bin.

Finite hash bin capacity complicates matters. In the proposed implementation, graniya
store a single item at each address in the external hash tables. In ®ailfijusince items
8,9,10 and 11 hash into addresses which are already occupied, thetpe in embedded
FPGA memory for collision resolution, and any associativity with a hash taldeead is
lost. In this case, when item 5 is deleted from address A7, a memory ineffidiecceated.
Location A7 is now free, and item 10 hashes to that location, but is not itsiBgnce, in this
embodiment, any associativity between item 10 and location A7 was lost whéorther was
stored in collision resolution memory, there is no wayptomotethe item back into external
memory and fill the “memory hole”. Thus, although location A7 now has a nonhoaal of
1, the item comprising that load is still stored on-chip, and the embedded meuosirgfche

system is higher than it should be.

4.7.1.1 Modelling Memory Inefficiency in 2-left

The discussion in 4.7.1 raises concerns about the impact of inefficient merilgsation in
dynamic systems as— oo, particularly with respect to the steady-state behaviour previously
observed. It was therefore deemed necessary to develop a betwnrstanding of this
inefficiency, and update the numerical models for dynamic systems to réfiectAgain, to
simplify matters, let us assume that a favourable load factor is chosen anth#tubins of

load 3 and higher have negligible impact on the embedded memory costs,rebe icgored.

126

Packet Classification

(a

@

@ l//Delete

® @ ® | @ G ©®© ©

A1 A2 A3 A4 A5 A6 A7 A8 A9 Hash Address

(b

@
@ / Delete Embedded Overflow Memory

‘ @ External Memory Location

‘ A9 Hash Address

Figure 4.30: Simple hash tables - implementation independent (a), and with physical

separation between primary hash space and collision resolution ove(ifipw

One may thus define a hash bin toibefficientonly if it has a load of 1, with the item stored

in the embedded FPGA overflow memory rather than in the hash table locatiotiydire

So how might a hash bin become inefficient? By the definition above, one mdsa faiash
bin with load 2, and delete the item in that hash bin which is physically stored axthenal
hash location. This results in a bin of load one, with an associated item stotteel averflow
memory. Conversely, an inefficient hash bin may be returned to an effitigte if the item
persisting in overflow memory is itself deleted, or if a future insertion “pluge’ttemory hole.

All three possibilities must be accounted for in mathematically modelling memory iiegity

Consider initially the left-hand hash table in a dynaikeft system. Lep; (¢) be the fraction
of inefficient bins in the left-hand table - that is, the fraction of bins in theHaftd table, with
load 1, where the item is stored in overflow memory. As for all the precedingrdic analysis,
let d¢ be the interval of time during which an item is deleted and a new item inserteg; Eor
to increase in this interval, one must choose an item for deletion which is irhebimasf load
2, and is physically stored in the external hash table location - let us callEkent 1. With a

uniform random deletion distribution, the probability of Event 1 occurringjven by:

()N (N
== (4.16)

P(Ey)

127

Packet Classification

wherely(t) is the fraction of bins in the left-hand table with loaexactly2, V is the number of
bins in the system andl/ is the number of items. Far (¢) to decrease in the intervat, one
must either delete an item from an inefficient bin - let us call this “Event Ringert an item
into an inefficient bin - let us call this “Event 3”. Event 2 and Event 3ehprobabilities given

by Equations 4.17 and 4.18 respectively:

P(By) = pli\t}N (4.17)
P(E3) = 2z3(t)p1(t) (4.18)

The net change i (¢) is thus a simple combination of these 3 probabilities, given by
Equation 4.19, and by completely analogous arguments an equivalen¢iféd equation for
the fraction of inefficient bins in the right hand tabig(t), is given by Equation 4.20, where
r2(t) is the fraction of bins in the right-hand table with loaxhctly2.

% _ ZQ(]I\;).N B {plg\?N —|—2.%'3(t)p1(t)} (419)
% _ TZEZN B {QIEZN —|—2£C4(t)q1(t)} (420)

The impact of inefficient memory utilisation may then be modelled numerically. Attime

the static allocation phase has just completed, and since there have bedatiomsp1(t) =
ql(t) = 0. Fromts < t < t; wheret, is again some arbitrary but finite simulation time one
may then model Equations 4.19 and 4.20 in parallel with the original dynamiasystelel to
establish how many bins of load 1 are inefficient at the end of the pro&ées completing this
process for load factors (%f, %, % and% it was observed that the system continued to exhibit
steady state behaviour in the dynamic phase, but that the embedded mest@imeoich this
steady state was reached was approximately double that for system vpllysital separation
of hash and overflow memory space. A new set of software simulatioresal&y constructed
for each of these load factors. The results are shown in Figure 4.31geathcorrelation again
observed between the actual system behaviour and the numericallytpdestzady state value,

shown as a dashed line in each subfigure.

128

Packet Classification

3500
3000
2500
2000
1500
1000

500

(a) 16384 items into 32768 bins, load factor 1/2

2916.35

1000

E D U ety = P s S i

/\/rr T 8004
600 //,.
400

200 /
0

200

150

100

50

Number of Embedded Memory Locations Used

jg (d) 16384 ftems info 262144 bins, load factor 1716

25 7Y .
an J'"r “l. | .I'rll. .F'LJ".'L'I

- A W, Y AT

25 = "H W I ﬁﬁujﬁ _
|

15

10
c il

0 50000 100000 150000

Event

Figure 4.31: Embedded memory utilisation for a 2-left classifier with 16384 items and \tariab
bins, under dynamic deletion and insertion of items without promotion

129

Packet Classification

4.7.1.2 Design Trade-Offs in Implementing Promotion

One need not live with the memory inefficiencies just described, but omeotaesolve the
problem without some cost in terms of logic utilisation and performance. Tdtagm lies in
the loss of associativity between the item stored in the embedded FPGA averdimory and
the external table location to which it initially hashed. To resolve this, in additistoting the
item itself in embedded FPGA memory, one could store two additional piecesoofiafion -
a flag to indicate whether the item was allocated to the left or right hash tabl¢hamddress
in that table at which the item collided, causing it to enter the overflow memory ifirgte
place. Thus, when an item is deleted, one could search the internaloavenimory for
entries with a matching flag/hash pair, and select the item for promotion back extérnal
memory location. This process restores full associativity between owgtéms and hash table

addresses, removing the inefficiency detailed in 4.7.1.1.

Clearly there is a logic cost. Say the items to be classified are IPv4 keysjt&0dry and are
being allocated into a hash space2dt = 1,048, 576 locations. To support the associativity
just described one must store the key itself plus an additional 20 hastsadiits and a left/right
flag bit - a 20% overhead on every item stored in the overflow memory. Thaiso a cost in
terms of update performance, since in addition to the first parallel seal@bkifor the item to
be deleted, one must initiate a secondary search of the internal memory tmitqulmotion

candidates.

Having given due consideration to all of the above points, it was decidetblement a system
withoutany promotion mechanism, since initial comparisons with other published ajhy@®a
suggested that even when running at sub-optimal efficiency, the ggdpmplementation offers

performance improvements. This point will be revisited in more detail later.

4.7.2 Prototype System Dimensions

Recalling the decision to implement a classifier entirely in embedded FPGA menenyitihl

prototype system was specified with the following parameters:

e 32768 32-bit hash table locations, comprisiteft andright tables of 16384 locations

each.

632 bits are not actually required here, since the input items are acagageinters. 32 bits allocated to provide
headroom for any later changes or experimentation.

130

Packet Classification

e An maximum input capacity of 4096 32-bit items, with an additional 32 bits allodated

store associated state or context information.

e A collision resolution capacity of 128 items.

The hash table locations can be implemented in embedded block RAM. The F&glAiru
the prototype platform discussed in 2.3.4 has 216 such RAMs availablepeadding 512 x
36-bit memory locations. The hash space thus requires 64 of these. Adtlitione requires
16 block RAMs to support a systestate tablevhich will keep a list of the current contents and
any associated information or actions. In real world applications, sudblersght be used
to store timestamp information, or to associate some filtering or forwarding deei#io each
input. The collision resolution space can be implemented in distributed RAM, utismgnd
only 1% of the available logic resource to support 128 x 60 bit entries. Al smmeount of
additional block RAM resource is also required to control allocation amdiatation of state

memory, and to support diagnostics.

4.7.3 Basic Circuit Operation

Recall once again the basic operation of théeft algorithm. When an item arrives to be
allocated, one choses a random location in the left-hand table, and amrdadation in the
right-hand table. The item is placed in the location with the lowest load, and teshaays
broken by placing the item in the left hand table. Mirroring this behaviowt,maintaining the
consistency of the-leftalgorithm with physical separation of memory areas, a proposed packet
classification architecture is shown in Figure 4.32. A description of basititioperation

follows.

4.7.3.1 Allocating a New Item

Assume that the current input item does not already exist in the systerm iva@ew input
item arrives, two corresponding hash functions for that item are comipukainction H1
provides a pseudo-random address into the left hash table, and fuft2ia pseudo-random
address into the right. The left and right hash table locations each repoimir into state
memory, where the input items of interest are actually stored, together witsmogciated
context information. Indirect addressing in this fashion improves theiezifty of the

implementation. Since the items themselves must be stored in state memory anyveaig ther

131

Packet Classification

15

43 0
[——[_state table pointer | d-left count | context update
63 32 31 o
H1] context | item —
63 32 31 0
Left Hash Table [——>{__context] item
Input ltem ——
State Table
——[state table pointer [d-leftcount |
15 43 0 /)
H2 KD

Right Hash Table >

59 58 27 26 1312

10
v item [_hash | state addr | fle——]

Overflow/Collision
Resolution Memory

Figure 4.32: Initial prototype classification architecture

no requirement to explicitly store them in hash memory - a pointer from hash mdmnior
state memory suffices. This decouples the size of the hash memory from tivéémp length.
In the case of the initial prototype, since the system has a capacity of 408§, ikach hash

location need only store a 12-bit pointer (and a count, discussed in miaitldesr).

The pointers returned from hash memory are then used to address thenstatey which
returns the items at the addressed locations for comparison with the dapettAt the same
time, a fast parallel search of the overflow memory compares all of its dsnidih the current
input. Since the item does not already exist in the system, all three comggtatbhash table,
right hash table and overflow memory) will return a miss, so the current mpy be identified
as new. At this point, th@-left counts associated with each of the hash table locations are
examined. If the right hand count is less than the left the item is associatetheitight hand
table, otherwise the item is associated with the left, and the correspondingatoiine hash

table location incremented.

The termassociateds used deliberately since at this point, no decision has yet been taken as to
where the current item wilictuallybe stored. If the item is allocated left, and the left hand hash
table location is free, one writes a pointer into state memory to the left hash tatleyraes

the item itself into state memory. If the item is allocated left, but the left hand hashitab

132

Packet Classification

already occupied by a pointer to another itemcodision - then the item itself is written to the
overflow memory, along with its hash table address, a flag bit to indicate thi#¢theollided

in the left table, and the item’s subsequent address in state memory. Ansilrgoments apply
to collisions in the right hash table. valid bit is set in the new overflow memory location, to

indicate that it is a valid candidate for future searches.

4.7.3.2 Updating an Existing Item

If the current input already exists in the system, one of the comparatorsewith a hit. If the
item is found in one of the hash memories, the pointer into state memory at thepaao
location is used to update the context information associated with the input. linitiaé
prototype, one simply increments a context count associated with the inpue tihad this

is not the count associated witkleft, merely the number of times one has seen an input in
the current classification period. If the item is found during the parallédupaf the overflow
memory, the corresponding state table address stored at the overfldwriasaised in similar

fashion to update the context.

4.7.3.3 Deleting an Old Item

In practical classification applications, such as TCP flow monitoring ankiepdittering, one
may wish to stop monitoring a particular item and remove it from the system, eblagpd on
some ageing protocol, whereby inputs which have not been seen ogsigmated monitoring
period are discarded. Effectively, somewhere in the software monitbr@rgrchy, a decision
is taken to remove an item from the state memory. This item is passed to the cltesifica

engine along with a delete flag, and traverses the same datapath as before.

The item for deletion is hashed to produce two addresses into hash menficiy rgturn
pointers into state memory as before. In parallel, the overflow memory ishggarSince the
item has been flagged for deletion, one of the comparators will return d tiie item is found
in hash memory, the associat2deft count is decremented, and the pointer to state memory
cleared. The state table location is subsequently freed for use by aninpetitem which

arrives.

If the item for deletion is found in the overflow memory, the hash addresfi@ndtored at that

overflow location are used to decrement the appropgidédt count in hash memory. The state

133

Packet Classification

table address stored at the overflow location is subsequently freesftmany new input item
which arrives, and thealid bit stored at the overflow location is cleared to discard it from any

future searches of the overflow memory.

4.7.4 Implementing Fast Overflow Search

The ability to search the overflow memory efficiently is key to the performahtieecoverall

engine. For a system with hash space implemented in DDR-DRAM one woldsseemplete
the on-chip embedded memory lookup in around the same time as it take to restatetable
pointer from the discrete memory device. Completing the on-chip search rowlky shan

the DRAM access time means that this becomes the performance bottleneck ystdma;s
completing the on-chip search significantly faster than the DRAM access tineelusidant,
since one must always wait for the state table pointer to complete the classificpgaation.
A full analysis of discrete hash and state memory access timing is dependtre memory
device type, hash address width and memory data width and was deemed biegyscope of
the current implementation. Instead, based on similar parallel lookup schemiesniemped
previously by Aliathon, it was decided initially to allow 4 system clock cyclesipternal item

lookup.

4.7.4.1 A First Attempt

The prototype system allocates 4096 items into 32768 locations; a load faégtoNumerical
analysis for an ideal system with this load factor predicts that under dynapeation, a
maximum of approximatelp.0006 x 32768 = 19.66 items will end up in overflow memory.
Since the initial prototype does not implement any promotion from overflow mgmoe must
also account for memory inefficiency as modelled by equations 4.19 andwihith predict
that this will increase t0.001182 x 32768 = 38.73 items. An overflow memory space of 128
items was thus chosen to give more than enough headroom to charactensgidmce in this
numerically predicted loading. To allow an input comparison every 4 sysistk cycles, the

overflow memory initially proposed was thus structured as shown in Figuge 4.3

Since in any given block RAM one may only address a single memory locatiascim @dock
cycle, the overflow memory is constructed of 8 block RAMs of 16 32-bittioos each. This

supports storage of up to 128 32-bit inputs. A common read pointer stepgjtheach RAM,

134

Packet Classification

wr—-7————————————————————————————————— ———————————
32 t 32 t 32 32
- -~ -~ -
f 0 I

15 15 15 15
Block RAM 1 Block RAM 2 Block RAM 3 Block RAM 8

Hit1 Hit2 Hit3 Hit4

Figure 4.33: Block RAM architecture to facilitate an input comparison every 4 system clock
cycles

incrementing once every clock cycle such that in 16 clock cycles, the exirents of the
overflow memory may be read. Since one comparison every 4 clock cycegised, 4 inputs
are buffered and compared in parallel during each traversal thrthegloverflow memory.
Thus, in 16 clock cycles, 4 inputs may been compared with every overflanomyeocation -

equivalent to an average throughput of 1 comparison every 4 clagd&sy

4.7.4.2 Complexities and Limitations

Initial implementation efforts based on the overflow memory structure propaiseve raised
a number of difficulties, both in the context of the current prototype and irctimtext of
scalability to systems of practical size. By way of illustration, consider the sireqgbldi-bit
comparator logic shown in Figure 4.34, for comparison of a 4-bit nurabetth 4 peers
b,c,d,e. To comparez with one of its 4-bit peers b say - one needs 8 logic inputs which,
in FPGA terms, utilise 2 4-input LUTs . The first LUT compatgswith by anda; with by,
the second compares with b, andas with b3. The results of the 4 individual bit comparisons
are then aggregated in a second layer of logic. To aggregate all tHeepapaparisons (with

b, ¢, d ande), a third layer of logic is required.

135

Packet Classification

Layer 1
agby ai by a;b, asb; ag Co a; ¢ aC; a3 C; apdo aidy a;d; azds age; aie ae; aze;

plelvivivivivivRvIvIvLY
5 6 ©

.

Layer 2

Layer 3

Figure 4.34: Parallel comparison of a 4-bit number with 4 others

In the case of the initial prototype, 32-bit numbers are compared. Thungle £omparison
requires 64 inputs to the first layer of logic, and produces 16 outputsdoand layer, which
in turn produces 4 outputs to a third layer, which produces the result. #hftayer of logic is
required to aggregate the results of the four parallel comparators. Whid$tasic comparator
logic may readily be made to run at speeds approaching 200MHz on the péatferm for
the classification prototype, it raises concerns about scalability to IPd$anicularly IPv6
systems. Comparison of 2 128-bit input keys, for example, presentbiZbtd the first layer
of logic. Aggregation of 4 parallel comparisons of this width requires 5rkagé logic, and

significant FPGA routing resource, both of which act to make timing closure wifficult.

A further difficulty arises as a direct consequence of the latency thrtlug system. In the
case where four parallel comparisons are performed, 16 clock cgobesequired to buffer
4 inputs and read the appropriate pointers and context information from mefr® clock

cycles are required to step through the overflow memory for comparigdrl@clock cycles
are required to write updated information to the memories based on the reddtsiom-zero
time (or latency) between reading context information from state memory atidgurpdated
context information back represents a non-atomic read-modify-write Mbjgh introduces

the potential for spurious context update and degraded system capacity

To illustrate the problem, let us consider some specific scenarios which akettkoccur in
real classification systems. Say the latency through the classifigrasd an item - a packet

headerA - already exists in state memory with an associated count of 6. That is,tpadkie

136

Packet Classification

headerA have been seen by the system 6 times previously during the current clegsifi

period. There then follows a burst of 4 input packets with headdduring a time interval less
thant;. The first of these packets to arrive will trigger a match withn the state table, and
cause the associated count to be incremented. However, the latency ystéma s such that
the subsequent inputs in the current burst, fetch a count from state jmarhwh has not yet
been updated. Thus each of the 4 inputs fetch a count of 6 and incréneit As a result,

after the final packet in the burst is processed the count in state mensagiated withA is

only 7, when it should be 10.

As another example, let us assume that packet headees not currently exist in the system.
There then follows a burst of 4 input packets with headeagain in a time interval less than

t;. The first packet to arrive will generate a miss in all the system comparatnd cause a
new state table entry to be generated for However, the latency in the system is such that
the subsequent inputs in the current burst also generate a miss in alsteenggyomparators
(since the new entry foA has had insufficient time to be created), and three new entries for
the remaining packets are also created, causing a spurious reductiorsisthm’s capacity.
Similar scenarios might be envisaged for items scheduled for deletion, dttlginge the
deletion mechanism is controlled directly by the system, this could be engineeeabid

any contention.

To preserve the integrity of context updates, one could introduce a mebgilision
scheme [124] whereby context information may only be accessed uadgp$ore control,
and is thus always guaranteed to be valid. Such a scheme introduceeteominacy in
state table access time however - an unacceptable characteristic, dogdiderinitial design
motivations. A better solution in the context of the current implementation is to inteod
cache, which restores the atomicity of system context update using localrsnanuess. The
basic idea for a system with 4 inputs buffered at any one time, and a redifiyraite latency

of 16 clock cycles is illustrated in Figure 4.35.

The cache contains the item and context information for inputs which haredassified but
not yet updated in state memory. It is positioned after the primary classifidation acting
like a shift-register, with inputs from the primary classification logic and outpsés! directly
to update the state table. As shown in Figure 4.35, itedmB, C' and D already exist in the
cache. That is at some tinie- = wherex < 16, A, B, C' andD have already been seen by the

system. Note that the other cache locations are also occupied, but aedraartdon’t cares”

137

Packet Classification

t the» * [% | % | B|A|* | C|*|* | D|*|%*|%|%|%*|=* Lad»
current inputs, context from
primary logic t+1 D|*|*|*|[B|A|*x|C|*x|*%|D|*%|%|*|=x]|=*
Alefele] oo == =]e|alxlc]wl* (o]
cachelhlt 7 5 7 9
location t+3 B|C|D|*x|*|%x |B|A|[* |[C|%|*% |D]|*|*x|*
t+4 A|B|C|D|*|*|*x |B|A|* |C|*|%|D|*|%*

Figure 4.35: Cache structures to preserve context accuracy

since they have no bearing on the outcome of this example. The ile@sC and D arrive
at the system again, and during cytleave been processed by the primary classification logic,

which fetched the associated (and now out-of-date) context informatianthe state table.

To check that the context information fetched from the state memory is validghogeks to
see if the current item already exists in the cache. During dyclee searches fab in the
cache. This search returns a hit at location 9. The context informatigmally fetched
by the primary classification logic is thus deemed out-of-date, and overwh#sed on the
context information stored at location 9 in the cache. In the case of maintairsimgple count
associated witlD, if the count value returned by the primary classification logic wathen
the value stored in the cache at location 9 would have heehand the value used to overwrite

the new occurrence dd would bey + 2.

During cyclet + 1, the cache shifts right. Location 15 is read from the cache and written to
state memory, itenD and its new context are written to location 0, and the original version of
D (now at location 10) is tagged as olf/) and not included in any further searches. Also in
cyclet + 1, the search for the next input ite@ commences. This returns a hit at location 7

and the process repeats.

Unfortunately, comparator performance and latency in the proposelitenttire are
antagonistic problems. One may try to ease logic timing in the primary classificatian log
by pipelining or allowing additional clock cycles to traverse the overflow mgnspace.
This increases the latency through the system however - necessitatingeadache - and
since a parallel search of the cache itself requires comparator logic, the toroblems are
transposed rather than solved. Conversely, to reduce the latencghhtioe system to the

point where little or no cache is required would demand prohibitive amounpauadlelism

138

Packet Classification

in the primary comparator. Acknowledging that these difficulties would be comged in
systems with long inputs and high packet rates, it was decided to abandapgheach of
brute-force parallel search and completely restructure the overflow mgenagain by taking

advantage of thd-leftalgorithm.

4.7.4.3 A 2-level, d-left Architecture

From the preceding analysis it is evident that after allocating 4096 items int683Bash
locations, one would expect a maximum of 38.73 items to end up in overflow maiaang
dynamic operation of the old system. Given the attendant difficulties of iegdlvese overflow
items directly in embedded memory, it was decided to apply a different agprddamely,
rather than store overflow items from the external hash space directdyalmcates them
into a small secondarg-left scheme, implemented in block RAM. Whilst this at first appears
somewhat inefficient (since embedded block RAM is a scarce res@mddiash memories are
sparsely utilised by design) it goes a long way to simplifying the resolution twiesnwvhich

end up on-chip.

For the prototype system, approximately 40 items will end up colliding in the primash h
space. Allowing 512 locations in the second Iexd¢ft allocation thus provides a load factor of
better thar%. By an identical numerical approximation to that applied to the primary allocation,
one would expect less th&n0006 x 512 = 0.3072 items to overflow both the first and second
2-left allocations. This means that in theory a very small, register-based, thilcblexdlow
memory is now sufficient to guarantee robust dynamic operation, sincevenjyrarely will
items collide at both levels in the hash space. This removes the need forfdmegeparallel
lookup on all but the smallest structures in the design. The proposeiteatake is illustrated

in Figure 4.36.

4.7.5 New Circuit Operation

Allocation, update and deletion of items in the new system is similar to the previous
embodiment, except that one now has a secondary hashing layer, whielkes the parallel
block RAM lookup. One must be a little more careful in maintaining correct la@aohts here,

to ensure that allocations at both levels of taeft scheme are made correctly. Consider the

case shown in Figure 4.37.

139

Packet Classification

Left Hash Table 15 43 o)
——{ state table pointer | d-left count

context update

63 32 31 0

H1 { context | item

63 32 31 0
{ context | item

Input ltem
Right Hash Table State Table

|——»{ state table pointer | d-leftcount |
15 43 0 %

H2 overflow memory

(reglster based)
40 98 210
item state tab\e ointer |e | i

32 31
context | |tem

9 32 0
—»|__state table pointer | d-leftcount |

63 32 31 0

——={___context] item |

9 32 0
44 state table pointer \ d-left count \ State Table (int)
context update

Right Hash Table (int)

Left Hash Table (int)

Figure 4.36: Revised prototype architecture with 2-level, 2-left hashing

A new input itemC' is allocated left by the primarg-left scheme, and collides with a pointer to
an existing itemA. It thus filters through to the secondary allocation, where it is placed right,
but collides again at this level with a pointer to another existing if&nitem C must therefore

be placed in the overflow memory, and since it hashed left in the primary adlocand right in

the secondary allocation, one must increment the appropriate counthdeeeal. In this way,

the 2-left protocol is adhered to at all levels in the system. Whkis written to the overflow
memory, it is tagged with an external and internal flag, such that in the theri is deleted

from the system at some point in the future, the appropriate counts mayternted.

4.7.6 Resource Utilisation

Whilst in systems of practical size, the external hash space and state mamoly be
implemented in discrete DRAM and SRAM devices, for the initial proof of cphdere,
the entire infrastructure is implemented entirely in embedded FPGA memory. lelsed
implementation, the first layer of the architecture remains unchanged. Oné#yiratiacates
4096 items into 32768 hash locations, the latter utilising 64 embedded block R*gviefore,

140

Packet Classification

new input C
state table pointer state table pointer
’ A ‘ 2 ‘ External Left Table ’ A ‘ 3 ‘ External Left Table
state table pointer state table pointer
’ B ‘ 1 ‘ Internal Right Table ’ B ‘ 2 ‘ Internal Right Table
’ ‘ Overflow ’ C ‘ L ‘ R ‘ Overflow
C arrives C written, counts updated

Figure 4.37: Maintaining correct load counts in a 2-layer, 2-left allocation

one also requires a further 16 block RAMs to supportdtate tableassociated with the entries

in this first hashing layer.

Now, instead of implementing a contiguous overflow memory in distributed RAM; on
constructs a secondary hashing layer in embedded block RAM. To achiésad factor of
better than% at this level, one needs 512 hash locations - easily supported in this case with
a single block RAM. An additional block RAM is required to support the seclevelstate

table, and approximately 328 bits of register-based logic are sufficient tdgeavthird level
overflow capacity of 8 items. A small amount of additional resource is agajoired to

control allocation and deallocation of state memory, and to support diaghostic

4.7.7 Numerical, Software and Hardware Results Compared

Recall the expected loading in the prototype system. When allocating 4096 iten82ir68
hash locations, with no promotion between the hashing levels, the preceustireginal analysis
predicts that approximately 40 items will percolate through to the second kgahial.
Providing a hash space of 512 locations at this level provides a load fafchetter thant,
such that one would expect less than 0.6144 items to percolate through toahevierflow
level. Since the numerical model is imperfect for systems of finite size, onévexpect the

system to exhibit variance about these numerically predicted values.

141

Packet Classification

To characterise this variance in the 2-level architecture, a final s@&tswnulation in C++ was
written, which periodically reported the loading in both the second level Bpabe, and the
third level overflow memory. The second level results were then predessbefore to produce

a relative frequency distribution.

To complete the proof-of-concept, a 2-level d-left hardware implementavias written in
VHDL and targeted at the prototype platform developed in 2.3.4. The ctz#fn logic was
fed by a pseudo-random key generator, providing a new key e¥ecjotk cycles at a system
clock period of approximately 6ns (or a system frequency of 170MHE@Yl left to run for
a gating period of 4 hours. Thus with one deletion/insertion event every @& 96ns, the

behaviour of the system may be analysed over approximatgby 10! events.

key generator 2-level, d-left classifier level 2 hash space histogram RAM
0
[~====7 | i
Level 1 Il Level 2 Pop
Hash §i Hash H— |p===-1-— (-=L-—-

(L
Internal 1 | Free |

r]
Space ' Space ! 1 v a
=‘-—————-”'- —————— : State : 1 Buffer | b (=1
___________ : Table ! : Queue : fbq read level

128

Figure 4.38: Characterising internal loading in a 2-level d-left implementation

The allocation of internal state memory in the hardware implementation is controfled b
simple data structure known adrae buffer queueThis structure simply holds the available
state table addresses and allocates them on demand, on a first-in-fiosis@ut When a new
item arrives for allocation into the internal state memory, an available locatieadsapopped
from the free buffer queue. When an item is deleted, its state table locatiogeid fip and
written orpushedack onto the free buffer queue as an available location for some futtrge e
This free buffer queue is implemented in block RAM. One may thus use itsiagstcead
level to determine how many items are stored in the level 2 hash space atiabingione, as
shown in Figure 4.38.

In the prototype implementation, the free buffer queue read level asabevite the level 2
hash space is sampled once every 65536 system clock periods - iapgedy every 0.4ms.

The sampled read level then acts as an address into a histogram RAMe Befming the

142

Packet Classification

system, this RAM is initialised to zero at each of its 128 locations. Once runnihgn
histogram RAM location is addressed by the classification logic, its contemis@emented
by 1. Soif the read level is 40, one adds 1 to the contents of histogram lod&tidVith 32 bits
available at each RAM location one can guarantee that it will not overfloing the 4 hour
gating period. The values held in this RAM at the end of this period may thendoegsed to

produce a hardware generated relative frequency plot of the lodkis lavel 2 hash space.

A comparison of software and hardware generated results is shown tineFg39. Good
correlation in the level 2 loading is observed between the software simulatibthha hardware
implementation, and both exhibit a mean load very close to 40, as predicted pyettexling
numerical analysis. Finally, the maximum load observed in the third level owerflemory
was 1 over 500,000 events in software simulation and 2 bjex 10! events in the hardware
implementation, suggesting that the small overflow space allocated in this systereishan

adequate.

143

Packet Classification

0.045
(a) Relative frequency distribution of level

b0 2 loading from hardware implementation
0.035 / g p
0.0z / \
0.02s5
0.0z / \
0.o15
0.1 / \
0.o0s /

40 |=1n] =] 100 120 140

o
hal
]

80
0 (b) Actual level 2 loading from software simulation
o |

——

. r\ NN IR
Wu .Mw ur‘x [hi wﬂvm\.
l ! LR A I A

20

T .y

10
a T T T T T T T T T]
o s0000 100000 150000 200000 250000 300000 350000 400000 450000 S00000
.05
0045 (c) Relative frequency distribution of level
Mo 2 loading from software simulation
.04
[V

o L

0.025 }{]\l

o / \
|

0.0l
0.005 'J‘ \
a 20 A0 [=1n] (=]} 100 120 140
0.05

0045 (d) Relative frequency distributions from
ﬁL i hardware and software superimposed

e T\
oens [\
N\
0.015 N ‘\\!

0.01 ﬂ \
0.0o0s /}I \

u} 20 40 =] S0 100 120 140

Figure 4.39: Comparison of software simulation and hardware implementation results for a
2-level, d-left classifier with 4096 input items

144

Packet Classification

4.7.8 Performance Comparison

Having established the basic viability of the proposed implementation, one neke se
establish a performance benchmark. The difficulty here lies in deciding twheompare
the proposed implementation against. Let us reiterate some of the points diséusss.
Legacy solutions for exact matching are typically limited in terms of lookup pexdoce
or implementation efficiency. Techniques based on simple single hashingvf@sE all the
system entries are stored in external memory, scale efficiently and mpewiel on average,
but very poorly in the worst case - making any claim about high line-rgtaluity difficult
to support. Conversely, techniques based on trees [93] offer mpeaxh worst-case lookup
times but bind those lookup times to the length of the input item. Further, the exéstinta
applications of interest here may not be simplified by any heuristic, since th@oa priori

information about the input items. Tree structures are difficult to optimise esudt.r

Based on these foundation techniques, one may thus trade off implementétiemey and
deterministic lookup performance. Whilst tree structure optimisations applicabéxact
matching have been suggested [94], attempts to optimise hashing schemesckaxar more
detailed attention in the literature and appear to produce better results. Btictisation
focuses on making hash-based lookup more predictable by reducingritgen of collisions
which occur by using, for example, cryptographic strength hash fur{t00], semi-perfect

hash functions [91] or techniques based on multiple hashing, introduc&@ih [

Of the latter techniques, the use of Counting Bloom Filters implemented in embpuaadry
as proposed by Song et al. [106] appears to offer the best resldisirgg classification
resolution in a single external memory access time. The authors base thdis res
simulations of a system witlhh = 10,000 input items andm = 128,000 external hash
locations. To guarantee resolution of a lookup in a single external memeegsmne chooses
an optimal configuration for thefshared-Node-Fast-Hash-Tab|8FHT) structure according
to the Equation 4.21.

J— mln 2

(4.21)
n

In this casek is the optimal number of hash functions used to address the Counting Bloom
Filter. Thus for 10,000 input items and 128,000 external hash table locatidhssh functions

145

Packet Classification

are required. The authors show that 3-bit counters in the embeddedfétadequate in this
case. The basic system classification logic therefore reqired 28,000 = 384 Kbits of
embedded SRAM.

Now consider 10,000 input items into the proposed 2-level, 2-left architecMdiowing 80,000
external hash table locations gives a load facto%cixﬁ the first level hash space. From the
preceding analyses, without any promotion between the hashing levelswaumd expect
approximately0.0012 x 80,000 = 96 items to percolate through into the embedded second
level hash space. Facilitating a load factor%oht this level thus require8 x 96 = 768
embedded hash locations of 10 bits each - a total of 7.68 Kbits of embedded.SR

From this second level hash space, one would expé6i2 x 768 = 0.9216 items to fall into
the third level overflow memory. Provision for 8 such overflow locationrldiits each requires
328 bits of embedded logic, and would seem reasonable to guarantfewesesfficiency and
lookup resolution in a single external memory access. In total, the basicrsgkssification
logic therefore requires just over 8 Kbits of embedded SRAM. So with theatdahat the first
level hashing space must be divided in two (and thus requires 2 discretenmas in parallel
of %3 locations each to resolve the lookup in a single memory access time), the 22ief|,
FPGA implementation proposed here requires 62.5% of the external mensayree, and
just 2% of the embedded internal SRAM required by the equivalent Cautioom Filter

architecture.

146

Chapter 5
Summary

This research has focused on the development of FPGA-based etatste for Next
Generation Communications Networks, specifically addressing two keydiadfies in high
bandwidth networking - Forward Error Correction and Packet Claasiific. As a preliminary

to the concluding discussions, a brief summary of the points already peeseow follows.

5.1 Chapter1l

Chapter 1 introduced the concept of System Level Integration as an amaifydisciplines
evolved to manage the complexities of multi-million gate System-on-Chip devices) alude

the associategroductivity gap- the discrepancy between transistor density and the number
of transistors which may be incorporated into a design in a staff month. ASIESPs and
FPGAs were discussed as the principal variants of System-on-Chipeddihie advantages of
deploying FPGAs in low volume, high complexity applications were discussetcplarly the

mitigation of risk as networking standards emerge.

Maintaining competitive advantage by delivering FPGA-based solutionshwdrie smaller
and faster than those of their competitors was emphasised as strategicallyamhporthe
sponsors of this research, Aliathon Ltd. This emphasis was encapsinadidesis statement,
which asserted that theoretical research and detailed operationabstinyalgorithms which
underpin emerging networking standards, combined with an architectuehfdeus on FPGA
design, would yield solutions which bettered the state-of-the-art. Foammod Correction and

Packet Classification were introduced as the principal areas for inagstig

5.2 Chapter 2

Chapter 2 presented some technical and commercial background. fh&et generation”

was qualified as embodying both a transition to higher bandwidth systems andagiomido

147

Summary

packet-based networking. Specifically, the evolution of the Optical pah®Network (OTN)
and the ubiquity of Internet Protocol were discussed as the key comimartigations for the

work presented in this dissertation.

FPGA architectures were discussed, using the Xilinx Virtex Il Pro devigaraexample,
and the differences between FPGAs and ASICs/ASSPs were outlined aomnitext of their
respective design flows. The system design trade-offs between ltligation, clock speed
and processing time were highlightesbstractionandtechnology independeneeere outlined

as best-practice guidelines followed at Aliathon Ltd.

Finally a description of an FPGA-based configurable network interface designed as a

precursor to the principal research work was presented.

5.3 Chapter 3

Chapter 3 presented the outcomes of the first major research phasepobjtwt, on Forward
Error Correction (FEC). A brief introductory discussion outlined reasahy one may wish
to encode data for communications. Block Codes were identified as thedbthis research
and Finite Field Theory was introduced as the mathematical framework on wieamnalysis
of such codes is based. The Reed-Solomon codes were defined, \@b5R239) of particular
interest as the code deployed in the Optical Transport Network (OTig) particular challenge
of implementing FPGA-based Forward Error Correction for 43Gbps QT&ystems was

discussed.

5.3.1 Reed-Solomon Encoding

Reed-Solomon encoding was introduced, and the mapping of the requirdemadical
operations to hardware structures illustrated. The limitations of a single-$yenboder in
the context of OTU-3 systems, which require two symbols to be processedkin system
clock cycle, were identified. When using a single-symbol engine, in esleck cycle two
input symbols arrive and only one may be processed. Thus to keep ugheiithcoming data,

parallel encoders, data buffers and pipelined logic must be introduced.

A novel two-symbol encoder based on reformulated arithmetic was pessenaddress these

issues. The new encoder is based on a generalised expression salatititrary parity symbol

148

Summary

to two input message symbols, and can thus process two symbols in eviery sysck cycle -

completely removing the need for any interim data buffering.

Since the number of symbols per message word in any Reed-Solomon cddgirsgrocessing
such messages two symbols at a time it is necessary to deal with an odd cyaeyimessage
word, when one of the input symbols to the encoder is non-valid. A wrapaethus proposed,
designed to fit around the encoder core, transparently formatting thandateh a way that the
encoder always processes an even number of symbols, but the miaiaseOTU-3 compliant

at the equipment interface.

5.3.2 Reed-Solomon Decoding

The Syndrome Calculator, Chien Search, Forney Calculation and KegtiBguSolver block
were then introduced as the building blocks of a Reed-Solomon decolerKdy Equation
Solver (KES) block, which takes the syndrome as input and producesrtbelocator and
error evaluator polynomials as outputs, was identified as the most difficult termept in

hardware, since solution of the key equation is mathematically intractable.

Two well documented approaches to the solution of the key equation weanasded - the
Berlekamp-Massey algorithm, and the Extended Euclidean algorithm. A cootargp
“hybrid” algorithm [12] drawing on the mathematical bases of both appresavas then

introduced and identified as an interesting candidate for further study.

Operation of the algorithm was verified in longhand, and tested againstigmood behavioural
models. A previously published VLSI architecture based on the hybriditigo was then
discussed. It was noted that an FPGA architecture based on a directieméion of this
VLSI model would not compare favourably with Aliathon’s existing solutioagéd on a variant

of the Berlekamp-Massey algorithm).

It was thus decided to investigate the operation of the hybrid algorithm furtlith a view to
identifying possible optimisations. A synthesizable VHDL implementation of a Kayakgn
Solver based on the hybrid algorithm was developed, and embeddediisgstesn comprising
known behavioural models of the Syndrome Calculator, Chien Searchandy Calculation
blocks. The behaviour of individual coefficients in the evaluator andtgpolynomials was
then observed on a per-iteration basis until the algorithm terminated, ovéulthrange of

correctable error patterns.

149

Summary

From this investigation, two optimisations were proposed. It was noted thallgbethm’s
working polynomials could be concatenated and normalised to reduce thgestequirements
from 8t + 4 symbol locations talt + 6, wheret is the error correcting capability of the code.
This optimisation also reduces the number of finite field multipliers required &b 4 to

4t + 6 and reduces the number of finite field adders required ftom 2 to 2¢ + 3. Further

it was noted that modifying the initial conditions allowed the algorithm to comple® in 1
clock cycles. This improvement, though small in absolute terms, was founditadugal to

improved performance at 43Gbps.

A prototype FPGA architecture based on the optimised hybrid algorithm wagitheloped.
The prototype Key Equation Solver can process 1 codeword in 15 clpcles; or 167
codewords in 240 clock cycles. Therefore with 2 of the new engin@spasing approximately
2000 slices each, the Key Equation may be solved with a total utilisation of 4Q@3.s
In contrast, a decoder based on the inversionless Berlekamp-Mdgsehan - previously

developed at Aliathon Ltd. - requires 32 engines comprising approximab@slges each to
give a total utilization of 11200 slices. The new implementation thus require8¢dstof the

original utilisation logic for operation at OTU-3 line rate.

5.4 Chapter4

Chapter 4 presented the outcomes of the second major research ptresproject, on Packet
Classification. The topic was introduced as a key enabling function foraadsing number
of networking applications, including Internet Protocol (IP) routing amitching, Quality of
Service (QoS) provision and network security. Three principal tygedassification were
described - String Matching, Longest Prefix Matching and Exact Magchihe latter being
of particular commercial interest to Aliathon Ltd., facilitating the immediate enhanueofie
legacy products for ATM, and simultaneously creating a platform on whidjuild a suite of

packet-processing IP cores in the future.

The space, time, power and update complexity of classification operatioesiseussed and
a review of previously published classification solutions presented. Exiskact matching
techniques were presented, including schemes based on decisigm&tgas networks, Bloom
filters and hashing. It was noted that state-of-the-art techniqued badeces offer completely

deterministic classification or lookup times, but scale poorly to systems with loagehe

150

Summary

Conversely, contemporary techniques based on hashing scale bétee lmon-deterministic,

such that worst case lookup times can be poor.

Solutions based on multiple hashing were identified as more promising candiolaERGA
implementation. Of these, a structure known as a Counting Bloom Filter and aaddetcing
algorithm known asl-leftappeared to perform particularly well. Commercial considerations (in
particular the existence of patents covering FPGA-based Bloom Filter imptatizes), and
some interesting gaps in the existing analysisl-oéft suggested the latter as a good starting

point for further investigation.

A numerical analysis of thel-left algorithm was then presented. This analysis initially
followed the existing published work, based on differential equation$/itfenmacher and
Broder [16]. Their results for static systems were replicated and exdedaclude systems
with more favourable load factors, whedeleft was shown to perform significantly better
than single hashing. These initial results prompted the following questioren gidvances
in high-bandwidth FPGA embedded memory technology and an appropridteseic d-left
topology to reduce the number of collisions, might it be possible to resolvessitbollisions
on-chip, and thus create a lookup mechanism offering the advantadesttotieterminacy
and storage efficiency? Additional numerical analysis was deemedsaegds answer this

guestion.

In [16] the authors considered lookup systems where all the items (includosg which
collide) are nominally stored in external hash memory. The contents of ekt@emory are
read into a line innternallocal cache, where comparison with the queried data occurs. Failure
in such a system occurs when collisions cause the data fetched fromatxtemory to exceed

the capacity of the local cache line. Theximumload in any hash location in the system is

thus the critical metric.

It was noted that in proposing to resolve hash collisionsnternal FPGA memory, the
maximum load in any hash bin is not the critical metric - ratherttt@ number of items which
collide in the external hash space is crucial. The desired system attributis ireglard was
defined averflow sufficiency118]. A new numerical analysis was thus proposed, intended
to establish whetheoverflow sufficiencyn a dynamic context was actually possible. Initial
analyses, supported by a series of software simulations developed insOggested that

the amount of FPGA embedded memory required to suppdrtedt classifier was bounded,

151

Summary

reaching a predictable steady state value during dynamic operation asteensgapacity.

Attempts to prove the unconditional stability of this system analytically were romtessful,
since the differential equation resulting from the analysis was non-linehdi not readily
yield a solution. It was thus decided to proceed empirically, testing the systder urore
general modes of dynamic operation, and using real IPv4 data traéeputs. Repeatable
steady state behaviour continued to be observed. On this basis it wasdierjgtoceed with a

prototype FPGA implementation.

A discussion of the initial prototype architecture was then presented, anichfilications of
introducing physical separation between the primary hash space anddfftow memory
discussed. The concepts of promotion and memory efficiency were icgddand a revised
numerical model proposed to account for them. To maximise the number afficiaton
decisions which could be made in a given test interval, and to remove theémeaglement
discrete memory controllers, the prototype classifier was implemented entirefgbdadeled
FPGA memory. The basic circuit operation was then described, and theleodties and

limitations associated with the architecture discussed.

A novel 2-level, 2-left architecture was proposed as an improveditdagzototype, resolving
the difficulties associated with complex comparator logic and caching identifietthein
earlier system. The prototype was augmented with basic diagnostics andtezklekcellent
correlation both with numerically predicted results and software simulationafritierlying
random processes. The 2-level, 2-left FPGA implementation proposgires 62.5% of
the external memory resource, and just 2% of the embedded internal SR@ited by a

Counting Bloom Filter architecture of equivalent capacity.

152

Chapter 6
Conclusions and Further Work

The work presented here has considered System Level Integratinmgththe application
of programmable logic to some of the design challenges posed by nextagener
communications networks. Such networks reflect an industry demandgioerhbandwidth
connectivity compounded by the need to support increasingly divendead data. The risks
and costs associated with development of fixed functionality devices sudkS¥Cs and
ASSPs in this dynamic environment, mean that FPGAs increasingly rep@sempetitive

alternative.

With these points in mind, this dissertation has sought to combine analysis of thigratgs and
techniques associated with two important networking paradigms - Forwaod Eorrection
and Packet Classification - with an informed approach to the developmdiP®@A-based
architectures. The thesis statement of Chapter 1 asserted that sucpraacapcould yield
solutions which better the state of the art. The Reed-Solomon architectu@spfer 3 and
the classifier prototype of Chapter 4 are offered as justification of thestaws, and in support

of the conclusion that the work presented has been broadly sudcessfu

To qualify that conclusion, and by way of final summary, some areas forovement and

suggestions for future work are presented.

6.1 On Forward Error Correction

The logic proposed in 3.5.12 for the optimised Key Equation Solver runsmbemately
170MHz. Whilst this is nominally fast enough to support 43Gbps line rateatipet it allows
no margin for the degradation due to system jitter associated with multiple switcaiag i
near-full FPGAs. Two aspects of the design appear to be critical kéngly, there is a large
routing delay associated with thend~ symbols which must be routed to multiple coefficients
to implement the distributed multiplication required by the algorithm. This could be iredrov

by experimenting with register replication to reduce the large fanout on Hueiated nets.

153

Conclusions and Further Work

Secondly, the selection logic combined with the arithmetic blocks form a criticabgwatorial
path in the design. In particular, the assignment of &#hgolynomial is determined by an
input multiplexer (for initialisation), a combinatorial path through the Galois Fieltipligrs
and adder, and an output demultiplexer which determines whether shiftedhifted or zero

symbols are passed through.

Experiments with a simplified single coefficient model suggest that the efficieh the
selection logic can be improved by normalising the polynomials in a single staghpas
in Figure 6.1. This restructuring takes advantage of the fact that the FR@Anplement a 4
to 1 multiplexer in a single CLB, by using an internal construct called an F5 mwépldhe

Key Equation Solver requires further engineering effort to integrateetbbanges.

Pma
(shifted)

Pmb
(shifted)

R Y I R
RN A

) Y
INIT_VAL l l
> X
I
& selection
logic
Ps+1)b

Figure 6.1: KES architecture for a single coefficient with improved timing

INIT_VAL 0 Pmb INIT_VAL 0

The Syndrome Calculator, Chien Search and Forney Calculation havieeeat studied in
detail. Further work is required to understand the implications for these dliockOTU-3
systems, where two symbols must be processed in every clock cycle ymteoge Calculator

in particular, being similar in basic structure to an encoder, may yield to a mathamatic
reformulation similar to that applied in 3.5.3. Further, it would be interesting tanexeich
reformulation to consider systems processing 4 symbols per clock cyaleayyseas a candidate

architecture for an OTU-4 system.

154

Conclusions and Further Work

Virtex-Il Pro Family Virtex-IV Family
X e.g. XC2VP100 e.g. XC4VLX160
OTU-3 Encoder Engine & .
Used by Available in Percentage Used by Available in Percentage
architecture device utilisation architecture device utilisation
Slices 5600 44,096 12.7% 5600 67,584 8.3%
Virtex-Il Pro Family Virtex-IV Family
. .g. XC2VP7-6FG-456 .g. XC4VLX15FF668-10
OTU-3 Key Equation eg °9
Solver Used by Available in Percentage Used by Available in Percentage
architecture device utilisation architecture device utilisation
Slices 4000 44,096 9.1% 4000 67,584 5.9%

Table 6.1: Resource utilisation for OTU-3 FEC architectures

Significant further development work is required to integrate the archiesctdeveloped
in this dissertation into an OTU-3 chipset. Specifically, for a complete OTUH3tisn,

interleaver/de-interleaver, mapper/de-mapper and framer/de-frammes eme all required.
Table 6.1 gives some indicative percentage utilisation figures for the arithiée developed in
this dissertation, which suggest that high-end Virtex Il Pro or Virtex IVickes would be good

candidate platforms for such a chipset.

Finally, industry adoption of Forward Error Correction in general remaiminteresting topic,
worthy of ongoing study. The authors of [125] note that the codesderel in this dissertation
are optimal for systems spanning less than transoceanic systems, bubrttr@nsoceanic
applications concatenated codes or product codes offer a betteecHatciguingly, ITU-T
Recommendation G.975 [126] offers multiple suggestions for such strotgscor “super
FEC” schemes but does not actually standardise on one - reflecting teetainty which
remains in this field. Discussion with a number of Aliathon’s customers towagdert of
the research period documented here, suggests that equipment rzeusamay be adopting
the management functions specified by ITU-T G.709, but seeking to impletineintown

proprietary FEC schemes, optimised for their particular network topologies.

6.2 On Packet Classification

The architecture developed in Chapter 4 represents a promising drooftcept around which
an FPGA-based classification product could be based. Howevéhnefunvestigation and
development work are required to build a genuine product on the idessiied here. Attempts

to derive a complete analytical model of the observed steady-state behafibe system were

155

Conclusions and Further Work

not successful. Therefore, it was not possiblgtove that the classifier is unconditionally

stable during dynamic operation. The analysis presented in 4.6.10 washaotséive, so the

existence of such a proof remains an open question.

The system also needs to be more rigorously tested, ideally in a real neswdrknment in

parallel with third-party equipment for independent verification of thesif@ation behaviour.

The GIGEMON - an open platform for passive monitoring of optical Gigatiernet networks,
based on an Endace DAG4.3GE dual channel network monitoring c2rd, [And the Agilent

Technologies N2X Multi-services Tester [128] would provide an excetiest environment -

facilitating complete control over traffic generation and comparison logsédtiic capture.

Fraction of bins with load 2

Figure 6.2:

0.0
0.0001
1E-08
1E-08
1E-10
1E-12
1E-14
1E-18
1E-18
1E-20
1E-22

10
0.01
1E-05
1E-08
1E-11
1E-14
1E-17
1E-20
1E-23
1E-26
1E-29
1E-32
1E-35
1E-38
1E-41

(@)

* *
2 2 2 2

+— 0.023446786

%—ég e A~ A—4A—(.000953766

1.48726E-5

X 5 % x x

1.20675E-7

* * * * *

6.8386E-10

Load Factor

——

—h—

——

——

——

1.4

1/2

1/4

1/8
1/16
1/32

0.010538222

+

(X3
X3

6.793E-5

3.82877E-8

3
3
3

¥

3.99802E-12

- 1.63728E-16

Load Factor

——

—h—

——

—_——

——

Time (t)

12

1/4

1/8
116
1/32

Fraction of bins with load 2 for varying load factor, with continuous deletion and
reinsertion at the system capacity, for a 3-left (a) and 4-left (b) allocation

156

Conclusions and Further Work

The likely performance of real, discrete memory based classification systesesl on the
proposed architecture needs more detailed analysis. Whilst the systemaliproiassifies
input items in a single external memory access, the actual line-rate capabilitiepdhd on the
memory technology used. Very large classification systems will most likely be impteche
in discrete dynamic RAM; achieving efficient access to such devices idriviad and itself

worthy of detailed investigation.

The possibility of using higher ordat-left allocations is suggested. Whilst the benefits of
higher order systems follow a law of diminishing returns, a numerical modelling-left
and4-left allocations, shown in Figure 6.2, suggests they may also provide a vialideftnas
alternative FPGA-based classifier topologies. Finally, since the completitdreaesearch
documented in this dissertation, additional publications of interest have etherpe authors
of [129] discuss the benefits of allowing items to be moved during insertion intigpheschoice
hashing structures in hardware, and in [130] the integratiatileft hashing and Bloom Filters

is proposed.

157

Appendix A

An Inversionless Berlekamp-Massey
Algorithm

Guide to notation:

\; . Locator polynomial coefficients

w; . Evaluator polynomial coefficients

0 : Discrepancyb : Working polynomial k : Control variable

~ . Working GF element

Inversionless Berlekamp-Massey (iBM) Algorithm
Initialization:
Ao(0) = bo(0) =1, X;(0) = b;(0) =0fori =1,2,...,t. k(0)=0.~v(0) =1.

Input; s;, i=0,1,...,2t— 1.

for » = 0 step1 until 2¢ — 1 loop

begin
Step iIBM.16(r) = s, - Ao(r) + 8p—1 - A1(7) 4+ -+ - + Sp—p - Ae(7)

Step iBM.2 \;(r + 1) = ~(r) - Xi(r) — d(r)bi—1(r), (i = 0,1,...,1)

Step iBM.3
if 6 #0andk(r) > 0then

158

An Inversionless Berlekamp-Massey Algorithm

begin

bi(r +1) = Ai(r), (i = 0,1,...,t)

Y +1) = 8(r)
k(r+1) = —k(r) —1
end

else

begin

bl(T‘—Fl) :bz;l(?“),(i:(),l,...,t)
V(r+1) =(r)
E(r4+1)=Fk(r)+1

end

end loop

for i = 0 step1 until £ — 1 loop

begin

Step iBM.4wi(2t) = S8;)\Q(Qt) + 8i—1- /\1(2t> +---+50-)\Z‘(Qt)

end loop

Output: \;(2t),i=0,1,...,t. wi(2t),i=0,1,...,t—1

159

Appendix B
An Extended Euclidean Algorithm

The algorithm is performed on a table with four columns - quoti¢m}, remainder-(z), u(z)
ando(z).

If greatest common divisor of two polynomials dadz), b(x)) is given byr(z), the Extended

Euclidean algorithm returns polynomial§r) andv(x) such that(z) = u(x)a(x)+v(z)b(x).
Definition:

Step 1.
Initialisation. In rows—1 and0, leave the quotient column empty. The entries in the remainder,
u(z), andv(x) columns arex(x), 1 and0 in row —1 andb(z), 0 and1 in row 0. Set iteration

countk = 0.

Step 2:
Calculation ofg(z). Divide r(z)r1 by r(z)x producing the quotienf(z) and the remainder

r(x).

Step 3:

Calculation ofr(z), u(x) andv(z). The formulae determining(z)x+1, u(z)k+1 andv(x)g41
are:

r(2)kr1 = 7(2)r1q(@) g1 (2)k

w(z)kr1 = u(2)p19(T) g 1u(T)k

V() kg1 = V(@) k1q(2) k10 (2)

Go to Step 2.Terminate when the degree ofr) is less thart, wheret is the error correcting

capability of the code. For details of failure conditions when this capabilitydseted see [36].

The algorithm returns the error locator and error evaluator polynomiaéwie inputs are

a(z) = 2? andb(x) = s(z).

160

Appendix C
An Outline Business Plan

A business plan submitted to the University of Glasgow in fulfiiment of the basied

management requirements of the Engineering Doctorate.

Declan Hegarty

Institute for System Level Integration

/XD

JEALIATHON

Aliathon Ltd.

Evans Business Centre
Pitreavie Court
Dunfermline

Fife

KY11 8UU

Registered Company SC216137
Tel + 44 (0)1383 737736
Fax + 44 (0)1383 749501

www.aliathon.com

161

An Outline Business Plan

C.1 Executive Summary

e Aliathon is a dynamic Scottish start-up company, founded in 2001, delivexanigl-class

IP core products to global telecoms and datacoms ‘markets.
e These markets will be worth some $20 billion by 2008.

e Aliathon’s proven business model is beginning to establish market slmserto deliver
40% revenue growth in the next financial year by building on an estadlisternational

customer base.

40000

35000 N /\/
30000 /V
25000
20000 /V
15000 /
10000 /

5000 —\ /J

Average Monthly Revenues (£)

O P ——— T T T T T T 1 1 T T 1 T 1 T T T 1 T 1 T T T 1 T 1 T T T 1 T 1 T T T 1 T T T T 1 T T T 11

October 01 - October 06

Figure C.1: Aliathon revenue growth 2001-2006

¢ Aliathon operates in the high value-added microelectronics sector, with that@b to
generate additional high quality jobs for Scotland and bring a significaattee stream

into the Scottish economy.

e Aliathon is thus an excellent fit with the targets, key markets and technologiesfidd
in Scottish Enterprise’s unified strategy for microelectronics and optoetectr for
2005-2009 [131].

¢ Aliathon now seeks engagement with Scottish Enterprise to evaluate waysstidate

and accelerate growth of the business. Principal areas for discussibdevelopment

162

An Outline Business Plan

include the development of an appropriately scaled marketing mix, consofidatio
existing strategic partnerships with Xilinx, Inc. and Altera Corp., and supmoongoing
research and development. Other areas of interest include the protetstrategic

intellectual property, management training and assistance with execupivenipents.

C.2 Company Overview

C.2.1 Introduction

Aliathon designs, develops, verifies and sells Intellectual Property dbR)tions for the
communications industry, targeting an advanced family of chip devices kramwfield
Programmable Gate Arrays (FPGAS). In this context, Intellectual Propsfeys to the design
blocks or cores which run inside these chips, comprising a global maskietaged to be
worth $1.27B in 2004 [132]. Such IP cores may be combined to provide letengilicon chip

solutions for a wide range of communications and networking applications.

Asia Pacific Japan
24% 21%
Europe
14%
Americas

41%

Figure C.2: Total global IP revenue, 2004%1.27 Billion

In general, electronic equipment typically comprises one or more printadtdd@ards (PCBS)
which host and interconnect a number of discrete integrated circuitgl@i§€igjned to perform
a specific function. Gordon Moores famous prediction from 1965 [Itemdly stated that
the transistor density (and thus processing power) of such integratedtciwould double

approximately every eighteen months.

The communications chip market today is predominantly addressed by hifgrrpance
FPGAs, Application Specific Integrated Circuit (ASIC) and Application e Standard
Products (ASSP) solutions, capable of integrating many functions (ingjudigh speed
wireline and wireless capabilities) on a single chip, thus replacing multiple letgdges and

reducing system cost.

163

An Outline Business Plan

Gartner Dataquest estimate this market to be worth some $30 billion, growingtbilfidn

over the next five years.

$(M) m Total ASSP

O Total ASIC

00 01 02 03 04 05 06 07 08 09 10

Year

Figure C.3: Market for communications chip solutions 2000-2010

Aliathon designs, combined with leading edge FPGA technologies will contindispitace the

incumbent solution providers and win market share in this timeframe for theviolioreasons:
e ASIC/ASSP development is very expensive, at up to $30 million for modevites [9].
Aliathon can reduce the overall system design cost to end users.

e FPGA designs can be implemented faster than ASICs/ASSPs. Aliathon caeduce
time to market for end users.

e FPGAs are completely reprogrammable. Evolving standards and custaméereents
can therefore be easily tracked. Aliathon can thus reduce the riskswopreguct

development for end uses.

C.2.2 Operational Summary

e Aliathonis a limited company SC216137, registered at 10 Craighouse PHue, Fife,
KY12 8TQ, Scotland.

Location of Principal Operations

¢ Aliathon will continue its current operations at Evans Business CentreaRier Court,
Dunfermline, Fife, KY11 8UU, Scotland.

164

An Outline Business Plan

Main Operational Activities
e Development Engineering: Including both work to expand our prodadfglio, and
design activities to extend or enhance existing products.

e Customer Support: Including technical post sales support (includecdiprtbe of the

core), maintenance and bug fixing.
e Sales and Technical Marketing: Including detailed technical and comrhdistaission
of new opportunities with FPGA partners and potential customers.
Current Staffing Complement
e Mr. Steve McDonald, Director
R&D Architecture and Implementation, Sales & Marketing, Finance, HR

e Mr. Jed Martens, Director

R&D Architecture and Implementation, Sales & Marketing, Finance, HR

e Mr. Ulises Hernandez, Senior Design Engineer

R&D Architecture and Implementation
e Mr. Declan Hegarty, EngD Research EnginBessearch and Development
e Mr. Peter Sinka, EngD Research EnginBeisearch and Development
e Mr. Gavin Fleming, Management Consultant

e Mr. Kevin Dineley, Software Consultant

Infrastructure Requirements

e Aliathon’s premises currently comprise two managed offices at the Evasmd3s
Centre, Dunfermline. Aliathon’s current offices offer adequate meeodation for two
additional employees and additional engineering equipment. Additionaé cffiace is

readily available within the building.

¢ Aliathon’s development work is carried out using high end simulation anthegis tools

to support system development. The majority of Aliathon’s business pamegnce is

165

An Outline Business Plan

transferred electronically, including the distribution of IP cores to custeméffice

facilities include telephone, fax and broadband internet connectivity.

C.2.3 Industry Overview

Technological advance and significant growth in the Internet, wireleslsntédogy and

broadband adoption are fuelling the communications industrys return tatgrow

New applications and technologies such as wireless internet access-oveicinternet
Protocol (VolP) telephony, virtual private networking and third gatien (3G) mobile
services are generating huge demand for bandwidth and improved guasigruice. As a
result, the traditionally disparate disciplines of voice and data communicatiert®averging
to deliver networks capable of providing what are becoming known asifite play services:

voice, video and data.

Equipment deployed in the Access, Enterprise, Metro and Core netégaisection C.5.2 for
more detail) to provide these services is thus becoming much more complexratapeeek
to accommodate high volume and a wide range of traffic types. Equipment actumairs thus

face increasing pressure to source Integrated Circuit solutions fkpertadesigners.

Aliathon is ideally positioned in the industry value chain as presented by Thomsd
Strickland [133] to deliver these solutions, with a growing portfolio of ssitated

communications products supporting both legacy and next generationrketguapment.

Software
Providers

Network Service
VFPdGA ALIATHON Equipment Provider
endors Manufacturers Networks
Supporting
Silicor/Optical
Technology

Figure C.4: Aliathon’s position in the communications/networking value chain

166

An Outline Business Plan

C.3 Products

C.3.1 The FPGA Advantage

Many Integrated Circuits (ICs) for communications applications are extrermefgplex
devices. Traditionally, the market has been dominated by Application Spéuiéigrated
Circuits (ASICs) and Application Specific Standard Products (ASSPs3IC4A are silicon
chips designed exclusively for one customer, usually encompassingga od functionality
focused on addressing the requirements of a particular standard tocqro ASSPs are
typically of similar complexity, but marketed as part of the chip vendors patfand usually

purchased by more than one end customer.

Lower Cost
Lower Power

11 Less Complex
v’

.
PC -

Line |:> <;:> e Higher Cost
E> IF el e Higher Power

e Very Complex

>
e
o

RAM RAM

U U
|:> Line |:> ASSP C:) ASSP <:> ASSP <:> pCl
IF SDH PDH Packet

PCI

Figure C.5: FPGA versus ASIC/ASSP in communications systems

ASICs and ASSPs are known fised functionalitydevices. They are hardwired internally and
their behaviour cannot be modified once they have been manufactures. ASIC and ASSP
vendors seek to accommodate the widest possible range of functions tb atiriae customer
base. Typically this results in a device with a wide range of functions of wiintj a subset
will be used by any given customer, and thus a device which is larger, pogrer hungry and

more expensive than it needs to be.

In contrast, FPGAs are completely reprogrammable devices, allowing eagynisation on
a user-by-user basis. Aliathon’s customers can therefore enjoy thediseof reduced cost,
power, and time to market afforded by our highly optimised solutions. A widgeaf FPGA
platform devices are available from the market leaders in the industryaAlterp., and Xilinx,

Inc. Aliathon has recently secured preferred partner status with batl suppliers, and our IP

167

An Outline Business Plan

is designed to run seamlessly on any of their FPGAs, giving our customédeaange of IC

platforms to choose from.

C.3.2 Product Portfolio

Aliathon’s current product portfolio and roadmap is shown below, wittctates and datacoms
IP shown as distinct product segments (some historical backgrounovigled in C.8.1). The
transmission speed applicable to each product is shown on the verticalvékishe product
timelines on the horizontal axis. Thus, the bottom left of each figure showsrlepeed
products available today , the top right showing the faster, emergentdledies still under
development. A complete product technical taxonomy is given in C.8.2.

STM-256
Framer

A
40G

10G

622M

STM-1/4
Framer I
STM-1/4
Mapper

2003 2004 2005 2006 2007

\ 4

Figure C.6: Aliathon portfolio and roadmap for telecoms IP

A
106 @ GFP
Framer
AAL5
SAR

POS
Framer \

2003 2004 2005 2006 2007

iz
®

622M

\ 4

Figure C.7: Aliathon portfolio and roadmap for datacoms IP

168

An Outline Business Plan

Customer
Core Agilent | Endace | Alcatel | CarrierCOM Lucent | Siemens| Sparta | Spirent | NetQuest
T1 Framer v \/ \l
T1 Deframer v V v x/
T2 Deframer \/
T3 Framer v 3
T3 Deframer v V \/
STM1/4 Framer \l V «/ V V
STM1/4Deframer \/ \/ V \ \/ J
Mapper v \/ R \
Demapper \/ \/ R v \
OTU-1 Framer x/ V
OTU-1 Deframer 3 v
POS Framer V
POS Deframer V \/ V
ATM Framer v
ATM Deframer v V 3
GFP Framer V
GFP Deframer V
HDLC Deframer N «/

Table C.1: Aliathon customer matrix

C.3.2.1 Current Customer Matrix

Aliathon boasts a customer base which has grown since the company kedjag to include
some of the worlds leading communications companies. Product sales toelateranarised
in Table C.1

C.3.2.2 Target Customers

Aliathon’s target customers are principally Network Equipment ManufacsuiNEMSs) or the
various complementary enterprises which go along with them, such as netwaitoring and
test equipment suppliers. These clients supply service providers withftastiacture and test

capabilities required to deploy their networks and services.

169

An Outline Business Plan

The “Tier 1” companies profiled in Aliathon’s recent market analysis [48re Alcatel, Cisco
Systems, Huawei Technologies, Siemens, Ericsson, Lucent Techemld¢prtel Networks,
Fujitsu, Nokia, Juniper Networks and Marconi. These companies dagmifisant influence in
the communications industry and typically steer the standards bodies updmtivimajority
of industry activity is based. However, they represent only a smaletatbéliathon’s potential

customer base.

As a complement to this high level industry analysis, Aliathon has developiaitiahtargeting
matrix of some 130 potential clients, from which the estimated revenue opjigrisirover
$21 million based on Aliathon cores already developed. Aliathon’s ongoimg preduct
development will increase both the breadth of this client base, and itsueyeential. The

complete target customer matrix is shown in Addendum IlL.

C.4 Competitive Environment

Aliathon faces competition for sales to Network Equipment ManufactureEsM$ on two
fronts; from ASIC and ASSP providers who supply their customers witbghated Circuit
products and whom we seek to displace and from peer providers débttmal Property who
enable their end customers to either design and manufacturer their owar [@sduce FPGA

solutions.

C.4.1 ASIC/ASSP Competitor Profiles

The ASIC and ASSP providers profiled here are well financed, hgaéisant communications
technology, have established sales and distribution channels and ergeyelationships with
the incumbent equipment manufacturers. Importantly, they depend on ttketsar which
Aliathon operates (or seeks to) for large percentages of their revandare thus given detailed
attention in Aliathon’s market analysis. A brief summary profile of each compdéditocluded

here.

The wireline market is dominated by Broadcom and Intel who generate nfubkiorevenue
from the consumer broadband and physical layer IC segments. Tégsests are subject to
rapid price erosion and commoditization risk, and operate on economiealefvgith which

Aliathon (and fundamentally the baseline cost of most FPGAS) canna@rtlyricompete.

170

An Outline Business Plan

Aliathon’s value proposition is strongest in the high end communications appiisa
where we can most easily differentiate. The incumbent suppliers heragame Systems,
Infineon Technologies, Vitesse Semiconductor, PMC-Sierra and AM@Ese competitors
together accounted for 17% of the wireline ASIC/ASSP market, worth $6Bia@ globally

in FY2004. By combining the latest FPGA technologies with our leading edge IP, and
leveraging the marketing and sales capabilities of our FPGA partners, Aligghextremely

well positioned to displace ASICs and ASSPs from next generation netgoipment.

Vitesse (2%)

Agere Systems (4%) AMCC (2%)

Broadcom (17%)

Intel (10%)
Infineon (6%)

PMC Sierra (3%)

Figure C.8: Wireline ASIC/ASSP Market, 2004%.5 Billion

Agere Systems

Agere design, develop, manufacture and sell integrated circuit solutortse high density
storage, mobile wireless, enterprise and telecommunications networks mamkietsal 2004,
they realigned their business into operating segments tailored to the marketschn thwy
operate. Ageres total revenues were $1,839M in FY2003, rising to 3¥,94 FY2004, a
4% increase year-on-year. Of that revenue, $635M came frongsto¥d69M from mobility,

$513M from Enterprise and Networking and $268M from telecommunications
Infineon Technologies

Infineon is the semiconductor spin-off from its parent company Siemedsyas established
as a public company based in Munich in April 1999. Infineons operatimns@anised into
the following business groups: Wireline Communications (COM), Secureil®&@wlutions
(SMS), Automotive and Industrial (Al) and Memory Products (MP).Hafins net revenues
were 6,152M in FY2003 rising to 7,195M in FY2004, when the company retlro
profitability for the first time since FY2000.

'Source: Altera Corp., Communications ASSP Market Share Figures.

171

An Outline Business Plan

Applied Micro Circuit Corporation (AMCC)

AMCC design, develop, market and support integrated circuits for themamications and
storage equipment markets. AMCCs revenues were $131M in FY2004 tesB2b4M as of
March 2005, of which 50.8% came from communications, 25.4% from emblepiaaucts
and 20.3% came from storage. Geographically, 48% of AMCCs revearmae from the U.S.,
19.8% came from Europe and Israel and 24% came from Asia Pacifis t8dlertel Networks

accounted from 11% of total revenues for FY2004.
PMC-Sierra

PMC-Sierra design, develop, market and support high-speedtmoddcommunications and
storage semiconductors and MIPS-based processors for sereiideasr enterprise, storage
and wireless networking equipment. PMC-Sierras revenues were $24BW¥2003 rising to
$297M in FY2004. They cite an inventory work off period in 2HO04 as tiggampacting
revenues during this period, though much less significantly than duringadeypt phases in
1999 and 2000.

Vitesse Semiconductor

Vitesse is a supplier of high performance ICs targeting manufacturers icothenunication
and storage industries. Vitesse products target the enterprise, metmandegments of
the network. Vitesses revenues were $156M in FY2003 rising to $218MYR064. The
company has been running at an operational loss since FY2000, anarientél significant

restructuring programmes in 2001, 2002 and 2003.

C.4.2 IP Provider Competition

In addition to the principal ASIC and ASSP silicon vendors profiled absliathon faces a
competitive threat from various providers of IP, targeting a rangevitde¢echnologies. These
competitors range from large, publicly listed companies like the FPGA vetidensselves, to

smaller specialist IP design houses.

Obtaining accurate information on the latter group of companies is difficult. Alathust
continue to monitor the progress and strategies of all these companies to rpasiath

effectively in the future.

172

An Outline Business Plan

AlteraandXilinx

Altera and Xilinx dominate the market for programmable logic devices, and $ignéicant
resource available for IP development. Both companies offer IP whictpetes directly with
Aliathon’s products. Aliathon has to date differentiated itself by offeringesior technical
performance, but may suffer pricing pressures in the future fronetkieadors given their

triplicate role of supplier, partner and competitor.
Modelware

Modelware provide a wide range of IP cores for both ASIC and FPGAelogies in
the telecommunications and networking markets. Their products currenthessddTM,
packet interfaces, Ethernet and HDLC and their current bias is tewaveer value, higher
volume generic interface IP. However, combined expertise in FPGA amincmications
means that they face lower barriers to entry into Aliathon’s high value matkats many

other competitors.
CG-CoreEl

CG-CoreEl are a programmable solutions and design services prowdelghartered in
Bangalore, India. They offer turnkey product development for BEGBGAs and ASICs. The
global success of companies based in India, Asia-Pacific and Chineab@amnally been built
around a low cost business model. Such companies are leveragingulbessses to increase
their innovative capacity. CG-CoreEl thus remain a direct competitive tthatthough their

current standard IP portfolio does not compete directly with Aliathon’s.
Innocor

Innocor is predominantly a provider of telecom and datacom manufacti@shgquipment, but

offer an expanding portfolio of IP solutions including GFP controllers ARl solutions.
Flextronics

Flextronics is a multinational design services company headquartered iapBieg with
revenues totaling $15.9B for year ending March 2005. They offerge hrange of system
design services including ASIC and FPGA services. Recent acquisitikayoassets from
Nortel Networks means they are well positioned to development competita@duglis in

telecommunications and networking.

173

An Outline Business Plan

Conexant Systems

Conexant Systems, Inc., design, develop and sell communications seogtamdystems
solutions including ICs, software and reference designs. Conerarahtly completed the
acquisition of Paxonet, and thus own a broad portfolio of IP which compitestly with

Aliathon’s. Conexants positioning of these products within its wider portfolimisyet clear.

C.4.3 SWOT Analysis

Aliathon’s position within its competitive environment may be summarised by an siaaly
the strengths, weaknesses, opportunities and threats [135] which dketraad competition

present.

C.4.3.1 Strengths

e Technical expertiseAliathon has a proven track record in delivering superior FPGA

designs to demanding timescales.

¢ Self-funding Aliathon has an established revenue stream which is independently gundin

our ongoing development work.
e A global customer baséncluding some of the worlds leading equipment manufacturers.
e An established portfolio of products

e An ability to demonstrate these products working in real hardwafdis is a key
differentiator for an IP company, allowing us to demonstrate conformanstatmards

and interoperability with third party equipment.
e Low marginal costs for sales of existing products

¢ Aliathon IP cores are technology independeAt! our products are designed to run on
any FPGA technology. This brings significant value to our customers,caha@hose an

optimal device from a broad catalogue.

174

An Outline Business Plan

C.4.3.2 Weaknesses

e Limited resourcesRelative to our larger competitors Aliathon has a small design team,

and limited access to cash for development work, sales and marketing agtivitie
o Relatively low profile within the industry

e Lack of ISO9000 certification, formal processd@shis may limit our credibility in the
eyes of larger enterprises. In general, Aliathon’s working prosesse not formalised
or thoroughly documented. IP source code is not always compreegnsommented,

particularly where projects are subject to time pressures.
e Marketing and sales activities and direct engagement with customers aredim

e Aliathon’s website needs to be updatetiVe need to improve the appearance and
functionality of our web presence, and integrate customer supporbitiipa, such as
bug tracking and dedicated customer pages. The quality of online docuioemtaeds

to be improved.

e Aliathon’s pricing strategy is ad-hocWe need to conduct further analyses to better
understand the value of our products to the end user, and formaliseicngstructures

to leverage maximum value.

C.4.3.3 Opportunities

e Displacing ASICs and ASSPs in communications equipméfith ASIC and ASSP
development costs approaching $30M at the 90nm process nodejimgm@ach devices

with FPGAs is an increasingly attractive proposition for NEMSs.

e Developing our partnerships with Xilinx and Alter&his offers huge potential for new
design wins, cooperative system design projects and building relatiengliip key

customers.

e Marketing This side of Aliathon’s business is currently underdeveloped. Raisiing o

profile and actively selling our products offers a major growth opportunity

e Exploiting new technologiedliathon’s small size can be an advantage, allowing us to
respond quickly to new market opportunities. Emerging technologiesrilyrc# interest
include ATCA, NG SONET/SDH, GFP, OTN and Ethernet/IP/MPLS.

175

An Outline Business Plan

e Migration towards converged networksExemplified by BTs progress towards the
21st Century Network. Aliathon holds significant expertise in design tompdex
communications systems. New technologies will offer ongoing opportunitiesecege

these skills in new markets.

C.4.3.4 Threats

e Partnerships with Xilinx and AlteraPartner programmes continue to generate significant
interest in Aliathon’s products. Addressing this interest is time consumirtydiverts

focus and effort.

e Legal threats from competitors and customefss an IP business, Aliathon faces the
possibility of legal challenge from our competitors in the event that our desidringe
existing patents. Customers may also seek indemnity in this case. Aliathon allsatoee

protect its own IP.
e Direct competitive threat from ASIC, ASSP and IP providers
e Technology migration away from legacy SONET/SDH

e Overload Closely tied in with our Xilinx and Altera partnerships, and our small design

team, is the risk of overloading our limited resources.

C.4.4 Aliathon and the Five Forces Framework

Although some aspects will overlap with those already identified in the pregesiWOT
analysis, it is nonetheless helpful to consider Aliathon’'s competitive positithin the
framework of another seminal strategic model that of Porters Five Fofc@ompetition [136].
In applying such a framework to Aliathon’s competitive position it is importantrtderstand

some of the models limitations.

Grant [137] has criticised the static nature of the model in assuming a stabkexterdally
influenced industry structure. This is certainly a limitation with respect to therehécs
industry, where competitive dynamics shape the industry. New entrants wj@rier
technologies can effectively create a market where none previouslie@xisGrant also
questions the validity of direct correlation between environment and frittiga Additionally,

we can extend Porters model to consider a sixth force - that of complem&7tsl38].

176

An Outline Business Plan

Threat of
Substitute
Products

Complements

Bargaining
Power of
Customers

Bargaining
Power of
Suppliers

Direct
Competition

Threat of New
Entrants

Figure C.9: Porter’s forces of competition

C.4.4.1 The Threat of New Entrants

The capital barriers to entry into Aliathon’s markets are relatively low; in hemyone
with adequate resources to support the design flow for FPGA IP cogid developing such
products. Similarly, economies of scale do not present a significam¢brentry for potential
new entrants since high end communications systems are shipped in relativebilone and

command high value.

The most significant barrier to entry is the level of technical expertisgimed|to design and
develop competitive silicon solutions. This expertise comprises both a detaiflealatanding
of legacy, current and emergent communications standards, and eiipedlesign capabilities.
Constant pressure to deliver smaller, faster and more efficient solutieas that only the
most capable design teams can compete. However, given the dynamic ofafueendustry
with frequent divestiture and acquisition of intellectual property and rtigee the competitive
threat from new entrants needs to be regularly evaluated, and Aliathmmigetitive analysis
kept up to date. Another significant barrier to entry for would-be compstitAliathon’s
partnership with both Xilinx and Altera, which secures a valuable distributimhraarketing

channel.

177

An Outline Business Plan

C.4.4.2 The Bargaining Power of Suppliers

For Aliathon’s core business, this competitive force is not really quantfiadbthe context
originally intended by Porter, since the development of IP cores is a primgauy to the design
of communications systems, and not dependent on any supply chain. YWhiigtand Altera

supply the FPGAs on which Aliathon IP will ultimately run, they are not princggipliers
to Aliathon, since it is our mutual end customers who purchase the devitiethoh may be
subject to influence by suppliers of Electronic Design Automation (EDA) tosésl to develop

its products. Overall however, the bargaining power of suppliers is low.

C.4.4.3 The Bargaining Power of Customers

Product differentiation is again of fundamental importance in mitigating theabdngy power
of our customers, and leveraging maximum value from our products. Ahatleoes must
continue to outperform competitive IP core offerings in terms of silicon ased,jpower, speed
and density. In competition with ASIC/ASSP providers, Aliathon cores mugiruge to offer

a clear cost advantage to the customer.

Aliathon faces pressure both from end-customers directly, and fromx<aimd Altera, who
may seek to incentivise strategic customers to purchase their FPGAs bygéeificially low

prices for IP solutions.

C.4.4.4 The Threat of Substitution

Replacing ASICs and ASSPs is a core part of Aliathon’s business geweltt strategy.
Substitution is therefore both a threat and an opportunity. On one handh@dianust seek
to leverage the support of our FPGA partners to promote these deviasahsubstitutes for
ASICs and ASSPs in communications systems; on the other, Aliathon must etttiproduce

highly competitive designs to prevent FPGAs being substituted by ASICS8PA in existing
designs. The former is the more significant challenge, as established &@BIBGSSP users
often need to be carefully educated and convinced of the merits of FP@GAdiegyy if they are

to switch.

178

An Outline Business Plan

C.4.4.5 Direct Competition

Aliathon’s overall competitive position is summarised in C.4.1 and C.4.2. Aliathort mus
continue to differentiate its products, providing superior quality, perfogaand cost benefit

to the end user.

C.4.4.6 Complements - A Sixth Force

Chip solutions for the communications industry comprise more than just the eodevére
design itself. The design needs physical hardware to run on. Thu$tBA roviders, Xilinx
and Altera are vital complements to Aliathon’s business. Aliathon IP adds sigmifvalue to
the FPGA providers, since they can present their target customershi@ndliathon’s) with
proposals for complete hardware solutions a much stronger value fifopdean merely

offering empty platform FPGAs.

Chip solutions require a register interface and driver layer software mageathe contents of
these registers. Application layer software and a user interface areeglisioed to make chips
usable. These represent key complements to Aliathon’s core productaotkecomplete the

solution the more valuable it is to the end customer.

An ongoing part of Aliathon’s strategy is to pursue synergistic partigssivith providers
of complementary products, such as software drivers. The partngngigpammes of Xilinx
and Altera represent an opportunity for collaboration with these compani@gheir other
partners on a project by project basis. However, the competition betthese vendors is
fierce, and they will seek to consolidate competitive advantage by extranamgnum value
from Aliathon as a partner company when pursuing opportunities. Thipleae significant

strain on our resources.

C.5 The Market Environment

C.5.1 PESTLE Analysis of the Macro-Environment
C.5.1.1 Political Influences on Aliathon

Aliathon’s opportunities and ability to compete locally and globally are subjectrtonaber

of political influences of varying scope. Fundamentally Aliathon operatésma climate of

179

An Outline Business Plan

relative political stability. However, geo-political instability in other regions magatively
impact levels of capex in the markets to which Aliathon currently sells its products
Additionally and in common with other enterprises, Aliathon’s operating marginréecity
impacted by taxation levels. Such generalised factors constitute the politirad faithin

which Aliathon must operate.

Whilst such factors are important, political decisions which filter directly into the
communications industry are potentially of greater interest. Many sectors ef th
communications industry are moving towards deregulation, presenting a cagnifhreat to
incumbent operators in the industry, and an opportunity for smaller eigtespto compete.
For example, Nippon Telegraph and Telephone (NTT), an incumbemaimgpen Japan, has
been forced to reduce tariffs due to increased competition following dextggn. Markets
based on emergent technologies such as Fibre-to-the-Home (FTTH¢tatie follow similar
deregulated models. Washington has additionally unveiled the Broadbarsi@er Choice
Act 2005 paving the way for sweeping deregulation of broadbandebapplications. This
will incentivise challenge to incumbent suppliers and ultimately help to broadieth&n’s

customer base.

Federal mandates and government or commission directives which demavidign of
key technologies are also of significant interest to Aliathon. The Fe@aimunications
Commission (FCC) has recently introduced the Enhanced 911 directitd)B&fich sets rules
for the provision of reliable emergency services by wireless provid€tss has stimulated
significant activity in mobile location technology development. In the internetadio, a recent
U.S. Department of Defense (DoD) mandate has stipulated that all Inform&tichnology
(IT) assets procured after 1st October 2003 should be Internébdetoversion 6 (IPv6)
capable. IPv6 is likely to provide the backbone for many of the converygd play services
required in next-generation-networks (NGNSs), but adoption sincedatdisation has been
slow. Mandates such as that issued by the DoD, which represents aigdds&0 billion per

annum market opportunity, are thus likely to stimulate technological develdpiirently.

North American resistance to wider adoption of IPv6 is in part borne ofatighat 70% of the
available IPv4 address sp&des been allocated there. Political influence on adoption of IPv6
infrastructure is thus likely to come from the European and Asia-Pacifitréseed he Japanese

government has already issued a number of high profile statements outlinaggnitsitment

2|Pv4 uses 32 bit addresses, most of which have been consunvédusdBs 128 bit addresses.

180

An Outline Business Plan

to IPv6. A formal mandate is likely to follow. British Telecoms 21st Century Nek(@1CN)

plans represent another significant commitment to the technology.

The Asia-Pacific region represents a significant growth opportunitghi@rcommunications
industry, with extremely large populations in countries such as India andaChéarved by
a comparatively poor established network infrastructure. Internatjoldical relationships
will play a key role in determining how these opportunities are realised. Chidalradia
have both been cited by the U.S. Trade Representative as upholdirig teerdle barriers to
telecommunications imports, with excessive regulatory requirements anid prafieection for
native equipment manufacturers. The U.S. strategy to enforce its riglpet aompetition in
these regions could ultimately include retaliatory trade sanctions, which maytislstbon’s

ability to build business relationships with enterprises in both North America giad A

C.5.1.2 Economic Influences on Aliathon

Aliathon is subject to a number of macro-economic forces which influenoegrinfluence in
the future the way in which the company operates. Aliathon sells its produaisritesnational
market place. Unfavourable exchange rates could therefore nelgatinpact margins and
demand reviewed pricing structure for Aliathon’s products. Variablemaftenflation may also

directly impact Aliathon’s operations.

C.5.1.3 Socio-Cultural Influences on Aliathon

Much of the increased demand for the services offered by next gmenetworks has been
generated by socio-cultural shifts in populations throughout the worldd Esers desire
increasingly sophisticated data-driven products and applications,randcaeasingly mobile.

Levels of disposable income across Asia are rapidly increasing, fuelimgdd for broadband

connectivity and mobile services.

Socio-Cultural influences can have a profound influence on the upfaiev applications. In
South Korea for example, whose citizens represent the highest aoateamof broadband users
in the world, uptake of television on demand based on Internet Prot&tbVjlhas been strong.
Yet in Singapore, uptake of similar services has been less emphatic; ptiptipcause societal
norms (and laws) are more strictly enforced. Thus gambling and othemadltitnedia, which

have been mainstays of consumer demand in many regions, are less pagelarCultural

181

An Outline Business Plan

influences and differing business practices are also likely to colourstismubetween Western
enterprises and emergent Asian players in NGN markets. This may affatiiégx directly in

future discussions with potential Asian clients, or indirectly through Aliath&fGA partners.

Security concerns have continued to resurface in the wake of terattéstks on and after
September 11th 2001. Such concerns will influence decisions and legistaticerned with
the deployment of new communications infrastructure. The extension oflélbbcation
Services (MLS) and wire-tap capabilities in converged networks are twaonmples of

technologies with security implications, and both are areas of intense actidtgiscussion.

C.5.1.4 Technological Influences on Aliathon

Technological factors are not merely part of the macro-environmentichmliathon operates;
rather they represent the foundation of Aliathon’s business, and thée simost influential
external variable in determining the success of current and futuratigres. As such, they are
dealt with in detail in the latter sections of this report. The general technallogiwironment
in which Aliathon operates is best illustrated by elaborating on the points irteodin the

executive summary.

Increase in the volume and complexity of network traffic has led to the danelopof new
technologies for more efficient networks. A key driver for networkmgpors is the reduction in
capital and operational expenditure, both the subject of increaspdrate focus since the
industry downturn of 2001. Such emergent technologies offer highedwidth capacity,
greater efficiency and easier maintenance. The complexity of silicon sdutsmuired by

OEMs is increasing in response to these demands.

The Synchronous Optical Network (SONET) in North America and Japdihe Synchronous
Digital Hierarchy in the rest of the world have become the established stnfta optical

networking. Whilst these standards continue to generate revenue ateddl ile the industry,
their technological bases are traditional voice telephony. Incrementakises in voice traffic
through the network in recent years have been outshone by an ew@briecrease in data
traffic. Hence the emergence of the term “converged networks” whitdhodies the myriad of
technological advances designed to unify the transmission of voice, aittdata over next

generation network infrastructure.

This infrastructure is evolving from the traditional Public Switched Telephdetwork (PSTN)

182

An Outline Business Plan

“circuit switched” model to a “packet switched” system, based on Inté?ratocof(IP). IP has
revolutionised data networking, but itis not optimised for transfer of dedagitive signals such
as video and voice. Techniques such as Multi-Protocol-Label-SwitcM.§) and DiffServ
have emerged to improve matters, providing Quality-of-Service (QoShgtems for packet

based networks.

C.5.1.5 Legal Influences on Aliathon

The semiconductor industry is intensely competitive, and competitors within thestiryd
are frequently engaged in litigation to protect intellectual property rightsceSintellectual
property constitutes Aliathon’s core product portfolio, legal aspeats@ming protection of

this portfolio are of key significance.

In addition to protecting its own intellectual property, Aliathon may need to enter in
legal agreements with potential clients to indemnify the latter in the event that Aliatho
inadvertently infringes an existing patent; necessitating withdrawal of thetglproduct. The
risks associated with such infringement are mitigated by the knowledge thatBRGAS are

inherently reprogrammable, reengineering of infringing designs is likelg todssible.

Additionally, potential clients may seek legal agreements to secure acceBsctords and
FPGA-based systems provided by Aliathon in the event that the compamg adtsinistration.
Again the nature of programmable technology mitigates the likely impact suchnargce
would have on Aliathon’s clients. Trade restrictions and industry regulatiayalso influence

Aliathon’s ability to operate successfully in certain markets.

C.5.2 Market Segmentation by Network Space

Aliathon operates within the communications industry, which is of vast scope.cdmpany
is not generally involved in the design or manufacture of high volume consproducts or
customer premises equipment (CPE) which are largely commoditized marketaitbreies

of huge scale.

Our target applications are high value, high complexity and principally dedlag part of the

network infrastructure. In this context our markets may be broadly segah¢h39] into the

3As distinguished from Intellectual Property

183

An Outline Business Plan

Core, Edge, Metro, Enterprisand Accessspaces. As shown in Figure C.10 Aliathon IP is

enabling leading edge capabilities across all of these network spaces.

The core network is the ultra high speed (typically 10Gbps or greater) optical fiac&libne
carrying the aggregated traffic from all service types around andeeetwities, and long haul
between continents. The core network is characterised by high spddarge traffic volume,

with limited intelligent functionality.

The edge is literally the edge of the core network, comprising much of the networks
intelligence in terms of traffic monitoring, policing service level agreementgreagting

different protocols, provisioning security and ensuring end-to-eradity of service.

The metropolitanarea of the network, ametrq is a fibre optic infrastructure which provides
high speed communications (typically 2.5Gbps or greater) over a city centtber regional
area. Themetrois self managing within its own geographical area and provides the bridge

between theccessnfrastructure and theore

Theenterprisearea of the network includes equipment deployed primarily in businessestto
communications and other local area network applications. Such equiprokmtan switches

and routers of inter-office and intra-office communications.

Theaccessietwork encompasses the network interface to the end users, and tbgadigpm of
end user traffic onto theetroinfrastructure. Physical access nodes can be wired (optical fibre,

twisted pair copper or HF or wireless (wi-fi or WIMAX).

C.5.3 Market Segmentation by Technology

It is also possible to segment key markets in the communications industry acréodthe
technologies or protocols deployed in the network. Aliathon have soarwdnalysed detailed
information on this basis from Infonetics Research, a leading marketrasirm specialising

in networking and telecommunications.

The markets reviewed represent both those which are reinforcingueesidy and volume of
traffic through the network, without necessarily being markets within whichtiddia would
directly compete; and those which represent direct opportunities foraing@amy. The latter

were given more detailed consideration. The key points of interest ammatised here.

“Hybrid Fibre Coax

184

An Outline Business Plan

o
ﬂmllllh
GEEEES) ATM Framer
m AAL 512 SAR

p
;MTH(ON

Wireless
Backhaul -
Ao
STM1/4/16 Framer
STM1/4/16 Deframer
STM1/4/16 Mapper
STM 1/4/16 Demapper
ATM/AAL2/5
POS
HDLG

GEsasw [0S
CEm=sw | P
2 5 WC/IP Classify
Multi-Service s 14118064
Edge oTU 1/2/3

WDM Metropolitan
Area Network

é‘lﬂmo\

STM 16/64 Frm/Deframer
OTU 112 Frm/Deframer

OTU 1/2FEC

Enterprise
Local and
Wide Area —|
Networks
A v

E1-E3 Framer
E1-E3 Deframer
T1-T3 Framer
T1-T3 Deframer

DWDM Core
Network

,!_4-—, STM1/4 Framer
MNiivox STM1/4 Deframer
ST™M mé?f:fnag framerf STM1/4 Mapper
QTU 1/2/3 Framer/Deframer ST Domagper
OTU 1/2/3 FEC

Figure C.10: Aliathon cores across the network span

C.5.4 Telecom/Datacom Market Fundamental Drivers

Market research indicates that the communications industry remains gpastunity for both
the incumbent and small to medium enterprise (SME) players like Aliathon. @883he last
year of major cutbacks in capital expenditure, notably in the optical trahspstems market
where Aliathon holds significant expertise. This segment alone is poisediverdl3% growth

over the next three years [140], with revenues reaching $19.4 billio808.2

20,000+

15,000
$(M) 10,000+

5,000

0.
03 04 05 06 07 08

Year

Figure C.11: Optical Transport Systems Growth

185

An Outline Business Plan

C.5.5 Market Analysis Highlights and Conclusions

e Fundamentally, broadband penetration is fuelling unprecedented demand f
communications bandwidth. The development of next generation serpiadgularly
video, will drive this trend further after initial broadband growth platedtss provides
a sound economic underpinning for communications markets, and Aliathons ¢

business.

e In broad terms, the industry is moving slowly away from legacy Time domain
Multiplexed (TDM) services to packet based networking and is currentlyain
hybrid/transition mode, where Multi-Service Provisioning Platforms (MSP&®)
prevalent. MSPPs can offer ATM, IP, Frame-Relay, PWE3 and Ethéanmix and
match of legacy and emerging technologies) on the same chip. Aliathon iviterstry

leading solutions to support this model.

e A number of technology segments, summarised in Table C.2, offer signifjcanth
opportunities through the forecast period ending 2008. Detailed equipaigories are
given in [134]. Of particular note is strong growth in Ethernet equipmadtservices,

and FTTx access technologies.

e SONET/SDH revenues are projected flat in both the metro and long-hgoiesgs,
but the total market size for this equipment remains extremely high. Aliathors hold

significant expertise in these key technology segments.

e Ethernet is becoming a dominant transport standard, and given répmse benefits
of up to 70% at the OC-192 (10Gbps) technology node, looks set to déspdgacy
SONET/SDH equipment gradually over the forecast period [141]. Ther&ions,
Administration, Maintenance and Provisioning (OAMP) aspects of Ethasatcarrier
technology are the subject of much current industry debate. Aliathqatis® Transport
Network solutions are potentially a key enabling technology for Carrierr&éte Our

blue-chip customers agree.

e Other emerging technologies look set to drive and/or exploit the technohigpation
to a unified IP/MPLS network. These include IMS, GPON and PWE3. Ther latte
technologies will be investigated as part of Aliathon’s ongoing commitment to new
product development, and its research partnerships with the Institutey$ters Level

Integration.

186

An Outline Business Plan

5 Yr Running Rev 2003-2008

Equipment Category (Millions) 5YrCAGR
ADSL IADs $1,687 34%
G.SHDSL Modems/Routers $433 20%
IP-Based DSLAMs $6,895 30%
NG Broadband Loop Carriers $4,999 89%
Secure Enterprise Routers $1,503 32%
IP PBX Systems $6,858 31%
Ethernet 1M-100M $39,440 30%
Ethernet above 100M $29,300 55%
FTTB $5,737 158%
FTTH $62 132%
RPR over Fibre $1,436 63%
Metro SONET/SDH $26,462 0%
Metro WDM $10,249 22%
Long Haul SONET/SDH $5,419 2%
Long Haul WDM $12,570 3%

Table C.2: Market size and forecasts in key technology segments

C.5.6 Aliathon’s Marketing Activities

As identified in C.4.3.2, Aliathon’s limited marketing activity is a key area for dgualent
within the company. The companys success to date has been based singa&ignificant
efforts on the development of technically superior IP. As a result, ncimteal aspects of the
business remain underdeveloped. Competitive analysis suggests tliag lasiC and ASSP
developers typically recycle 10-20% of annual revenues into salesnakketing activities.

Aliathon needs to begin to scale its non-technical efforts in this direction.

The main objective is to grow Aliathon’s business, by considering an apptely scaled
marketing mix [142]. Partnership with Xilinx and Altera gives Aliathon a unigppartunity
as a small company to leverage market information and form close relatignsitip large
customers. This will need to be cemented by our independent marketimtseffdiich will
allow us to target groups of smaller customers who may not be of strategiesnterXilinx

and Altera, but who nonetheless represent a significant opportuniffitghon.

C.5.6.1 Product

Fundamentally, Aliathon needs to continue to differentiate its IP based on #ligycpf our

engineering. However, these efforts need to be complemented by exceittamer support,

187

An Outline Business Plan

Receiver Core Price Transmitter Core Price
STM-4 demapper $ 20,000.00 STM-4 mapper $20,000.00
STM-4 deframer $ 15,000.00 STM-4 framer $ 15,000.00
E4 $ 10,000.00 E4 $10,000.00
E3/T3 $10,000.00 E3/T3 $10,000.00
E2/T2 $10,000.00 E2/T2 $ 10,000.00
E1/T1 $ 15,000.00 E1/T1 $ 15,000.00
PLCP (MC) Deframer $10,000.00 PLCP (MC) Framer $ 10,000.00
Byte-wide ATM (SC) Deframer $ 7,000.00 Byte-wide ATM (SC) Framer $ 7,000.00

Byte-wide ATM (MC) Deframer $ 15,000.00 Byte-wide ATM (MC) Framer $ 15,000.00
POS/PPP (SC) Deframer $7,000.00 POS/PPP (SC) Framer $7,000.00

Bit_HDLC (MC) Deframer $ 7,000.00 Bit_HDLC (MC) Framer $7,000.00

STM-16 Deframer $20,000.00 STM-16 Framer $20,000.00
STM-16 POS Deframer $ 10,000.00 STM-16 POS Framer $10,000.00
STM-64 Deframer $ 30,000.00 STM-64 Framer $ 30,000.00
OTU-1 Deframer $ 20,000.00 OTU-1 Framer $20,000.00
OTU-1 FEC Decoder $ 40,000.00 OTU-1 FEC Encoder $ 10,000.00
OTU-2 Deframer $ 30,000.00 OTU-2 Framer $ 30,000.00
OTU-2 FEC Decoder $70,000.00 OTU-2 FEC Encoder $20,000.00
OTU-3 Deframer $ 50,000.00 OTU-3 Framer $ 50,000.00
OTU-3 FEC Decoder $ 130,000.00 OTU-3 FEC Encoder $40,000.00

Table C.3: Aliathon IP core pricing 2005

and quality documentation for our cores, both of which are essentiallyoptre end product
we ship to the customer. Aliathon also needs to build on relationships with newrrstand

our FPGA partners to better align our future product roadmap with custoesels.

C.5.6.2 Price

Aliathon’s pricing strategy has not yet been formalised, but is essent@lytiased, with core
prices (shown in Table C.3) based on development outlay plus profit nparldantifying the
most appropriate price and business model for our IP sales is partoofgming review within
Aliathon. Our current sales are based on a one-off license fee pawattmming the customer

(within an agreed scope) unlimited use of the product.

This model may limit Aliathon’s ability to leverage the true value of its products from
customers, since there is no incremental benefit to us if the end customepus@roduct in

high volume.

A key alternative iscost-per-usanodel, which allows Aliathon to benefit from volume sales,
just as the ASIC and ASSP vendors do. Such a model is difficult to policegrt FPGASs do

not offer adequate protection against unlicensed reuse of IP designs

188

An Outline Business Plan

C.5.6.3 Placement and Distribution

Aliathon is not reliant on placement or distribution of our product, since tbduzct is easily

released electronically directly to the end customer.

C.5.6.4 Promotion

Increased emphasis on promotion needs to become an integral part ofoAkatingoing
marketing strategy. Positioning the benefits of our IP running on FPGAS$ &strivial task, and
requires the education and motivation of both end customers, and the sippiangineers at
Xilinx and Altera. Technical presentations and training seminars regrasgood forum for
this. Aliathon could easily broaden its target audience for such presergatidiathon could
also leverage current design wins as a springboard to making presestatioour product

family direct to end customers

Aliathon’s profile within the electronics industry as a whole is low. With adeqregeurces,
Aliathon could raise this profile through key industry media, such as LightiRg, Lightwave
or Electronics Weekly to increase awareness both of the Aliathon bradafahe technology
advantages we offer. This needs to be preceded by a review ofana bnage, and an overhaul

of our web presence and documentation.

Product demonstration is another cornerstone of Aliathon’s promotidretkgy. IP cores
running on real hardware platforms are a much more powerful sellingthaol simulation
models or documented timing performance. Such hardware platforms caadily connected
to established industry test equipment, and the performance of Aliathamkiqgts can be
shown to meet industry standards. This dramatically boosts customer cadinheAliathon’s

technical capabilities.

C.6 Strategic Plan

C.6.1 Overview

Based on the preceding analyses and the emerging growth trend in Aleth@mess outlined
in financial information which follows, the company has identified some keytpoiistrategy

required to build on its successes to date. These are outlined below.

189

An Outline Business Plan

C.6.2 Migration to IP Sales

Aliathon has successfully built a portfolio of valuable intellectual propeitges it began
trading. Initially, the income required for this portfolio development came fdesign services
contracts with a small component from IP sales. As the portfolio has matilmedP sales
component in the revenue stream has steadily increased, such thatlhal®ment business

is now profitable and self-funding.

Consolidation and growth of Aliathon’s IP sales business is thus a keygtrgieal over the
next two years. This will take precedence over design services adjvitithough the latter
may continue to offer opportunities for growth and will not be discountedpietely. The

points which follow have been identified as essential steps towards redhgrgpal.

C.6.3 Increase Direct Marketing Activity

To date Aliathon has taken a reactive role in pursuing opportunities foalds swithout a
dedicated sales force or coordinated marketing strategy. There is timificaigt opportunity
accelerate Aliathon’s growth by actively marketing and selling our prodastsliscussed in
section C.5.6. Aliathon will also seek to leverage the support of Scottish (Eiserin this

context.

C.6.4 Consolidate Partnerships with Xilinx and Altera

Aliathon’s FPGA partners are of key importance. They provide leadglatails for potential
IP sales opportunities, and employ large sales forces which can worliatha@kx’'s behalf.
Ongoing discussion with both key vendors will seek to identify ways in whidiation
can realize the value of these partnerships, whether through bettezresarof Aliathon’s
capabilities amongst Xilinx and Altera sales engineers, or access to pedilemrketing

information.

C.6.5 Develop Standard Products

Aliathon has the potential to greatly reduce its incremental cost of salewblogeng a suite of
standard products, which require minimum additional engineering etiogdles to multiple

customers. This approach requires development of standard regstearsl core wrappers,

190

An Outline Business Plan

which make Aliathon’s products easier to reuse. Such standardisati@ases the up-front
development costs of Aliathon’s cores, but improves profitability in the long.téAliathon
has already begun this standardisation process and will continue to tetéggainto the core
development process.

C.7 Financials

C.7.1 Overview

Aliathon is independently funded and privately owned, and despite thalglolvnturn in the
communications industry in 2001, has delivered year on year revermwdigand sustained
profitability. As the industry returns to health worldwide, Aliathon is well positibrie
accelerate its growth, and seeks the assistance of Scottish Enterprisi!tthis potential.
Aliathon emerged as an expert design services company in 2001 angceassfully migrated

this business to become a leading supplier of high value communications BfopFPGAS.

40000
37500 F«—
35000 N =
32500 jv
30000
27500
/ ———— Core Sales
25000
22500 /V
20000
17500
A/ \ A

15000 I N \ /\ ~——

A
12500 / \4 v N ,\
10000 ‘_\
7500

5000 ~/ ‘ \ &
250; | I v‘.—ﬁ_" ‘ | \

Design Services

Average Monthly Revenue (£)

October 01 — October 06

Figure C.12: Aliathon revenue trends: IP core sales vs design services

Ongoing contact with customers and internal estimates on the size of the dotearkat for
Aliathon’s solutions suggest that there is significant scope to consoliddt@ecelerate the
growth trend shown in Figure C.12.

191

An Outline Business Plan

C.7.2 Revenue Projection

Based on IP core sales to date, likely future sales from current negofiadiod the overall
revenue opportunity identified some 12M based on an initial targeting matri@®patential
customers itis possible to project Aliathon’s average monthly revenuasyinto March 2008,

based on the companies current business model.

Historical data is limited, so projected figures used in cash flow and incomenstai® are
based on averaged points between a more aggressive polynomiak lbest & linear best fit
line (based only on core sales since joining the Altera and Xilinx partnergnomes projects)

which predicts more modest growth.

Nonetheless, Aliathon’s market research indicates that even the moressigg revenue
projections are achievable based on current resources, for a nwhieasons. Firstly,
Aliathon’s partnerships with Xilinx and Altera are still in their infancy. Aliathamacontinue

to leverage high quality support from these vendors to grow revenues.

Additionally, Aliathon’s current business is based on minimal sales and thagkactivities.
Development of the latter represents a significant opportunity for revgmwth. Aliathon’s
incremental cost of sales is decreasing with our increased focus odastaproducts.
Additionally, Aliathon need only convert 6% of the total opportunities identifie@.3.2.2, to

outperform the per-annum revenue projection for 2008.

Furthermore, continuing product development will increase Aliathon's| totarket
opportunity. Aliathon’s current market size estimates are based on taygetstomers with
our existing product portfolio, which is strongest in the time division multipleKEDM)

domain.

Aliathon’s market research indicates that the industry is shifting towardkepdased
technologies such as IP/MPLS with Ethernet as the carrier standard. oNisitxpertise will
allow us to develop leading edge products targeting these emergent tegibapleesearch
work on packet classification for high speed internet routing engingsiheady commenced.
With these additional capabilities in our portfolio, Aliathon can actively targeew set of
potential customers who are offering network processing, IP/MPLS Qeudier Ethernet

equipment.

192

An Outline Business Plan

Month Optimistic Projection (£) Pessimistic Projection (£) Mean (£)
Apr-06 45935 39267 42601
Jul-06 55057 43045 49051
Oct-06 64835 46823 55829
Jan-07 75135 50601 62868
Apr-07 85802 54379 70091
Jul-07 96653 58158 77405
Oct-07 107484 61936 84710
Jan-08 118066 65714 91890

Table C.4: Aliathon’s projected revenues by selected quarter

C.8 Supporting Information

C.8.1 Background to the Aliathon Portfolio

Aliathon’s products are used in a wide variety of communications and neitvgpalpplications.
Historically, these communications networks have been based on voicedejephannels,
running at 64Kbits/second, each capable of faithfully transmitting the infiemaequired to
hold a single telephone conversation. These channels could then Eedrou“‘multiplexed”
together to form higher bandwidth connections between network elemeritis, each

connection supporting multiple calls.

In the early days, different networks based on this multiplexing idea rapptoximately
equal speeds, in what became known as the Plesiochronous DigitaidHie&@DH). As the
number of users and the complexity of PDH networks grew, the shortfallBraitations of the
technology became apparent. In particular, it became increasingly Hifiicd expensive to
extract individual calls from the higher bandwidth connections. A lack@afdardisation made
interoperation of equipment between different manufacturers a hit arsdafiigsr, and network

management functions were limited.

Enter the Synchronous Digital Hierarchy (SDH) and the Synchronousc&@pNetwork
(SONET). These standards facilitated interoperation of network equipateoss the globe,
and provided the management functions required for very reliable comatiamcbetween
increasingly complex network elements. These elements are now typicalleaednby

optical fibre at speeds up to 40Gbps; thats 625,000 phone calls dowgiefdime connection.

193

An Outline Business Plan

This migration to high speed fibre connectivity has been consolidated rfuntie the
introduction of the new Optical Transport Network (OTN) standard MM&G.709. This
technology is optimised for the management of optical channels, and thectonr of
transmission errors. Such standards will provide the backbone infcaste for ongoing
bandwidth and revenue growth in the communications industry. Aliathon&uets in Todays

Networks

As networks grow in size and complexity, the ways in which lower speedeatiams are
combined to form higher capacity links become commensurately more complexwftber of
possible combinations and permutations is enormous. Aliathon IP is desigrnadetad these
possibilities; supporting legacy PDH rates, SONET/SDH and the emergingstaridards, all

of which co-exist in todays networks.

In parallel with this high level growth trend towards greater bandwidth is ausiny
movement towards convergence. Demand for traditional voice telephasyirtreased
incrementally in recent years, but demand for data services has edplofeus, network
equipment manufacturers (NEMs) have sought ways to improve the dadacapabilities
of their existing telecoms networks. This has led to the so-called Next GeEme@ONET

(NG-SONET) services , which are already being enabled by Aliathon IP.

This convergence model looks set to continue apace, with the ultimate gealoef, video
and data delivery over a single, unified network the Internet. Aliathowduymt portfolio and
roadmap will track these trends closely, and enable our customers to rgpitityate revenue

from the latest available technologies.

C.8.2 IP Taxonomy

C.8.2.1 Telecoms, Functional Blocks

e Mappers: Perform the mapping of lower rate signals into higher capacity links; for
example mapping PDH signals into the SONET/SDH domain. This involves careful

control of network timing and management overhead.

e Framers: Format data according to a standardised frame structure to ensurdereliab

interoperability of equipment.

e FEC: Forward Error Correction. A technique for encoding and decodimg dising

194

An Outline Business Plan

standardised schemes to improve the reliability of communications over optieal fib

e VCAT : Virtual Concatenation. A technique for improving the improving the effiggenc
of bandwidth utilisation in SONET/SDH systems, for payload data which doefitno

conveniently into traditional data containers.

C.8.2.2 Transmission Rates
e E1: Standard European E-Carrier transmission rate of 2.048Mbps.
e E3: Standard European E-Carrier transmission rate of 34.368Mbps.
e T1: Standard North American T-Carrier transmission rate of 1.544Mbps.
e T3: Standard North American T-Carrier transmission rate of 44.736Mbps.
e STM-1: Standard SDH3 transmission rate of 155.52Mbps.
e STM-4: Standard SDH transmission rate of 622.08Mbps.
e STM-16: Standard SDH transmission rate of 2.488Gbps.
e STM-64: Standard SDH transmission rate of 9.953Gbps.

e STM-256: Standard SDH transmission rate of 39.813Gbps.

C.8.2.3 Datacoms, Network Protocols

e ATM : Asynchronous Transfer Mode. A high speed network protocol witirtspacket

length to reduce transit delays; optimised for real time voice and video traffic

e AALS5/2: ATM Adaptation Layers. Protocols for adapting multi-cell higher layer data
units into ATM.

e POS Packet over SONET. A technique for mapping packetised traffic sad ar
Ethernet into the time multiplexed SONET domain.

e HDLC: High Level Data Link Control. An ISO communications protocol used in pack

switched networks.

195

An Outline Business Plan

e GFP: Generic Framing Procedure. A technique for mapping packetised tirafii¢he

time multiplexed domain.

e VC/IP Classification: Technigues for identifying specific packet types in the IPIMPLS4

network for higher speed, lower power routing.

C.8.3 Target Customers

A summary of Aliathon's potential clients, based on an a review of activity ig ke

communications market segments is shown in Figures C.13 and C.14.

196

An Outline Business Plan

Networking Enterprise MidLow Range
Access- Transmission Access Media Gateway
Access- Transmission Access DSLAM
Access- Transmission Access FTTx -PON
Access- Transmission Access PBX 1P -PBX
Access- Transmission Access CMTS
Networking Enterprise L2-L3 Switches
Access- Transmission Access CMTS

Access- Transmission Transmission DWDM (LH)
Access- Transmission Access DSLAM
Access- Transmission Access Media Gateway
Networking Enterprise L4-7 Switches
Networking Public Network Core Routers
Access- Transmission Access Media Gateway
Access- Transmission Access DSLAM
Access- Transmission Access Media Gateway
Networking Enterprise L4-7 Switches
Networking Enterprise L2-L3 Switches
Networking Enterprise High-End Routers
Networking Enterprise L2-L3 Switches
Networking Enterprise L4-7 Switches

Access- Transmission Access FTTx -PON
Networking Enterprise L2-L3 Switches
Networking Public Network Edge Router
Networking Enterprise L2-L3 Switches
Access- Transmission Access FTTx -PON
Access- Transmission Transmission DWDM (Metro)
Networking Enterprise L4-7 Switches
Networking Enterprise L4-7 Switches

Access- Transmission Access FTTx -PON
Access- Transmission Access PBX 4P -PBX
Access- Transmission Access FTTx -PON
Access- Transmission Transmission CO Switch
Networking Enterprise L2-L3 Switches
Networking Enterprise L4-7 Switches
Networking Enterprise L4-7 Switches

Access- Transmission Access Media Gateway
Access- Transmission Access DLC

Access- Transmission Access FTTx -PON
Networking Enterprise L4-7 Switches
Networking Public Network Edge Router
Access- Transmission Access Media Gateway
Networking Enterprise L2-L3 Switches
Networking Enterprise L4-7 Switches

Access- Transmission Access PBX 1P -PBX
Access- Transmission Access PBX 1P -PBX
Networking Enterprise L4-7 Switches

Access- Transmission Access FTTx -PON
Networking Enterprise L4-7 Switches
Networking Enterprise L4-7 Switches
Networking Enterprise High-End Routers
Access- Transmission Access Media Gateway
Access- Transmission Access PBX 4P -PBX
Access- Transmission Access DSLAM
Access- Transmission Access FTTx -PON
Access- Transmission Access DSLAM
Access- Transmission Transmission PDH Line Card
Access- Transmission Access FTTx -PON
Access- Transmission Access FTTx -PON
Access- Transmission Access PBX HP-PBX

3Com 5000

Aastra CVX 600, CVX 1800

AFC Telliant

Alloptic GigaForce edgeGEAR2000
Altigen Altiserv

Arris C3, C4, 1500,Cornerstone (1000, 1500)
Avaya P33x, P130, C460

BigBand Cuda 12000

Calient DiamondWave

C-COM SmartDSLAM

Cedar Point SAFARIC3

Celestix FVxxx

Chiaro Enstara

Cirpack Cirpack TN

Copper Mountain CopperEdge VantEdge
CopperCom CSX1100-2100, CopperController
CyberGuardLX

D-Link DSS, DES, DGS

Enterasys 8000, 8600

Extreme Summit 24e2, BlackDiamond 6800
F5 BiglP 5000, BiglP 2000, BiglP 1000
FlexLight Optimate 1000LT, 2500LT
Force10 E-Series

Foundry Netlron (400, 800, 1500)

HP ProCurve

iamba XL100B, XL200B

Internet Photonics LightStack, LightHandler
Intrusion SecureNet 7000, 5000, 2000, 2600, 4000
iPolicy ipEnforcer

LGE StarDLC-6400

Mitel 3x00 ICP

Motorola QC3000, QB5000

NetCentrex CCS

NetGear GS Series GSM712

NFR Security NID

Niksun NetDetector

Nuera Nuera BTX-8-21, GX-8-21

Occam BLC 1100, 1200, 1240, 6000
Optical Solutions FiberPath 400

Radware WSD, CID, CSD, LinkProof, FireProof
Riverstone RS 8000, RS 8600,RS 38000
sentitO IVG Intelligent Voice Gateway

SMC TigerSwitch

Sourcefire Network Sensor

Sphere Spherical Manager

Swyx SwyxServer

Symantec ManHunt, ManTrap

Terawave TW-300, TW-400 ONT
TippingPointUnityOne 2000, 600
TopLayer Attack Mitigator IPS

Vanguard 7300

Veraz I-Gate 40004000 PRO

Vertical Networks InstantOffice

WailLAN DeltaFire500

Wave?7 Last Mile Core

ZyXel IES-1000-2000-3000, AES-1000
Brooktrout TR1000, TR2000

Nayna ExpressSTREAM

TelStrat Inteleflex BLC

Zultys MX1200, MX250

Figure C.13: Target Customer Matrix - |

An Outline Business Plan

Access- Transmission Access Media Gateway
Access- Transmission Access DSLAM

Access- Transmission Test Test Equipment
Access- Transmission Access Media Gateway
Access- Transmission Transmission SONET-SDH
Access- Transmission Access DSLAM

Access- Transmission Access DSLAM

Networking Enterprise High-End Routers

Access- Transmission Access DSLAM

Networking Public Network Edge Router

Access- Transmission Transmission Protocol Conv
Access- Transmission Transmission CO Switch
Access- Transmission Access DLC

Networking Public Network Wireless Analyser
Access- Transmission Transmission Monitoring
Access- Transmission Access Media Gateway
Access- Transmission Access DSLAM

Access- Transmission Access Media Gateway
Access- Transmission Access Media Gateway
Access- Transmission Transmission DXC

Access- Transmission Access DSLAM

Access- Transmission Test Test Equipment
Access- Transmission Transmission SONET-SDH
Access- Transmission Access FTTxPON

Access- Transmission Transmission SONET-SDH
Access- Transmission Access FTTxPON

Access- Transmission Access FTTxPON

Access- Transmission Transmission DWDM(Metro)
Networking Public Network Edge Router
Networking Public Network Edge Router

Access- Transmission Transmission Optical Switch
Networking Enterprise High-End Routers

Access- Transmission Transmission DWDM(Metro)

Access- Transmission Transmission MS WAN Switch

Networking Public Network Core Routers
Access- Transmission Transmission DWDM(LH)
Access- Transmission Transmission SONET-SDH
Access- Transmission Access DSLAM

Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission DWDM DXC
Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission SONET-SDH
Networking Public Network Monitoring

Access- Transmission Transmission SONET-SDH
Access- Transmission Access DLC

Access- Transmission Transmission DWDM(Metro)
Access- Transmission Transmission DWDM(Metro)
Access- Transmission Transmission SONET-SDH
Access- Transmission Test Test Equipment
Access- Transmission Transmission SONET-SDH
Access- Transmission Test Test Equipment
Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission SONET-SDH
Access- Transmission Test Test Equipment
Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission SONET-SDH
Access- Transmission Access DSLAM

Access- Transmission Access FTTxPON
Access- Transmission Transmission SONET-SDH
Networking Public Network Edge Router

Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission SONET-SDH
Access- Transmission Access DSLAM

Access- Transmission Transmission SONET-SDH
Access- Transmission Transmission SONET-SDH
Access- Transmission Test Test Equipment
Access- Transmission Transmission SONET-SDH
Access- Transmission Access FTTxPON
Access- Transmission Transmission SONET-SDH

Convergent 1CS2000

Corecess 6800, 8100, DSLinX
Consultronics Puma 4000
MetaSwitch VP3500

Appian OSAP

Avail Networks Frontera (2000, 4000)
Paradyne 4200

Memotec CX950, CX900e, CX1000e
Loop Telecom Loop-H 3780-U1000
Quarry iQ4000, iQ8000

Carriercom N/A

Italtel IMSS Softswitch

Keymile UMUX 1200, 1500

Nethawk Nethawk M5, 2G 3G

Resi MNM

Tekelec 7000 Class 5 Packet Switch
Samsung AceMAP, AceLink

Sonus GSX9000

Clarent BHG 1000-8000

Orion VCL-MegaConnect

Adtran TA(1100, 1200, 3000)
Circadient OST-10D, OST-10M
Redback SmartEdge 800

Carrier Access Exxtenz-B-ONT
Apcon Intellapatch Blade/Chassis
Calix C7 BPON

Entrisphere BLM 1500 OLT

Lumentis Mentis

Laurel Networks ST200

net.com Scream 50, Scream 100
Meriton 7200 OADX

ImageStream Gateway, Rebel Pro
LuxN WavPortal, WavFarer, WavStation
Ceterus UTX8212, UTSxxxx

Avici QSR, SSR, TSR

Corvis CorWave LR, XL-XF, ON, OCS
Net InsightNimbra 210, 220, 290, ONE
Allied Telesyn 7400, 7700

Sycamore SN 3000, 16000SC

White Rock VLX, ETS, OTS
Corrigent CM-100

Turin 1600, 2000

Endace DAG

ECI SDM (-1c, -1, -4, -16)

ADC Avidia 2200

ADVA FSP (1, 500, 1000, 2000, 3000)
Movaz RAYstar, RAYexpress

NEC SMS-150, SMS-600

Acterna ONTxxx ANTxxx

Alcatel 1641, 1651 , 1661, 1632
Anritsu MD, MP

Ciena ONWAVE SONET-SDH

Cisco 15302, 15305

Digital Lightwave OTS, NICs
Ericsson AXD155-620,SMA-16
Fujitsu FLASHWAVE 2540,FLx
Harbour Networks Hammer10000
Hitachi AMN1200, 1210

Huawei OptiX 155-622

Juniper ERX-3xx, 7xx, 14xx, M5-M320

Lucent WaveStar AM1, ADMx, DDM/FT-2000
Marconi SMA1, SMA4, SMA16 MSH11, MSH41

Nokia D50e, D500

Nortel OPTera Connect DX, TN-1, TN-P
Siemens SLDx,SMAx, SURPASS hiT
Spirent AX, AE

Tellabs 6310

UTStarcom BBS1000 GEPON

Zhone TeraMatrix

Figure C.14: Target Customer Matrix - I

198

References

[1] G. Moore, “Cramming More Components onto Integrated Circulitgttronics vol. 38
No.8 April, 1965.

[2] C. Edwards, “The Many Lives of Moore's Law|ET Engineering and Technology
vol. 3, 2008.

[3] “International Technology Roadmap for Semiconductors.” 200&ad Available at
http://mwwe.itrs.net/Links/2005ITRS/Home2005.htm

[4] M. Keating and P. BricaudReuse Methodology Manual for System-On-A-Chip Designs
Springer N.Y., 1998.

[5] K. Werner, “VSI Alliance Quality IP Metric.” Design and Reuse.,
available at http://www.us.design-reuse.com/articles/7182/
vsi-alliance-quality-ip-metric.html

[6] D. Robinson, “Shorten and Simplify SoC Verification Using a Generi€é&Werilab
Ltd., available ahttp://www.verilab.com/download.htm , 2005.

[7] H. Chang, L. Cooke, and M. HuntSurviving the SoC Revolution: A guide to
Platform-Based DesigrSpringer N.Y., 1999.

[8] J. Blyler, “Navigating the Silicon Jungle: FPGA or ASICZhip Design Magazine
June/July 2005.

[9] J. Plofsky, “The Changing Economics of FPGAs, ASICs and ASSReal Time
Computing April 2003.

[10] T. Murgan, M. Petrov, M. Majer, P. Zipf, M. Glesner, U. Heinkédl, Pleickhardt, and
B. Bleisteiner, “Adaptive Architectures for an OTN Processor: Raudpdesign Costs
through Reconfigurability and Multiprocessing,” &CM Conference on Computing
Frontiers, pp. 404-418, 2004.

[11] “Interfaces for the Optical Transport Network (OTN).” ITURecommendation G.709,
February 2001.

[12] T. K. Truong, J. H. Jeng, and T. C. Cheng, “A New Decoding okithm for
Correcting both Erasures and Errors of Reed-Solomon Code$ZHE Transactions
on Communicationgp. 381-388, 2003.

[13] D. V. Sarwate and N. R. Shanbhag, “High-speed ArchitectuoesReed-Solomon
Decoders,"IEEE Transactions on Very Large Scale Integration (VLSI) Systeats9,
no. 5, pp. 641-655, 2001.

[14] “Pseudowire Emulation Edge-to-Edge (PWE3) Charter.” Availabletig://www.
ietf.org/html.charters/pwe3-charter.html

199

References

[15] B. Vocking, “How Asymmetry Helps Load Balancing,” #0th IEEE Symposium on
Foundations of Computer Sciengm. 131-141, 1999.

[16] A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions to laver IP
Lookups,” inlEEE Infocom 2001.

[17] “Network Node Interface for the Synchronous Digital Hierarthy ITU-T
Recommendation G.707, November 1988.

[18] “Navigating the Metro Protocol Maze: Next Generation SONET/SDa#vdorks.” Intel
Corporation, available ahttp://whitepapers.zdnet.com/whitepaper.
aspx?docid=97161 , 2004.

[19] P. Richardson, “G.709 and the Optical Transport Network (OTNjerface :
Understanding the Logic Behind this New Standard.” Digital Lightwavejlavie at
http://mww.lightwave.com/dirSupport/whitepapers.asp X, 2003.

[20] M. Howard, “Metro Ethernet Equipment Biannual Worldwide Mdrksize and
Forecasts.” Infonetics Research Market Report, March 2005.

[21] M. Howard, “DSL Aggregation Hardware Quarterly Worldwide Mer Share and
Forecasts for 1Q05.” Infonetics Research Market Report, Ma$ 200

[22] M. Howard, “Optical Network Hardware Quarterly Worldwide MatkShare and
Forecasts for 1Q05.” Infonetics Research Market Report, Ma$ 200

[23] R. Dearborn, L. Johnston, K. Mitchell, and L. Whitcomb, “Servigewwder Plans for
IP, MPLS, and ATM, North America and Europe 2004.” Infonetics Resle Market
Report, December 2004.

[24] Virtex Il Pro Platform FPGA HandbookXilinx Inc., UG012 (v1.0), 2002.

[25] G. C. Ahlquist, B. Nelson, and M. Rice, “Optimal Finite Field Multipliers foPGAs,”
in 9th International Workshop on Field-Programmable Logic and Applicaia899.

[26] I. Stamaulis, N. Ford, G. Dunnett, M. White, and L. P.F., “WHDL Methodologies
for Effective Implementation on FPGA Devices and Subsequent TransitidkSt@
Technology,” inDesign Automation and Test in Europre (DATE$98.

[27] B. Falkowski, “Equivalence Checking for Digital CircuitdEEE Potentials vol. 23,
pp. 21 — 23, April-May 2004.

[28] S. Vasudevan, V. Viswanath, J. Abraham, and J. Tu, “AutomaticoBposition for
Sequential Equivalence Checking of System Level and RTL Descritian 4th
IEEE/ACM International Conference on Formal Methods and Models fmD@sign
pp. 71-80, 2006.

[29] D. Hegarty and S. McDonald, “An FPGA-based Configurable Mekwnterface Card,”
in IEEE International Conference on Systems (ICOM®Yil 2006.

[30] W. Ford and M. BaumSecure Electronic Commerce: Building the Infrastructure for
Digital Signatures and EncryptiorPrentice-Hall N.J., 2nd ed., 2000.

200

References

[31] D. A. Huffman, “A Method for the Construction of Minimum Redundgr€odes,” in
Proceedings of the Institute of Radio Engineers (IRfp) 1098-1101, 1952.

[32] S.Linand J. Daniel J. Costellgrror Control Coding: Fundamentals and Applications
Prentice-Hall Computer Applications in Electrical Engineering, Prentick-H283.

[33] R. E. Blahut,Algebraic Codes for Data TransmissionCambridge University Press,
1st ed., 2003.

[34] I. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fieldsyrnal of the
Society of Industrial and Applied Mathematiesl. 8, pp. 300—-304, 1960.

[35] R. Hill, A First Course in Coding TheoryOxford Applied Mathematics and Computing
Science Series, Clarendon Press, 1st ed., 1986.

[36] O. PretzelError-Correcting Codes and Finite Field©xford Applied Mathematics and
Computing Science Series, Clarendon Press, 1st ed., 1992.

[37] R. Hamming, “Error Detecting and Error Correcting Cod@syé Bell System Technical
Journal, vol. 29, pp. 147-160, 1950.

[38] R. Bose and D. Ray-Chaudhuri, “On a Class of Error Corrediimgry Group Codes,”
IEEE Transactions on Information Theory and Contradl. 3, pp. 68-79, 1960.

[39] A. Hocquenghem, “Codes Correcteurs d’Erreu@jiffres vol. 2, pp. 147-156, 1959.
[40] Stratix Device Handbookvers.3.3 vol 1, Altera Corp., 2005.
[41] W. W. Peterson and E. WeldoError Correcting CodesThe MIT Press, 2nd ed., 1972.

[42] E. D. Mastrovito, “On Fast Galois-field Multiplication,” inEEE International
Symposium on Information Theppp. 348-348, 1991.

[43] C. Paar, P. Fleischmann, and P. Roeise, “Efficient Multiplier Architees for Galois
Fields GF2*)",” IEEE Transactions on Computerl. 47, no. 2, pp. 162-170, 1998.

[44] G. C. Ahlquist, B. E. Nelson, and M. D. Rice, “Synthesis of Small Badt Finite Field
Multipliers for Field Programmable Gate Arrays.” Availablendtp://www.cambr.
uidaho.edu/symposiums/sympl1/Alquist. NASA 2003_main pdf
2003.

[45] M. Goel and N. R. Shanbhag, “Low-power Channel Coding vign&mic
Reconfiguration,” inEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSRol. 4, pp. 1893-1896 vol.4, 1999.

[46] M. A. Hasan and V. K. Bhargava, “Architecture for a Low ComptexRate-adaptive
Reed-Solomon EncodetEEE Transactions on Computel. 44, no. 7, pp. 938-942,
1995.

[47] L. Fredrickson, “Word-wise Processing for Reed-SolomonésddUnited States Patent
No. 5,757,826, May 1998.

201

References

[48] “Finite Field Calculator and Reed Solomon Simulator.” Bell Laborato@esjlable at
http://mwww.cm.bell-labs.com/ ~who/emina/applets/FFCalc.html

[49] E. R. BerlekampAlgebraic Coding TheoryAegean Park Press, 2nd ed., 1984.

[50] W. Peterson, “Encoding and Error-correction Procedurestlie Bose-Chaudhuri
Codes,"IEEE Transactions on Information Thegmpol. 6, no. 4, pp. 459-470, 1960.

[51] R. Chien, “Cyclic Decoding Procedure for the Bose-Chaudhim@gquenghem Codes
in pm Symbols,"Journal of the Society of Industrial and Applied Mathematicd. 8,
pp. 300-304, 1960.

[52] G. Forney, “On Decoding BCH CodeslEEE Transactions on Information Thegry
vol. IT-11, pp. 549-557, 1965.

[53] B.-Z. Shen, L.-J. Weng, and D. L. Langer, “Parallel Input Qatombined System for
Producing Error Correction Code Redundancy Symbols and Errair8gres.” United
States Patent No. 6,493,845, 2002.

[54] K. Seki, K. Mikami, M. Baba, N. Shinohara, S. Suzuki, H. Tezul&, Uchino,
N. Okada, Y. Kakinuma, and A. Katayama, “Single-chip 10.7 Gb/s FEC Cad
Using Time-multiplexed RS Decoder,” itEEE Conference on Custom Integrated
Circuits, pp. 289-292, 2001.

[55] A. G. M. Strollo, N. Petra, D. De Caro, and E. Napoli, “An Aredi@ént High-speed
Reed-Solomon Decoder in 0.25 Micron CMOS,” iEuropean Solid-State Circuits
Conference (ESSCIRQ)p. 479-482, 2004.

[56] J. Massey, “Shift-register Synthesis and BCH DecodindgEE Transactions on
Information Theoryvol. 15, no. 1, pp. 122-127, 1969.

[57] H. Burton, “Inversionless Decoding of Binary BCH Code#fEE Transactions on
Information Theoryvol. 17, no. 4, pp. 464-466, 1971.

[58] J.-H. Jeng and T.-K. Truong, “On Decoding of Both Errors andhsbdres of a
Reed-Solomon Code Using an Inverse-free Berlekamp-Massey AlgghittEEE
Transactions on Communicatign®l. 47, no. 10, pp. 1488-1494, 1999.

[59] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, ‘vasuEes-and-Errors
Decoding Algorithm for Goppa Codes|EEE Transactions on Information Theogry
vol. 22, no. 2, pp. 238-241, 1976.

[60] Y. W. Chang, J. H. Jeng, and T. K. Truong, “VLSI Architectidesign of Modified
Euclidean Algorithm for Reed-Solomon Code,” pp. 304-306, 2003.

[61] T. K. Truong, S.-L. Fu, and T. C. Cheng, “Reed-Solomon Detodnd VLSI
Implementation Thereof.” United States Patent No. 6,209,115, 2001.

[62] S. Iyer, R. Kompella, and A. Shelat, “ClassiPIl: An Architecture Faist and Flexible
Packet ClassificationJEEE Network Special Issue, 200il. 15, no. 2, 2001.

[63] A. Stephenson, “Diffserv and MPLS: A Quality ChoiceData Communications
International vol. 27, pp. 73—77, November 1998.

202

References

[64] B. Caswell and J. Hewlett, “Snort Users Manual 2.6.0” May 2006
Available at http://mwww.mirrors.wiretapped.net/security/
network-intrusion-detection/snort/snort-MANUAL.pdf

[65] “Internetworking Operating System (IOS) Netflow.” Cisco Systenasiailable
at http://www.cisco.com/en/US/products/ps6601/products _ios_
protocol_group_home.html

[66] “Common Control and Measurment Plane Charter (CCAMP).” |EaVilable at
http://www.ietf.org/html.charters/ccamp-charter.htm l.

[67] G. Huston, “Analyzing the Internet BGP Routing Table,” Tech. RepThe Internet
Protocol Journal, March 2001.

[68] F. Baboescu, S. Sumeet, and G. Varghese, “Packet Classifidati€€ore Routers: Is
there an Alternative to CAMs?,” iINFOCOM, vol. 1, pp. 53-63 vol.1, 2003.

[69] “NetEnforcer Product Overview.” Allot Communications, availabidtp://www.
allot.com/products/ACfamily_DS.htm

[70] K. Lan, A. Hussain, and D. Dutta, “Effect of Malicious Traffic ahe Network,” in
Passive and Active Measurement Workshop (RAXNA)3.

[71] “Understanding IP Addressing: Everything You Ever Wanted toowh 3COM
Corporation, available at http://www.3com.com/other/pdfs/infra/
corpinfo/en_US/501302.pdf , 2001.

[72] “Applicability Statement for the Implementation of Classless Inter-DomaintiRg
(CIDR).” IETF Request for Comments 1517, availablé&tip://www.ietf.org/
rfc/rfc1517.txt

[73] T. Lakshman and D. Stidialis, “High-Speed Policy-based Packewvadding Using
Efficient Multi-dimensional Range Matching,” &iGCOMM 1998.

[74] P. Gupta and N. McKeown, “Algorithms for Packet ClassificatidBEE Network2001.

[75] R. Montoye, “Apparatus for Storing "Don’t Care” in a Content dxdssable Memory
Cell.” United States Patent No. 5,319,590, 1994.

[76] D. E. Taylor, “Survey and Taxonomy of Packet Classificationihégques,” Tech. Rep.
WUCSE-2004-24, Washington University in Saint Louis, 2004.

[77] S. Antonanos, K. Anagnostakis, and E. Markatos, “Generateaiic Workloads for
Network Intrusion Detection Systems,”ACM Workshop on Software and Performance
ACM, 2004.

[78] D. Knuth, J. Morris, and V. Pratt, “Fast Pattern Matching in Strihng®ch. Rep.
CS-74-440, Stanford University, 1974.

[79] A. Aho and M. Corasick, “Efficient String Matching: An Aid to Bibliogphic Search,”
in Comunications of the ACMol. 18, 1975.

203

References

[80] R. Boyer and J. Moore, “A Fast String Searching Algorithm Gammunications of the
Association for Computing Machinergp. 762—772, 1977.

[81] S. Wu and U. Manber, “A Fast Algorithm for Multi-Pattern Searchingech. Rep.
TR-94-17, University of Arizona, 1994.

[82] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Detertimidemory-efficient
String Matching Algorithms for Intrusion Detection,” tech. rep., IEEE INFONIM,
2004. 2628-2639 vol.4.

[83] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Fanding Tables for Fast
Routing Lookups,” irSIGCOMM 1997.

[84] W. Eatherton, Z. Dittia, and G. Varghese, “Tree Bitmap: Hardwari&re IP Lookups
with Incremental UpdatesACM Computer Communications Revjewl. 34, 2004.

[85] C. Clark and D. Schimmel, “Scalable Pattern Matching for High Spedad/di&s,” in
IEEE Symposium on Field-Programmable Custom Computing MacH06g.

[86] P. Gupta and N. McKeown, “Packet Classification using Hieraethlatelligent
Cuttings,”Hot Interconnects1999.

[87] V.Srinivasan, G.Varghese, S.Suri, and M.Waldvogel, “Fast aralaBle Layer Four
Switching,” ACM SIGCOMM Computer Communication Revié@98.

[88] P. Gupta and N. McKeown, “Packet Classification on Multiple FieldsSIGCOMM
(Cambridge, MA), pp. 147-160, 1999.

[89] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner, “Router PlugiasSoftware
Architecture for Next-generation Routers\letworking, IEEE/ACM Transactions pn
vol. 8, no. 1, pp. 2-15, 2000. 1063-6692.

[90] F. Baboescu and G. Varghese, “Scalable Packet Classificaietworking, IEEE/ACM
Transactions onvol. 13, no. 1, pp. 2-14, 2005.

[91] V. Srinivasan and G. Varghese, “Faster IP Lookups usingi@thed Prefix Expansion,”
in ACM SIGMETRICS1998.

[92] “Carrier Router System CRS-1 Datasheet.” Cisco Systems, avadtifutp://www.
cisco.com/en/US/products/ps5763/prod_literature.htm l.

[93] V. Bennett, “Method for Performing Optimized Intelligent Searchelsrdwledge Bases
Using Submaps Associated with Search Object.” United States Patent N8,(R 81
1998.

[94] A. Tal and G. Itzchak, “Look-ahead Tree Structure.” United&datent No. 6,532,457,
2003.

[95] D. Knuth, The Art of Computer Programmingol. 3. Addison-Wesley, 1998.

[96] D. Taylor, A. Chandra, Y. Chen, S. Dharmapurikar, J. Loc&d/idN. Tang, and J. Turner,
“System-on-Chip Packet Processor for an Experimental NetworkcgsrPlatform,” in
Proceedings of IEEE Globecom&003.

204

References

[97] M. Raab and A. Steger, “Balls into Bins - A Simple and Tight Analysis,Siecond
International Workshop on Randomization and Approximation Techgiofju€omputer
Science (RANDOMOctober 1998.

[98] G. Gonnet, “Expected Length of the Longest Probe Sequencash Bode Searching,”
in Journal of the ACMvol. 28, pp. 289-304, April 1981.

[99] P. Larson, “Analysis of Uniform HashingJournal of the ACMvol. 30, pp. 805-819,
October 1983.

[100] “MD5 Processor Core Users Manual.” Ocean Logic Pty Ltd,lakbe athttp://
www.ocean-logic.com/pub/OL_MD5.pdf

[101] A. Broder and A. Karlin, “Multilevel Adaptive Hashing,” ihst ACM-SIAM Symposium
on Discrete Algorithms1990.

[102] H.Lim, S. Ji-Hyun, and J. Yeo-Jin, “High Speed IP AddressKugmArchitecture Using
Hashing,”IEEE Communications Lettersol. 7, October 2003.

[103] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowablerdes,”
Communications of the ACMol. 13, no. 7, pp. 422—-425, 1970.

[104] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Loakdyo“Deep Packet
Inspection using Parallel Bloom FilterdEEE Micro, vol. 24, pp. 52-61, 2004.

[105] S. Dharmapurikar, P. Krishnamurthy, and D. E.Taylor, “Lond&efix Matching using
Bloom Filters,” inSIGCOMM (Karlsruhe, Germany), ACM, 2003.

[106] H. Song, S. Dharmapurikar, J. Turner, and J. LockwoodstHash Table Lookup Using
Extended Bloom Filter: An Aid to Network Processing,”$hGCOMM August 2005.

[107] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced Allocatis,” in 26th ACM
Symposium on the Theory of Computipg. 593—-602, 1994.

[108] R. Cole, B. Maggs, F. Meyer auf der Heide, M. MitzenmacheRitha, K. Schider,
R. Sitaraman, and B. &king, “Randomized Protocols for Low-Congestion Circuit
Routing in Multistage Interconnection Networks,” 3®th Annual ACM Symposium on
Theory of Computingpp. 378-388, 1998.

[109] R. Cole, A. Frieze, B. Maggs, M. Mitzenmacher, A. Richa, R. &itaan, and E. Upfal,
“On Balls and Bins with Deletions,” i2nd. International Workshop on Randomization
and Approximation Techniques in Computer Scieppe 145-158, 1998.

[110] M. Mitzenmacher,The Power of Two Choices in Randomized Load BalanciRD
thesis, University of California, Berkeley, 1996.

[111] M. Mitzenmacher, “Studying Balanced Allocations with Differentialuatons,” Tech.
Rep. 024, Systems Research Center, October 1997.

[112] M. Mitzenmacher and B. &cking, “The Asymptotics of Selecting the Shortest of Two,
Improved,” in37th Allerton Conf. on Communication, Control, and Computi&p9.

205

References

[113] W. Eatherton and Z. Dittia, “Data Structure Using a Tree Bitmap and dttbr Rapid
Classification of Data in a Database,” 2003. United States Patent No. 61860,6

[114] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Loakiyo“Method and
Apparatus for Detecting Predefined Signatures in Packet Payload Blsiom Filters.”
United States Patent Application No. 20050086520, 2005.

[115] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Method &gstem for Performing
Longest Prefix Matching for Network Address Lookup using Bloom HilterUnited
States Patent Application No. 20050195832, 2005.

[116] R. AdamsCalculus: A Complete Cours@ddison Wesley, 4th ed., 1999.

[117] “Virtex-5 Family FPGA, Overview.” Xilinx Inc., available alttp://direct.
xilinx.com/bvdocs/publications/ds100.pdf

[118] R. Norton and D. Yeager, “A Probability Model for Overflow 8ciency in Small Hash
Tables,”Communications of the ACMol. 28, no. 10, 1985.

[119] T. Kurtz, “Solutions of Ordinary Differential Equations as Limits afr® Jump Markov
Processes,” idournal of Applied Probabilityvol. 7, pp. 49-58, 1970.

[120] E. E. Johnson, “High-Speed Computation of Cyclic Redundan®cks,” Tech. Rep.
NMSU-ECE-95-011, New Mexico State University, 1995.

[121] S. Goldberglntroduction to Difference Equationsol. 1. London: John Wiley and Sons,
1963.

[122] M. Spiegel,Finite Differences and Difference Equationsl. 1 of Schaum’s Outline
Series McGraw Hill, 1971.

[123] “National Library for Applied Network Research: Special Tea@rchive.” available at
http://pma.nlanr.net/Special/

[124] T. Huang, “Fast Mutual Exclusion Algorithms Using Read-Modiffrite and Atomic
Read/Write Registers,” imternational Conference on Parallel and Distributed Systems
pp. 292—-299, 1998.

[125] A. Agata, K. Tanaka, and N. Edagawa, “Study on the Optimum F#dmon-Based
FEC Codes for 40-Gb/s-based Ultralong-distance WDM Transmissitoytnal of
Lightwave Technologyol. 20, pp. 2189-2195, December 2002.

[126] “Forward Error Correction for Submarine Systems.” ITU-T Beenendation G.975,
2004.

[127] “GIGEMON Passive Optical Network Monitoring Platform.” Endddmited, overview
available ahttp://www.rep-tron.com/endace/GIGEMON.html

[128] “N2X Multi-services Test Solution.” Agilent Technologies, pratioverview available
athttp://advanced.comms.agilent.com/n2x/products/inde x.htm .

206

References

[129] A. Kirsch and M. M., “The Power of One Move: Hashing Schemes f
Hardware.” Submitted to INFOCOM, available lattp://www.eecs.harvard.
edu/ ~ michaelm/ListByYear.html , 2008.

[130] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.hé&sg, “An Improved
Construction for Counting Bloom Filters,” iBSA 2008.

[131] “Micro and Opto Electronics: Cluster Review and Strategy.” Scofisterprise Report,
2005.

[132] C. Heidarson, “Strong Growth Returns to the Market for Semiaota IP.” Gartner
Dataquest, May 2005.

[133] A. A. Thompson Jr. and A. J. Stricklan8trategic Management: Concepts and Cases
McGraw Hill, thirteenth ed., 2003.

[134] “Internal Market Analysis Report.” Aliathon Ltd, August 2005.

[135] G. Johnson and K. Scholdsxploring Corporate Strategy: Text and Caséew Jersey:
Prentice Hall, first ed., 1989.

[136] M. Porter, “How Competitive Forces Shape Strategpgtvard Business Reviewol. 57,
pp. 86—93, 1979.

[137] R. Grant, Contemporary Strategy Analysis: Concepts, Techniques, Applications
Blackwell Publishing, fourth ed., 2004.

[138] B. Nalebuff and A. BrandenburgeZo-opetition Profile Books, first ed., 1996.

[139] S. Dibb, L. Simkin, W. M. Pride, and O. Ferréjarketing Concepts and Strategies
Houghton Mifflin, fourth ed., 2001.

[140] P. Kjeldsen, J. Mazur, S. Malik, T. Hanson, J. Fernanded,Aarishiwata, “Forecast:
Optical Transport Systems, Worldwide, 1999-2008.” Gartner DattgR804.

[141] S. Clavenna, “IP Over Optics: Who Needs SONET?.” Lightregqwliieb Seminar, 2005.

[142] W. Bygrave and E. Zacharakis, Ahe Portable MBA in EntrepreneurshipWiley,
third ed., 2004.

207

