
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Hegarty, Declan (2008) FPGA-based architectures for next generation 
communications networks. EngD thesis. 
 
 
 
http://theses.gla.ac.uk/455/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/455/


FPGA-based Architectures for Next

 Generation Communications Networks

Declan Hegarty BA BAI MIEEE MIET

A thesis submitted to

The Universities of

Edinburgh

Glasgow

Heriot Watt

Strathclyde

for the Degree of 

Doctor of Engineering in System Level Integration

 Aliathon Limited, March 2008  



Abstract

This Engineering Doctorate concerns the application of Field Programmable Gate Array

(FPGA) technology to some of the challenges faced in the design of next generation

communications networks. The growth and convergence of such networks has fuelled demand

for higher bandwidth systems, and a requirement to support a diverse range of payloads across

the network span.

The research which follows focuses on the development of FPGA-based architectures for

two important paradigms in contemporary networking - Forward Error Correction and

Packet Classification. The work seeks to combine analysis of the underlying algorithms and

mathematical techniques which drive these applications, with an informed approach to the

design of efficient FPGA-based circuits.
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Chapter 1
Introduction

The semiconductor industry is arguably one of the most dynamic and demanding on our

planet. There is an unrelenting emphasis placed on being the first to reach the next perceived

technological milestone, and billions of dollars of research and development budget are

expended to secure the prestige, and ultimately market share, which this technical leadership

position affords. Such massive levels of investment have allowed the industry to prosper,

and to go on producing increasingly complex products within ever shrinkingdesign cycle

times. Perhaps the most succinct summary of this increased complexity has been accredited to

Gordon Moore [1, 2], who correctly predicted that from 1975 the number of transistors which

could be integrated per unit area would double approximately every two years.

1.1 System Level Integration

This exponential increase in semiconductor density has ultimately given rise tothe discipline

of System Level Integration (SLI), acknowledging that contemporary integrated circuits are

no longer merely components in Printed Circuit Board (PCB) architectures,but complex

microsystems in their own right. The International Technology Roadmap for Semiconductors

(ITRS) [3] has identified an emergingproductivity gapas shown in Figure 1.1 - illustrating

the discrepancy between transistor density (shown by the solid line) and thenumber of

transistors which may be incorporated into a design in a staff month (shown by the dashed

line). System Level Integration is an attempt to bridge this gap, and is in fact avery broad

generalisation incorporating a wide variety of disciplines, all in some respect evolved to handle

the complexities of systems with millions of transistors. These include, at varyinglevels of

abstraction:

• Device Modelling and Design: Complementary Metal Oxide Semiconductor (CMOS)

transistor devices are thought to represent 75% of the world’s current semiconductor

consumption [3]. Progress in computing technology is therefore heavily dependent on
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Figure 1.1: The productivity gap, as defined by the ITRS

progress in the development of smaller, faster and less power hungry devices. Further,

the ITRS predicts that most of the currently known technological capabilities of planar

CMOS will approach or have reached their limits by the end of 2016, such that ongoing

research in this area is essential for the industry to survive.

• Block-Based Design and IP-Reuse: The difficulties of complex systems design

are compounded by the competitive markets into which these systems are sold.

Time-to-market pressures have led the industry to place an increased emphasis on

design re-use [4] whereby, rather than customize systems on a design bydesign basis,

one seeks to develop building blocks (often referred to as Intellectual Property (IP)

blocks or cores) which may be reused across multiple designs. These blocks may

themselves comprise many hundreds of thousands of transistors, but aredesigned along

best-practice guidelines such as the Quality IP (QIP) Metric [5] to ensure portability

between systems.

• Test and Verification: The complexity of contemporary System-On-Chip (SoC) designs,

and the large number of operational use-cases for the equipment in whichthey are

embedded, mean that ad-hoc testing by the system designer is no longer acceptable.

Rather, testing and verification is becoming an industry itself, with numerous dedicated

verification languages and test coverage tools emerging to ensure that designs with

millions of transistors are appropriately stress tested before release.
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Verification and design reuse are in fact often combined, in the form of reusable testbench

code, or generic verification blocks which may be instantiated across different (SoC)

topologies [6].

The list does not end there of course; the block-based approach hasbeen extended in the form of

reusable platforms [7], providing sockets for IP blocks and standardised interconnect; software

complexity increases commensurate with logic density; thermal issues become increasingly

significant as millions of switching transistors dissipate tens of Watts of power,and packaging,

power-distribution and signal-integrity design are major disciplines in their ownright - System

Level Integration is all of these.

1.2 ASICs, ASSPs and FPGAs

In practice, three categories of System-On-Chip device currently dominatethe industry.

Pioneered in the early 1980s as transistor arrays of a few thousand logicgates, Application

Specific Integrated Circuits (ASICs) are devices which are customised for their end

applications, and have fixed functionality once manufactured. Typically, they are

commissioned or designed by a single end user. Contemporary ASICs are distinguished from

commodity integrated circuits by their complexity, with gate counts in the tens or hundreds of

millions.

Application Specific Standard Products (ASSPs) are also typically complex fixed-functionality

devices, but are sold as standardised components to multiple customers. In contrast, Field

Programmable Gate Arrays (FPGAs) are completely reprogrammable devices, comprising

standardised logic blocks and interconnect which the end-user may reconfigure to target a

variety of end applications.

The strengths and weaknesses of custom approaches (ASIC and ASSP) versus reprogrammable

approaches (FPGA) have been debated for some years [8], and arediscussed in more detail in

the context of their respective design flows in Chapter 2. On one hand ASICs and ASSPs offer

the prospect of higher raw clock speed performance, and are cheaper in high volume. ASIC

designs in particular can be very highly optimised and integrate specialist analogue functions.

FPGAs however, offer more predictable design cycle times, reduced verification effort, lower

non-recurring engineering (NRE) costs, and ease of upgrade.
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This project is co-sponsored by an FPGA Intellectual Property supplier- Aliathon Limited - and

focuses on the application of FPGA technology to emerging design challenges in networking

and communications.

New technologies such as wireless internet access (Wi-Fi and WiMAX), Voice-over-IP, virtual

private networks (VPNs) and third generation mobile (3G) are generatingstrong demand

for bandwidth and guaranteed quality of service in contemporary networks. As a result,

the traditionally disparate disciplines of voice and data communications are converging

to deliver what are becoming known as the “triple play” services: voice, video and data.

Network elements deployed to provide these services require integrated circuit (IC) solutions

of commensurate sophistication, which have been traditionally offered as ASIC and ASSP

devices.

The risks and non-recurring engineering costs of developing such ASICs are significant

(reported at US$30M for 90nm fabrication [9]) particularly for lower volume, higher

complexity networking applications. Customer needs are extremely diverse and continuously

evolving as new standards emerge. Thus ASIC vendors must seek to migrate from a

single customer model, by accommodating a broad range of functionality to appeal to a

wider customer base, and incorporating some degree of reconfigurabilityto track evolving

standards [10]. The end result is often a large, power-hungry device which may be sub-optimal

for a given customer’s application.

In contrast, the inherently reprogrammable nature of FPGAs significantly mitigates up-front

design and verification costs, and facilitates future-proof systems wherenew designs can be

downloaded to accommodate evolving customer requirements. Functionality can be tailored

on an application-by-application basis, eliminating redundant hardware complexity. These

advantages encapsulate Aliathon’s value proposition. The company seeks to target existing

ASIC and ASSP solutions in high value, low volume communications applications for

replacement with lower cost, lower power FPGA-based solutions.

Figure 1.2 illustrates a current deployment following this business model - thereplacement

of multiple Application Specific Standard Products (ASSPs) in an ATM-over-T1 application,

where Synchronous Digital Hierarchy (SDH), Plesiochronous Digital Hierarchy (PDH) and

Asynchronous Transfer Mode (ATM) blocks have been integrated onto a single FPGA1.

1Additional background on these standards is presented in Chapter 2.
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Figure 1.2: FPGA replacement of an ASIC/ASSP ATM-over-T1 solution

The viability of this business model is clearly dependent on the company’s ability to produce

efficient FPGA solutions, which enable chip-count reduction and lower material costs for

customers. This in turn is dependent on the efficiency of the component IPcores on which

these top-level FPGA solutions are based. Aliathon thus places strong emphasis on technology

performance, seeking to produce IP cores which are smaller and fasterthan those of their

competitors.

Creating and maintaining this advantage for next-generation networking andcommunications

applications is the key commercial motivation for the work which follows. The emphasis

will be on seeking architectural-level gains, since reusable lower level structures such as

arithmetic blocks (multipliers, adders), counters and first-in-first-out buffers (FIFOs) have all

been previously developed in Aliathon and have received significant optimisation effort.

1.3 Thesis Statement

Emerging networking standards require data processing operations which are mathematically

intensive, and must be completed at high equipment line rates. It is assertedthat theoretical

research and detailed operational study of the algorithms which underpin these standards,

combined with an architectural-level focus on FPGA design, will yield solutions which better

the state-of-the-art.
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Two important networking techniques,Forward Error Correctionand Packet Classification,

are of particular commercial interest to Aliathon and are examined as existence proofs for this

assertion.

1.3.1 On Forward Error Correction

Forward Error Correction (FEC) adds additional information in real time to the original

information to be transmitted over a channel such that at the receiver, the combination of the

original information and the additional information can correct errors in real time.

FEC is increasingly important in very high bandwidth optical networks at transmission speeds

up to 43Gbps where it acts to counter signal-to-noise ratio degradation dueto fibre loss,

chromatic dispersion and other aberrations, and reduces the requirement for expensive optical

repeater equipment. Specifically, in the context of the ITU G.709 standard [11] based on

Reed-Solomon (255,239) FEC for OTU-3 43Gbps systems, it is asserted that:

• The arithmetic associated with the Reed-Solomon (255,239) encoding can be

reformulated, generalised and mapped onto FPGA hardware in the form ofa

shift-register division circuit capable of processing two input symbols in every system

clock cycle. A 43Gbps encoder based on the reformulated arithmetic removes the need

for data buffering and pipelined processing required by the single-symbol processing

equivalent.

• A Key Equation Solver associated with the Reed-Solomon (255,239) decoding, based on

a hybrid Euclidean/Berlekamp-Massey algorithm [12], can be improved bymodifying

the initial conditions to remove a redundant processing cycle, and by justification of

its non-zero coefficients - which approximately halves the logic resource required for

polynomial storage. For 43Gbps systems, the modified Key Equation Solver utilises

just 56% of the storage resource and 61% of the arithmetic resource required by a

direct implementation of the hybrid algorithm, and utilises just 36% of the total resource

required by Aliathon’s existing solution, based on [13].
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1.3.2 On Packet Classification

Packet Classification is a key technology for a wide range of networking and communications

application areas, including Internet Protocol (IP) routing and switching, service level

differentiation, network security and flow monitoring. Essentially, one seeks to make some

decision on the destination of a data packet based on some portion of its contents - typically

the packet header. Classless-Inter-Domain-Routing (CIDR) techniques based on longest

prefix matching dominate the literature, but string matching and exact pattern matching

techniques are becoming increasingly important. The latter is of particular commercial interest

to Aliathon, potentially offering performance improvements for legacy products, and enabling

provision of IP cores in new areas such as packet filtering, flow monitoringand Pseudo-Wire

Emulation End-to-End (PWE3) [14].

Exact match techniques include schemes based on decision-trees, neural networks, Bloom

Filters and hashing. State-of-the-art techniques based on trees offercompletely deterministic

classification orlookup times, but scale poorly to systems with long headers. Conversely,

contemporary techniques based on hashing scale better but are non-deterministic, such

that worst case lookup times can be poor. A hashing-based algorithm called d-left, first

formalised by V̈ocking [15] and later analysed by Mitzenmacher and Broder using differential

equations [16], mitigates the effects of non-determinacy and shows promiseas the basis of an

FPGA-based classification engine. In this context, it is asserted that:

• The analysis presented in [16] can be extended to consider packet classification systems

with dynamic deletion and insertion of items.

• This dynamic mode of operation exhibits stable, repeatable steady-state behaviour which

places an upper bound on the amount of FPGA block RAM required to support the

system.

• This upper bound enables an FPGA-based packet classification implementation which is

effectively deterministic.

• A novel 2-level, d-left scheme, implemented in an FPGA requires 62.5% of theexternal

memory resource, and just 2% of the embedded internal SRAM required bya system of

equivalent capacity based on Counting Bloom Filters.
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1.4 Dissertation Structure

The remainder of this dissertation is structured as follows: Chapter 2 presents general

commercial and technical background to the project, and describes the development of an

FPGA-based network interface card, undertaken as a precursor to the principal research work.

Chapters 3 and 4 comprise the main research contributions, on Forward Error Correction

and Packet Classification respectively. Chapter 5 offers a summary, and Chapter 6 presents

conclusions and some suggestions for further work. A business plan composed in fulfilment of

the business and management requirements of the EngD is included in the appendices.
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Chapter 2
Background

2.1 Introduction

This chapter sets the context for the research which follows, both in terms of the commercial

motivations for the work and the FPGA architectures targeted by the proposed solutions. The

opening discussions present some background on what exactly is meantby a “next generation”

network - a general term which embodies both a migration to higher bandwidth systems, and

an industry-wide trend towards more diverse payloads over a packet-based infrastructure. This

discussion is followed by a general introduction to FPGA technology and thedesign principles

followed in the course of the research. Finally, a description of the FPGA-based network

interface development undertaken as the first phase of this project is presented.

2.2 Next Generation Communications Networks

Historically, communications networks have been based on voice telephony.The frequency

spectrum of the average human voice ranges from approximately 30Hz upto 4kHz. Thus,

in accordance with Nyquist’s rule, one must sample a voice signal at approximately 8kHz to

achieve faithful reproduction of that signal. Traditional Pulse Code Modulation systems use 8

bits to represent each sample, so one requires 8000 x 8 = 64kbps for each voice channel.

2.2.1 From PDH to SONET/SDH and OTN

The entire time division multiplexed (TDM) hierarchy has been built around thisdata rate.

Early networks were based on the Plesiochronous Digital Hierarchy (PDH), which aggregated

multiple voice channels together in trunk links running at nominally, but not precisely the

same frequency. As traffic demands on the network grew, the limitations of thePDH network

emerged.
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Table 2.1: SONET/SDH Transmission Rates

Lack of standardisation made interoperability between equipment vendors difficult, network

management functionality was limited, and individual voice channels had to be added and

dropped via a complex and expensive multiplexing and demultiplexing hierarchy.

The core standards for the Synchronous Optical Network (SONET) and the Synchronous

Digital Hierarchy (SDH) [17] were introduced to address these shortfalls, adding rich

management overhead and unified network timing, for interconnection overa high speed

optical infrastructure, running at the frequencies shown in Table 2.1.

The SONET/SDH infrastructure is now well established, with an installed baseof some 390,000

rings worldwide. However, the communications industry is entering yet another period of

transition. Increases in voice traffic have been incremental in the last 5 years. Data traffic, by

comparison, has increased exponentially, driven by the global adoptionof broadband services.

Network providers are thus increasingly seeking more cost-effective ways to provision and

manage large amounts of bandwidth and diverse payloads.Next-Gentechniques such as

Virtual Concatenation (VCAT) and the Link Capacity Adjustment Scheme (LCAS) have

emerged [18] to improve SONET/SDH bandwidth utilisation when payload bit-rates do not fit

conveniently into the traditional hierarchical containers. The ITU-T G.709Optical Transport

Network (OTN) [11, 19] has also emerged as an improved physical layerprotocol, with a

streamlined subset of the SONET/SDH management functions, support forthe management

of Wavelength Division Multiplexed (WDM) systems, and tandem connection monitoring for

signal diagnostics across multiple networks. Aliathon currently offers a portfolio of IP cores

10



Background

targeting OTN applications at 2.7Gbps, with a roadmap to 10.7Gbps and 43Gbpssystems -

the latter being a key commercial motivation for the research on Forward Error Correction

presented in Chapter 3.

2.2.2 From Circuit-Switched to Packet-Switched Networks

In addition to this generalised increase in demand for bandwidth, market reports [20–22]

clearly indicate a migration away from legacy TDM networks towards a packet-switched

infrastructure, based on the Internet Protocol (IP), which enables network operators to realise

a lower cost per bit in the delivery of voice, video and data services. IPis ubiquitous, but is not

optimised for transfer of delay sensitive signals such as video and voice.Techniques such as

Multi-Protocol-Label-Switching (MPLS) and Diffserv have emerged to address these issues,

providing Quality-of-Service (QoS) guarantees over packet-based networks and enabling

unified transmission of voice, video and data over the same infrastructure.A 2005 survey

of Service Providers in North America and Europe [23] conducted by Infonetics Research

indicated the following:

• That service providers faced the double bind of keeping pace with significant growth in IP

traffic whilst simultaneously trying to increase the profitability of IP-based services. 77%

of respondents identified maintaining revenue growth in a period of technical transition

as the key business challenge faced.

• That broadband internet adoption was the key driver for the growth in IP traffic.

• That over 65% of respondents were no longer evaluating legacy Asynchronous Transfer

Mode (ATM) or Frame Relay equipment.

• That over 25% of respondents had already deployed IPv6 networks in2004, although

deployments were not on a large scale. By close of 2005, half of all respondents expected

to have some IPv6 roll-out.

• That 81% of respondents used some form of MPLS networking in 2004, with 92%

adopting the technology by the end of 2005.

So, whilst the installed SONET/SDH infrastructure continues to generate revenue for Aliathon,

continuing migration to packet-switched networks by service providers andnetwork equipment
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manufacturers underlines the need to develop technology in this area - the commercial

motivation for the research on Packet Classification presented in Chapter4.

2.3 Technical Background

2.3.1 An Introduction to FPGAs

In introducing FPGA technology, theVirtex-II Pro Platform FPGA [24] from Xilinx Inc. will be

used as a reference, since this device was in full production at the outset of this project, and was

thus used both in the prototype platform discussed in 2.3.4, and in analysis ofFEC and Packet

Classification architectures discussed in later chapters. Newer device families have of course

continued to emerge during the course of this research1, but the architectural fundamentals

remain broadly the same.

In the most general context an FPGA consists of anarray of programmable logic elements

arranged on a matrix of programmable interconnect. In the Virtex-II Pro device these elements

include high-speed serial transceivers with a bit-rate of up to 3.125Gbps per channel, embedded

IBM PowerPC Reduced Instruction Set Computer (RISC) processor cores, embedded multiplier

blocks optimised for Digital Signal Processing (DSP), Digital Clock Manager (DCM) blocks

for clock distribution and embedded dual-port SRAM.

The fundamental programmable element across all Xilinx device families is the Configurable

Logic Block (CLB). Each CLB in turn comprises 4slicesas shown in Figure 2.1.

1Notably Virtex-4 and Virtex-5 from Xilinx Inc., and Stratix-III from AlteraCorp.
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Figure 2.1: Xilinx CLB and slice elements

These slices provide the essential structures required for synchronous and combinatorial logic

design. Each slice contains two flip-flops - the basic storage elements for synchronous logic

designs, and two 4-input Look-Up Tables (LUTs) each capable of implementing any boolean

function of four inputs or less, as illustrated in Figure 2.2. The simple 2-input“OR” and

“AND” primitives in this example are emulated in the FPGA by using the inputs directlyas

the LUT address. Each of the 16 LUT locations stores a value required to correctly resolve

the logic function for a given input address, such that the LUT is effectively a direct hardware

implementation of the truth table associated with the logic function. Understanding this basic

4-input granularity (and indeed the FPGA target architecture in general)is often important in

realising efficient FPGA implementations. Perhaps unsurprisingly, authorshave noted that Very

Large Scale Integration (VLSI) designs optimized for traditional ASIC platforms do not always

perform well in FPGA logic and vice-versa [25, 26].

The basic programmable logic elements are supported by a hierarchy of programmable

interconnect betweenswitch matrices. In the Virtex-II Pro local fast interconnect lines

run internally in the CLB connecting LUT outputs to LUT inputs as shown in Figure 2.1.

Conceptually above this layer, there are 16 direct connections between neighbouring CLBs,

and a series ofdouble lineswhich route signals to every first or second block away in four

directions. In similar fashion,hex linesroute signals to every third or sixth block away in

four directions, and finally a series oflong linesdistribute signals across the whole device.

Additional dedicated routing is provided for system clocking and high speed arithmetic

operations.
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Figure 2.2: A simple boolean logic function realised in a LUT

2.3.2 The FPGA and ASIC/ASSP Design Flows

As discussed briefly in Chapter 1, the advantages of an FPGA-based approach over ASIC/ASSP

equivalents are perhaps best discussed in the context of their respective design flows, shown

in Figure 2.3. Both flows start with a functional specification, and design entry - typically

using a Hardware Description Language (HDL). Although schematic-based design entry is

still supported by contemporary FPGA design flows, it becomes difficult to manage for all but

the simplest designs. At present, Verilog and VHDL ((Very High Speed Integrated Circuit)

Hardware Description Language) are the dominant HDLs, the latter used throughout the

remainder of this dissertation. A discussion of the relative merits of these two languages

is beyond the current scope, although some discussion on appropriate coding style follows

in 2.3.3.

During the design capture phase, two main categories of HDL code are typically written in

parallel. Register Transfer Levelor simply RTL code encapsulates the design proper, and is

intended to be processed in the next stage of the flow by asynthesistool, which maps the

functional design onto logic primitives in the target architecture. On the otherhandbehavioural

code is not itself intended for synthesis, but rather used in conjunction witha simulationtool

for functional verification of the design. Such code is usually describedas atestbench. The

early phases of the FPGA and ASIC/ASSP flows thus follow a similar iterative process. The

design is specified and coded, verified in a testbench and synthesised.
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Figure 2.3: Generalised FPGA (a) and ASIC/ASSP (b) design flows

Thereafter the flows begin to differ. The high NRE costs associated with ASIC/ASSP

fabrication mean that it is extremely important that the design isexactlyas originally specified

before committing to manufacture. Theoretically, after initial functional verification is

successfully completed, the design should remain functionally equivalent (and by implication

correct) through to manufacture. In reality, the numerous translations andoptimisations from

RTL to physical design in multi-million gate designs (including insertion of I/O and test

structures, logic and drive strength optimisations and manual net list changes) inevitably

introduce bugs. As a result, complex formal equivalence checking techniques become

necessary in the ASIC/ASSP flow [27, 28] to ensure that functional integrity at every stage in

the flow is maintained.

Timing performance is critical in any logic implementation, and achieving timingclosurea

key goal for designers of large digital systems, regardless of platform.The timing challenge

is generalised in Figure 2.4. A typical digital system comprises flip-flops (orregisters) as the

basic storage element, and combinatorial elements (gate primitives in ASICs/ASSPs, LUTs in

FPGAs) used to implement the logical and mathematical functions demanded by thefunctional

specification. The storage elements (FF1 andFF2 in the figure) hold their current data value

15



Background

at their outputs until the next clock edge occurs (flip-flops are rising edge triggered in this

example) when the outputs are updated with the current input value.

In practice, two things work against the system designer here. Firstly, thestorage elements

demand that the data on their inputs be held stable for a minimum time before the clockedge

arrives (the setup timetsu) and for a minimum time after the clock edge arrives (the hold time

th). Effectively, this means that the data must be sampled within a valid window (shown in grey

in the figure). Secondly, combinatorial logic can only operate at finite speed- all technology

families suffer a data delayδ, which is typically much larger than any delays on associated

clock nets. As shown in Figure 2.4, if this delay becomes too large, timing violations can

occur, whereby the clock edge does not fall within the valid sampling window.

Figure 2.4: The problem of combinatorial delay in digital systems

Managing timing issues as system complexity and speed increase is challenging, and

Static Timing Analysistools are used in both FPGA and ASIC/ASSP flows to automate

the process. The process is simplified in the FPGA domain by the fact that the physical

location of the programmable logic elements in the device is fixed, and the parasitics

associated with the programmable interconnect have been pre-characterised, such that a

single (though often iterative) timing analysis phase suffices. In contrast,the ASIC/ASSP
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flow includes afloorplanningstage (when the designer decides what logic blocks go where),

into which iterative timing analysis must also be folded. Finally, the ASIC/ASSP flow is

further complicated by its dependence on foundry availability for device manufacture, which

introduces risk and delay (incorporating additional equivalence checking after place and route,

and modelling of parasitic effects) before the design can finally be verifiedin circuit.

The FPGA design flow reflects the fact that the devices are inherently reprogrammable. Design

errors can be rectified by downloading a new bitfile, and do not require asilicon re-spin. The

FPGA design flow is thus much less verification driven than the ASIC/ASSP equivalent, and

simpler as a result. One must be careful not to oversimplify the case here; market volumes for

ASICs/ASSPs clearly indicate that they represent the most cost effective technology in many

applications. Nonetheless for lower volume, high-complexity networking solutions, where

new standards continuously emerge and evolve, FPGAs appear to offera more cost effective,

lower risk solution for many Network Equipment Manufacturers (NEMs) - afact reflected in

Aliathon’s current customer base and product portfolio.

2.3.3 Design Trade-Offs and Guiding Principles

Whilst the research projects on Forward Error Correction and PacketClassification which

follow in Chapters 3 and 4 by definition target different application domains,they both represent

an attempt to optimise FPGA systems by balancing classic design trade-offs. These trade-offs

are effectively universal - reflecting the zero-sum game of finite clockspeed and available logic

resource - and independent of one’s target application. Generally speaking, one may trade

additional logic resource for system clock speed, though this is subject todiminishing returns

as the limits of the process technology are approached.

2.3.3.1 Logic Utilisation, Clock Speed and Processing Time

Consider the timing problems illustrated previously in Figure 2.4. Recall that with alarge

δ through the combinatorial logic path, the setup time was violated and reliable operation of

the flip-flops in this circuit could not be guaranteed. There are two approaches to achieving

timing closure for this design; reducing the system clock speed to give a wider sampling

window, or reducing the worst case delay through the combinatorial logic until setup and hold

times are met. Assuming that the design specification prohibits a slower clock, theworst case
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combinatorial delay can be reduced bypipelining the logic as shown in Figure 2.5. Pipelining

refers to the insertion of additional synchronous elements (flip-flops) into the combinatorial

logic path, such that the worst case delays between these elements are reduced.

Figure 2.5: Pipelining the logic of Figure 2.4 to improve timing

Assuming that the flip-flop is inserted at a point exactly half way along the datapath, the worst

case delay in this system is now halved, and the maximum allowable clock frequency effectively

doubled. This improvement in clock speed comes at the cost of additional synchronous logic

utilisation which is negligible in this example, but could be significant in wide datapaths where

multiple bits of additional storage are required. Further, the additional flip-flop in the data path

means that it now takes an additional clock cycle for data to pass from the system inputs to

its outputs. This increasedlatencycan become significant in systems with multiple pipeline

stages, particularly if the data is sensitive to absolute delay, as in voice or video applications.

Logic utilisation can also be traded against processing time, in terms of the number of clock

cycles required to complete a given computation. For example, say one wanted to multiply two

polynomials of lengthl, a common requirement in encryption or coding systems. One could use

a single multiplier and produce one polynomial coefficient result per clock cycle, thus taking

l clock cycles to produce the complete result. Alternatively, one could use a bank of l parallel

multipliers and produce the same result in a single clock cycle. Clearly the bestapproach is

dependent on the demands of the target specification.

2.3.3.2 Abstraction and Technology Independence

In addition to the trade-offs just discussed, the work which follows is influenced by the

following best-practice guidelines followed at Aliathon Ltd. Namely that all VHDL source
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code should be written at an appropriate level ofabstractionand that all VHDL source code

should betechnology independent. To elaborate the first point, consider the very simple 4-bit

comparator circuit and VHDL implementation shown in Figure 2.6.

Figure 2.6: A 4-bit comparator coded with low level abstraction

The VHDL used here is at a very low level of abstraction - the details of the circuit structure are

very closely reflected in the code. Gate primitives are written as components and instantiated

in the higher level comparator architecture with interconnecting wires explicitlydefined as

signals. For all but the simplest circuits this approach quickly becomes impractical and

counter-productive, generating large volumes of code. Fortunately, contemporary synthesis

tools allow designers to write VHDL at a much higher level of abstraction, with confidence that

the hardware structures produced will still be as intended. Thus the comparator code could be

re-written as shown in Figure 2.7, with identical results.

Figure 2.7: A 4-bit comparator coded with high level abstraction

Not all examples are so clear cut, and what constitutes an appropriate level of abstraction

for any given design is subjective. On one hand, coding at too low a level results in large

code bases which are difficult to maintain, debug and re-use. On the other, very abstract code
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can be difficult to understand, and may not be interpreted as intended by thesynthesis tools.

Aliathon guidelines thus recommend writing VHDL at the highest level of abstraction which

the synthesis tools will support.

Maintainingtechnology independenceimplies that one must not write HDL which results in a

synthesised circuit unique to a particular target architecture. As an example, say one wanted

to implement an asynchronous first-in-first-out (FIFO) buffer - an extremely common data

structure in digital systems design. The Xilinx Virtex-4 family of devices includeintegrated

FIFO logic, which can be inferred in synthesis by setting appropriate attributes in HDL.

Whilst efficient, using this dedicated logic in an IP core immediately locks that core into the

Virtex-4 architecture and limits flexibility for Aliathon’s end customers. Thus, where possible,

all logic structures are implemented using generic resource - available across multiple target

architectures - even if this incurs a penalty in terms of absolute logic utilisation.

2.3.4 An FPGA-based Configurable Network Interface Card

As a precursor to the main research phases of this project, an FPGA-based printed circuit

board (PCB) network interface prototype was developed [29]. This development was intended

principally as a support prototype for the subsequent work on PacketClassification, and is

used in Chapter 4 to compare a hardware implementation of ad-left based classifier with

theoretical predictions and software generated results. Further, at theoutset of this project,

Aliathon had no in-house platform for hardware verification of their IP cores - a gap which

this development was also intended to fill; hence its general purpose infrastructure. The design

was taken from concept through schematic capture, PCB layout, manufacture and eventual

deployment at beta-test locations in customer installations. The basic system block diagram is

shown in Figure 2.8.

The system is built around a Xilinx Virtex II Pro XC2VP50 FPGA, with a supporting

infrastructure designed to be applicable to the widest possible range of potential network

applications. With the FPGA as its principal component, the PCB architecture is based on

a 12 layer stack-up to accommodate high density interconnect - with controlledimpedance

for good signal integrity on high bandwidth interfaces to the memory componentsand to the

network transmission modules. The system operates from a single 12 volt power supply which

is tightly regulated on board using tailored small footprint switch-mode power supplies and

additional load regulation for noise-sensitive high speed circuits.
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Figure 2.8: Top level PCB architecture of an FPGA-based network interface card

Integral to the flexibility and capability of the system is the supporting memory infrastructure.

Three 72Mb Quad-Data-Rate II (QDR-II) SRAM devices are directly connected to the FPGA

to provide extremely high bandwidth memory access. The data interface to these devices is

32 bits wide, running at 166MHz with access on both edges of the system clock to deliver an

aggregate data throughput of 10.624Gbps. Additional memory density is provided by 512MB

of Double-Data-Rate II (DDR-II) memory, with access speeds up to 166MHz.

The choice and balance of these emergent memory technologies is fundamental to the range

of potential applications the system can support. The high throughput provided by the QDR-II

devices facilitates real time, full bandwidth processing of the data on the network interfaces.

The DDR-II devices provide superior memory density in an extremely small footprint for

buffering large amounts of data, essential in applications such as differential delay measurement

or packet storage. Such a balance of speed and density on its memory interfaces ensures that

the FPGA can perform close to optimally across a wide range of communicationsfunctions. In

addition, PCB footprints for the memory architecture have been carefully chosen to allow the

memory capacity of the system to be easily expanded as latest devices are released, or reduced

for lower cost solutions to less demanding applications.

Two fully configurable optical interfaces are based on Small-Form-FactorPluggable (SFP)

transceiver modules which mate directly with the optical fibre. These modules integrate

the transimpedance amplifier and laser diode driver required for optical transmission in
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an extremely compact footprint. The system is thus compatible with all the key optical

networking standards up to 3.125Gbps. The SFP modules can be easily swapped out of their

host connectors, giving the platform a completely general purpose front-end interface, easily

configured for a host of optical performance requirements ranging from long range Dense

Wavelength Division Multiplexing (DWDM) systems through to low cost, single rate short

reach applications.

Two further SFP modules serially connected to the FPGA provide additional high bandwidth

access over fibre or copper. These ports are again designed to be completely general purpose;

optimal for configuration as 10/100/Gigabit Ethernet (GbE) electrical interfaces for remote

redundant operation of the platform, but equally amenable to optical connectivity. A fully

configurable backplane interface is provided by four programmable 3.125Gbps channels,

output via a high frequency connector for support of a range of accessibility standards such as

PCI-Express or Infiniband. Additionally, Real Time Operating System (RTOS) development is

supported by two IBM microprocessors embedded in the FPGA, and complemented by 512MB

of NAND Flash memory to provide an extremely powerful hardware/software co-design

fast-prototyping and development platform. Processing power can be readily increased using

additional modules in parallel, connected by a data pipe across any of the high-bandwidth

interfaces previously discussed.

The entire PCB platform occupies a footprint of only 150mm x 80mm, allowing upto 8 modules

to be accommodated in a traditional 1U rack-mount enclosure; an aggregatebandwidth capacity

of greater than 80Gbps.
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Chapter 3
Forward Error Correction

3.1 Introduction

There are many reasons why one may wish to encode data. These include security [30], where

one may wish to encrypt data to prevent attack from an unauthorised third party; efficiency,

where one may wish to optimise use of the available channel capacity using techniques such

asHuffmanencoding [31]; or reliability, where one seeks to counter the effects of noise on the

transmission channel. Forward Error Correction (FEC) [32] is a technique which falls into the

last category. FEC adds additional information in real time to the original information to be

transmitted over a channel such that at the receiver, the combination of theoriginal information

and the additional information can correct errors in real time.

There are two types of codes in common use for error correction and error control; block codes

and convolutional codes [32, 33]. The encoder for a block code divides the information up

into message blocks ofk information bits1 each. There are thus a total of2k different possible

messages. The encoder transforms each message into a codeword ofn discrete bits. Thus,

the notation (n, k) is often used to describe a code. The encoder for a convolutional code also

acceptsk-bit blocks and produces an encoded sequence ofn bits. However, in this case each

encoded block depends on both the current message word andm previous message words.

The codes considered in this research are all block codes, which find practical application

in a wide range of storage and communications equipment. Of particular interest will be a

special group known as the Reed-Solomon codes [34], which have been specified for use by

the International Telecommunication Union in its recommendations for the Optical Transport

Network [11].

1Assuming, for now, a binary code.
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3.2 Finite field theory

The algebraic framework on which error correcting codes are based isthat of finite fields2. The

properties of such fields have some remarkable consequences for the theory and application of

coding techniques. The basic taxonomy of field theory [32, 35] is introduced here.

3.2.1 Groups

Let G be a set of elements. An arbitrary binary operation∗ on G is one which assigns to any

pair of elementsa andb, a uniquely defined third elementc = a ∗ b in G. When such a binary

operation exists onG, thenG is closed under∗. For example, ifG is the set of all integers, then

G is closed under real addition. Every real addition of two integers results ina third integer.

A setG on which a binary operation∗ is defined is called a group if the following conditions

are satisfied:

• The binary operation is associative, such thata ∗ (b ∗ c) = (a ∗ b) ∗ c

• G contains an identity elemente, such thata ∗ e = e ∗ a = a

• Any elementa in G has an inverse, such thata ∗ a′ = a′ ∗ a = e

The number of elements in the group defines itsorder. The set of all integers is thus a group

of infinite order. Of more practical interest arefinite groups, with a finite number of elements.

The group definition outlined above may be expanded to introduce the algebraic system which

is of most interest to coding theorists - thefield.

3.2.2 Fields

A field F is a set of elements with two operations, addition(+) and multiplication(·) satisfying

the following properties:

• F is closed under+ and· such that(a+ b) and(a · b) are inF whenevera andb are inF.

• The operations are commutative, such thata + b = b + a anda · b = b · a.

2Or Galois Fields, after Evariste Galois their discoverer.
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• The operations are associative, such that(a+b)+c = a+(b+c) anda ·(b ·c) = (a ·b) ·c.

• The operations are distributive, such thata · (b + c) = a · b + a · c.

Furthermore, the additive identity element 0 and the multiplicative identity element 1 must exist

in F satisfying the following:

• a + 0 = a for all a in F.

• a · 1 = a for all a in F.

• For anya in F, there exists an additive inverse element−a in F such thata + (−a) = 0.

• For any nonzero elementa in F, there exists a multiplicative inverse elementa−1 in F

such thata · a−1 = 1.

A field with a finite number of elements is commonly known as a finite, or Galois Field. The

simplest example is the binary field of elements [0, 1] often denoted byGF (2), and closed

under modulo-2 addition and modulo-2 multiplication as shown in Figure 3.1.

Figure 3.1: Simple modulo-2 operations

Galois’ fundamental result [35] which allows one to work with generalised finite fields beyond

the restrictions of the binary case is stated without proof as follows:

Theorem 1. If and only if q is a prime power (i.e.q = ph, wherep is prime andh is a positive

integer), then there exists a fieldGF (q) of orderq. Furthermore, ifq is a prime power, then

there is only one field of that order.

Additionally for any prime powerq, and any positive integerm there exists a finite field

GF (qm), called the extension field ofGF (q). Such extension fields are the platform on which

many practical coding applications are constructed. In general a code could be constructed

from any Galois FieldGF (q), but in practice codes with symbols fromGF (2) or its extension
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fields GF (2m) are most widely used, since they represent an elegant mapping to the binary

world of digital transmission systems. As a precursor to considering the construction of such

extension fields, the concept ofirreducibleandprimitivepolynomials must be introduced.

3.2.3 Polynomials over Galois Fields

As will become apparent, it is frequently useful in the analysis of error correcting codes

to consider computations with polynomials whose coefficients are from Galois Fields. For

example, a polynomialf(x) of degreen, with coefficients from the binary fieldGF (2) could

be written as:

f(x) = f0 + f1x + f2x
2 + · · · · · · + fnxn (3.1)

where each coefficientfi is 1 or 0, the elements ofGF (2). Polynomial arithmetic over Galois

Fields follows the commutative, associative and distributive rules of traditional polynomial

arithmetic, with the addition, subtraction, multiplication and division of coefficientsbecoming

modulo-q operations, whereq is the order of the Galois Field. Polynomials therefore provide a

convenient and familiar framework for the analysis of error correcting codes.

3.2.3.1 Irreducible Polynomials

A polynomial p(x) over GF (2) of degreem is said to be irreducible overGF (2) if it is

not divisible by any polynomial overGF (2) of degree less thanm but greater than zero.

Considering the simplest examples again, of the four polynomials of degree 2; x2, x2 + 1

andx2 +x are not irreducible since they are either divisible byx or x+1. Howeverx2 +x+1

is not divisible by any polynomial of degree 1, and is thus irreducible.

3.2.3.2 Primitive Polynomials

An irreducible polynomialp(x) of degreem is said to be primitive if the smallest positive

integern for which p(x) dividesxn + 1 is n = 2m − 1. It is difficult to distinguish primitive

polynomials by inspection, but they are of fundamental importance in the construction of Galois

Fields. A key property of primitive polynomials in this context is stated without proof in
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Theorem 2. A more detailed analysis of the properties of primitive polynomials is presented

in [36].

Theorem 2. Any primitive polynomial overGF (2) of degreem dividesx2m−1 + 1.

3.2.4 Construction of Extension Fields Based onGF (2)

Beginning with the two elements 0 and 1 fromGF (2), and following [32] one may then define

a new primitive elementα, and a sequence of multiplications(·) to generate a corresponding

infinite sequence of powers ofα as follows:

0 · 0 = 0,

0 · 1 = 1 · 0 = 0,

1 · 1 = 1,

0 · α = α · 0 = 0,

1 · α = α · 1 = α,

α2 = α · α,

α3 = α · α · α,

· · · · · ·

· · · · · ·

· · · · · ·

αj = α · α · α · α . . . (j times)

· · · · · ·

· · · · · ·

This leaves the infinite set of elementsF =
{

0, 1, α, α2, α3, α4, . . . , αj , . . .
}

. One now

imposes some conditions on the set. First the set is restricted to2m elements. One then defines

a primitive polynomialp(x) of degreemoverGF (2) and imposes the condition thatp(α) = 0.

Sincep(x) is primitive, it dividesx2m−1 + 1 (Theorem 2), thus:

x2m−1 + 1 = q(x)p(x) (3.2)
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Replacingx with the primitive elementα in 3.2 yields:

α2m−1 + 1 = q(α)p(α) = 0 (3.3)

Finally, adding 1 (modulo-2) to both sides of 3.3 yields:

α2m−1 = 1 (3.4)

Under the imposed conditions, the field thus becomes finite:

F ∗ = 0, 1, α, α2, α3, . . . , α2m−2 (3.5)

It may be readily shown [32] that the resulting field is a Galois Field. Whilst the preceding

analysis appears to be rather abstract, it nonetheless yields a fundamental and very useful

practical conclusion. That under the condition wherep(α) = 0, one may use a primitive

polynomial of degreem overGF (2) to generate an extension fieldGF (2m).

Example

Consider the generation of a simple extension fieldGF (23) using a primitive polynomial

p(x) = 1 + x + x3. Settingp(α) = 0 yields1 + α + α3 = 0 and thus (modulo-2) α3 = 1 + α

which can be used to generate the higher powers of the field. Various standard representations

for GF (23) are shown in Figure 3.2. The required sequence of multiplications to generate the

field is as follows:

0 · 1 = 1 · 0 = 0,

1 · 1 = 1,

0 · α = α · 0 = 0,

1 · α = α · 1 = α,

α2 = α · α,

α3 = 1 + α,

α4 = α3 · α = (1 + α) · α = α + α2,

α5 = α4 · α = (α + α2) · α = α2 + α3 = 1 + α + α2,

α6 = α5 · α = (α2 + α3) · α = α3 + α4 = 1 + α + α + α2 = 1 + α2.
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Figure 3.2: Power, polynomial and n-tuple representations ofGF (23)

The n-tuple representation of the field elements is simply a shorthand version of the polynomial

representation. If a coefficient in the polynomial representation is 1, thenthe corresponding

bit in the n-tuple is set. For example1 + α corresponds to110, and1 + α2 corresponds

to 101. All three representations for Galois Fields are widely used throughout the literature.

Polynomial or n-tuple representations are more convenient for considering Galois Field addition

or subtraction3, since these are simple modulo-2 operations on each power ofα. For example:

α4 + α5 = 011 + 111 = 011 xor 111 = 100 = α0 = 1 (3.6)

In contrast, the power representation is often more convenient when considering Galois Field

multiplication or division4, since these operations may be computed by addition of indices [32].

For example:

α2 + α = α(2+1) = α3 = 1 + α = 110 (3.7)

Two specific extension fields ofGF (2) will be of particular interest in the analysis which

follows. The first of these,GF (24), is extremely useful for prototyping and testing coding

applications since calculations are of a manageable size, and the propertiesof GF (24) are

equally applicable to larger fields. Additionally of interest will beGF (28), from which the

Optical Transport Network Reed-Solomon codes are derived.

3Modulo-2 addition and subtraction are identical operations.
4Galois Field division is equivalent to multiplication by the inverse of the divisor.
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The complete fieldsGF (28) generated by primitive polynomialp(x) = 1+x2 +x3 +x4 +x8,

andGF (24) generated by primitive polynomialp(x) = 1 + x + x4 are given in [32].

3.3 Coding Overview

Some basic properties of the block codes around which this research is based are now

introduced. In introducing these concepts it is easier to restrict discussion initially to

binary codes; the key properties of such codes scale easily to the more powerful non-binary

equivalents, which will be considered in due course. Assume initially that thecommunications

system to be considered follows the traditional structure shown in Figure 3.3.

Figure 3.3: A basic communications system

In block coding, the binary information sequence from the source is encoded intomessage

blocks of fixed lengthk, usually denoted byu. The encoder then adds additional information

to the message blocks to produce atransmitted codewordof lengthn(> k), usually denoted by

v. This additional information (sometimes described as theparity bits oroverhead) can then be

used to detect and correct errors in thereceived codewordr , which may arise due to degradation

of the channel signal-to-noise ratio. Such errors are typically represented as anerror vectore.

If the gain of the chosen coding scheme is sufficient to reverse the effect of the channel noise,

the decoded messageu’ will be identical to the original information sequenceu.

3.3.1 Useful Properties of Block Codes

Consider the classic single-error-correcting code example shown in Figure 3.4. This is a(7, 4)

Hamming code from the first set of error correcting codes to be developed [37].

This code has a number of key characteristics which make it extremely attractive for

implementation in hardware. Although the example shown is trivial, its key properties also

apply to the more complex, more powerful codes deployed in many real worldapplications.
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Figure 3.4: The Hamming(7, 4) block code

The code islinear - the modulo-2 sum of any two codewords is also a codeword;systematic

- the message word is present unaltered in the right-most digits of the codeword; andcyclic -

any cyclic shift (left or right) of any codeword is itself a codeword.

These properties map intuitively to hardware synthesis, particularly to well-defined structures

such as shift registers and simple combinatorial circuits (a modulo-2 adder issimply an xor

gate, for example). Techniques applicable to linear, systematic, cyclic codes are thus the focus

of this research.

3.3.1.1 The Generator Polynomial

One of the fundamental characteristics of cyclic codes is the existence of aunique codeword

around which the entire code can be constructed. The significance of thispolynomial is

encapsulated in two key theorems (again stated without proof) below.

An excellent treatment of polynomial arithmetic in the context of cyclic codes is given in [32].

Discussion here is limited to that required to clarify nomenclature used in the analysis of

encoding and decoding techniques which follows.

Theorem 3. For an(n, k) cyclic code,C, there exists a nonzero code polynomial of minimum

degreen − k which is unique.

Theorem 4. Following fromTheorem 3, if g(x) is this nonzero code polynomial of minimum

degreen− k in an(n, k) cyclic codeC, then any other binary polynomial5 is a codeword inC

if and only if it is a multiple ofg(x).

Information messages and codewords are routinely represented using polynomial arithmetic,

5A polynomial with coefficients fromGF (2).
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identical to that used to describe Galois Field elements. Typically, the message tobe encoded

u is given byu(x) and the resultant codewordv by v(x). For example a binary codewordv =

10101010 is the same asv(x) = x7 + x5 + x3 + x, a message wordu = 0111 is the same as

u(x) = x2 + x + 1.

With this convention in mind, and following on fromTheorem 3andTheorem 4, it may be noted

that every code polynomialv(x) in an(n, k) cyclic code can be expressed in the following form:

v(x) = u(x)g(x) = (u0 + u1x + . . . + uk−1x
k−1)g(x) (3.8)

whereu(x) is the message to be encoded andv(x) is the resultant codeword. A cyclic codeC

is therefore completely specified by the nonzero polynomial of minimum degree, g(x), which

is thus termed thegenerator polynomial, and often presented in one of the following shorthand

formats:

g(x) =
2t−1
∏

i=0

(x − αj0+i) =
2t

∑

i=0

gix
i (3.9)

3.3.1.2 Minimum Distance and Error-Correcting Capability

A final fundamental property of block codes, which is directly related to their error-correcting

capability, is theminimum distance. The Hamming Distance between any two codewords is

defined as the number of places in which those codewords differ.

The minimum distance of a codeC is defined as the smallest of the Hamming distances between

any two distinct codewords in the code:

dmin(C) = min {d(x, y)} x, y ∈ C, x 6= y (3.10)

Example

If C is a simple binary code as shown in Figure 3.5, then the Hamming distance betweenc1

andc2 is 3, since they differ in 3 positions. In fact, for this example the Hamming distance

between any two distinct codewords is 3. Thus the minimum distance ofC is 3. It may be
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Figure 3.5: A trivial binary code

shown [32, 36] that the number of errors which a code can detect and correct, t is directly

related to its minimum distance as follows:

t =
1

2
(dmin − 1) (3.11)

This error-correcting capability completes the taxonomy required to formally and completely

describe a binary linear block code. For example, for any positive integer m ≥ 2, there exists a

Hamming code with the following characteristics:

• Block length:n = 2m − 1

• Information symbols:k = 2m − m − 1

• Parity symbols:n − k = m

• Minimum distance:dmin = 3

• Error-correcting capability= 1

3.3.2 From Single to Multiple-Error-Correcting Codes

Clearly the scope of practical application for a single-error-correctingcode is limited.

Fortunately, there exists an elegant generalisation of the Hamming codes forcorrecting

multiple errors, discovered by Bose, Chaudhuri [38] and independently by Hocquenghem [39],

and thus known as the BCH codes, defined as follows.

For any positive integersm(≥ 3) and t(< 2m−1), there exists a binary BCH code with the

following characteristics:
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• Block Length:n = 2m − 1

• Parity Symbols:n − k ≤ mt

• Minimum Distance:dmin ≥ 2t + 1

This code is capable of correcting any combination oft or fewer errors in a block ofn digits, and

is thus called at-error-correctingcode. Recalling thatα is defined as a generalised primitive

element inGF (2m), the generator polynomialg(x) of a BCH code is then defined as the

lowest degree polynomial overGF (2) which has the powers ofα up toα2t as its roots - that is

g(αi) = 0 for 1 ≤ i ≤ 2t.

3.3.3 From Binary to Non-binary Codes

The simple Hamming code in Figure 3.4 is an example of a binary block code. It uses one bit

per code symbol, and can correct 3 bit errors. Furthermore, the binary BCH codes offer a useful

and elegant extension of the Hamming codes. However, such codes remainof limited practical

use over high bandwidth optical transmission systems where bit error rate (BER) thresholds are

extremely demanding.

3.3.3.1 Extending the BCH Codes

To meet these exacting standards, the BCH codes may be further extendedby using multiple

bits per symbol, rather than just one, to dramatically increase error correction and detection

ability. In fact, if p is a prime number andq is any power ofp, then there exist codes from the

Galois FieldGF (q), called theq-arycodes, withq bits per symbol.

The Reed-Solomon codes [34], named after their discoverers, are an example of such codes, and

represent a key non-binary sub-class of the BCH codes. Reed-Solomon codes have been widely

adopted in modern communications systems, despite the fact that at the time of theirdiscovery,

no practical applications were known. The RS(255,239) code is of particular relevance to this

research, being the code standardised for use in the Optical Transport Network. RS(255,239)

uses 8 bits per code symbol, and can correct 8 symbol errors. The advantage of this is best

demonstrated by example.

Consider a stream of 8 code symbols from the RS(255,239) code, with onebit error per symbol
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as shown in Figure 3.6. 8 bits are in error, thus 8 symbols are in error and allthe bit errors can

be corrected; x denotes a bit error.

Figure 3.6: Non binary code with 8 symbol errors - 1 bit error per symbol

Now consider a stream of 8 symbols from the same code in Figure 3.6, with all the bits in error.

Figure 3.7: Non binary code 8 symbol errors - 8 bit errors per symbol

Although there are now 64 contiguous bits in error, there are still only 8 symbol errors, so all

of the erroneous bits can still be corrected. This ability to deal with long runsof contiguous

error bits is extremely useful in communications networks, where intermittent faults may lead

to bursty error profiles.

3.3.3.2 The Reed-Solomon Codes Defined

For any choice of positive integerss andt, there exists aq−ary BCH code of lengthn = qs−1,

which is capable of correcting any combination oft or fewer errors and requires no more

than2st parity-check digits. Withq = 2, one again obtains the binary BCH codes described

previously. The Reed-Solomon codes are the subclass of BCH codes for which s = 1. In

general, at-error-correctingReed-Solomon code with symbols fromGF (q) has the following

properties:

• Block Length:n = q − 1

• Parity Symbols:n − k = 2t

• Minimum Distance:dmin = 2t + 1

RS(255,239) is thus a code with symbols fromGF (256), requiring 8 bits per symbol for distinct

representation of each field element. A complete table ofGF (256) elements, as generated by

primitive polynomialp(x) = 1 + x2 + x3 + x4 + x8 is given in [32]. Each information block
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for encoding is 239 symbols long, with a resultant codeword 255 symbols long. The code is

therefore capable of detecting and correcting 8 symbol errors, as illustrated in 3.3.3.1.

In considering the arithmetic and manipulation of non-binary codes it is common,as with the

binary case, to use polynomial notation. In the simple example of binary codes, the polynomials

take their coefficients fromGF (2); every coefficient is either a 1 or a 0. For the non-binary

codes, the polynomials take their coefficients fromGF (q). These coefficients are usually

defined by their power representation, as in the examples shown below:

u(x) = α24x + α6x2 + α132x3 + . . . . . . + α3x239 (3.12)

v(x) = α16x + α210x3 + α88x4 + . . . . . . + α16x255 (3.13)

3.4 Forward Error Correction in the Optical Transport Network

In addition to the network management functions mentioned in 2.2 the G.709 OpticalTransport

Network also specifies capacity for FEC as shown in the Optical Transport Unit (OTU) frame

structure of Figure 3.8. Byte numbers are annotated.

Figure 3.8: OTUk frame structure

Each of the OTUk6 sub-rows is 4080 bytes long, and may be subdivided into 16 interleaved

255 byte Reed-Solomon calculations as shown in Figure 3.9. The first byte inOTU row 1 is
6k refers simply to line rate, see Table 3.1.
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mapped into first byte in sub-row 1, the second into the first byte in sub-row2 and so on until

the sixteenth byte is mapped into the first byte in sub-row 16. The process then wraps around

such that the seventeenth byte from OTU row 1 is mapped into the second bytein sub-row 1,

the eighteenth into the second byte in sub-row 2 and so on. Each of the fourOTU rows is

constructed and deconstructed in this fashion.

This interleaving significantly enhances the burst-error performance ofthe code. Recall that

the non-interleaved RS(255,239) code may detect and correct up to 8 symbol errors, or 64

contiguous bit errors. For this to occur in any of the sub-row FEC calculations, 1024 contiguous

bits would have to be in error in the OTUk frame structure, since the interleaving distributes

these errors evenly between the sub-rows. Thus the interleaved code can detect and correct up

to 1024 contiguous errors in an OTUk frame.

In wireline transmission systems this corresponds to an effective coding gain of 7 to 8dB.

For very high bandwidth optical networks with transmission speeds up to 43Gbps this acts

to counter signal-to-noise ratio degradation due to fibre loss, chromatic dispersion and other

aberrations.

Effectively this means that network operators can achieve improved transmission distance

without increasing optical power, or improved bit error rate margins across the existing network

span.

Figure 3.9: Byte interleaved FEC as specified by ITU-T G.709

The frame structure defined for the Optical Transport Network is fixed and independent of

line rate. At higher speeds, the period of transmission for each frame decreases. The
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Table 3.1: OTU type and capacity

currently defined transmission rates are based on OC-48, OC-192 and OC-768, each scaled

for the additional FEC overhead. Note that the fractional scaling of theserates is not exactly

255/239, since additional bytes (unrelated to the FEC functionality and sometimes referred to

as “stuffing” bytes) are added when mapping the client signal overhead[11].

3.5 Forward Error Correction for 43Gbps Systems

The research detailed here focuses on OTU-3 systems, running at approximately 43Gbps. Such

systems present a number of unique challenges to both electronic system designers and optical

network providers, given the speeds which must be accommodated for real time processing and

network monitoring.

Allowing adequate margin for system jitter, the current target FPGA silicon is capable of

running at approximately 170MHz [24, 40]. This means that on-chip interfaces need to be 256

bits (32 bytes) wide. This processing parallelism maps directly to silicon area -the wider the

data interface the larger the implementation. This in turn presents a challenge for the high-speed

designs typical of communications systems, as routing delays and the layers of logic required

for multi-bit processing make it difficult to achieve timing closure.

Additionally, since there are 16 interleaved Reed-Solomon calculations in every OTUk row,

processing data 32 bytes wide delivers two bytes from each Reed-Solomon calculation in every

clock cycle, which adds further to the need for parallel processing engines and control hardware

to accommodate the line rate. This research addresses all of these issues ininvestigating ways

to gracefully process FEC in 43Gbps systems, in the context of both encoding and decoding

architectures.
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3.5.1 Reed-Solomon Encoding

If u(x) is an arbitrary message polynomial, it may be shown [32, 36] that there are three steps

to systematically encodingu(x) to produce a corresponding codeword inC, v(x). These steps

are as follows:

• Premultiply the message polynomialu(x) by xn−k

• Divide the productu(x)xn−k by g(x), the generator polynomial ofC, to obtain the

remainder polynomialb(x).

• Form the codewordv(x) = b(x) + xn−ku(x)

Whilst these operations at first appear convoluted, they map elegantly to a linear feedback

shift-register (LFSR) structure. Premultiplication of the message polynomial isa simple

shift operation, whilst Peterson and Weldon [41] have presented a detailed treatment of how

polynomial long division with a fixed divisor maps to an LFSR, such as that shown in

Figure 3.10.

Figure 3.10: Circuit for dividingx6 + x5 + x4 + x3 + 1

The LFSR structure is readily extended to polynomials with coefficients from extension fields of

GF (2). The non-zero feedback taps must now become Galois Field multipliers, the summation

blocks must become Galois Field adders and the storage elements must scale to store multiple

bits per symbol. Otherwise, the steps involved in systematic encoding of Reed-Solomon

codewords are identical to the binary operations.

The architecture for a standard division circuit RS(255,239) encoderis shown in Figure 3.11.

The message symbols to be encoded are shifted into the LFSR as shown (with the gate turned

on) and simultaneously shifted onto the transmission channel. The message symbols are thus

multiplied by feedback coefficients corresponding to the generator polynomial. Once all the

message symbols have been shifted in, all the Reed-Solomon parity digits havebeen calculated

39



Forward Error Correction

Figure 3.11: StandardRS(255, 239) encoder architecture

and are stored in the registers. The feedback path is broken by turning off the gate and the

parity digits shifted onto the transmission channel to complete the codeword.

Given the relative simplicity of the traditional Reed-Solomon encoder structure of Figure 3.11,

previous research in this field has been biased towards optimising the performance of the

arithmetic units rather than the architecture itself, which for most applications performs

optimally. In particular the optimisation [25, 42, 43] and synthesis [44] of finite field

multipliers, which represent the computational bottleneck and thus the critical timing

path in any Reed-Solomon implementation, have both been afforded significant effort.

Other areas of recent research interest include reconfigurable encoders [45] which can be

dynamically programmed to implement different codes or improve efficiency, and rate adaptive

variants [46].

The research detailed here maintains a more architectural focus. At the time of investigation,

very high performance Galois Field arithmetic blocks optimised for FPGA hardware

had already been developed by Aliathon Ltd. Furthermore, investigation intodynamic

reconfiguration or rate adaptability was not deemed appropriate given thefixed nature of

G.709 encoding. In considering this fixed encoder structure, the OTU-3specific case presents

a number of unique design challenges which this research seeks to address.

3.5.2 A New Approach to Reed-Solomon Encoding

The structure presented in Figure 3.11 is intrinsically a single-symbol processing engine;

only one symbol at a time may be fed into the shift-register. This presents difficulties at
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OTU-3 transmission speeds. Given the limitations of silicon speed, the on-chipinterfaces for

processing 43Gbps optical rates are 32 bytes wide. As previously illustrated, each sub-row

in the OTU-3 frame comprises 16 interleaved FEC calculations. Thus, on every system clock

cycle, two bytes from each FEC calculation are delivered and must be processed in real time.

Consider the operation of an OTU-3 sub-row calculation based on a single-symbol encoder as

illustrated in Figure 3.12. For simplicity, the figure shows small input sub-rowsof 8 symbols

each, labelled alphabetically. In reality, the incoming messages will always comprise an odd

number of symbols; a significant point which will be discussed again in due course.

Figure 3.12: OTU-3 encoding based on single symbol encoders

To reiterate the fundamental difficulty in using a single-symbol engine - in every clock cycle 2

input symbols arrive and only one may be processed. Thus to keep up withthe incoming data,

one must introduced parallel encoders, data buffers and pipelined logic. In the current example

the first sub-row to arrive contains input symbolsa,b,c,d,e,f,g,h. These symbols arrive in four

clock cycles during pipeline stage 1. During this processing window, all 8 symbols are written

to a sub-row buffer, and symbolsa,b,candd are fed to the first encoder.

In pipeline stage 2, the next sub-row arrives comprising symbolsi,j,k,l,m,n,o,p. As before these

8 symbols are written to the sub-row buffer and symbolsi,j,k andl are fed to the first encoder.

Also in pipeline stage 2, since symbolse,f,gandh from the first sub-row to arrive have not yet

been processed, these are fed to a second buffer and processed by the second encoder. This

41



Forward Error Correction

second encoder must be initialised with the parity values produced by the first encoder during

pipeline stage 1 for the stage 2 calculation to be valid. At the end of pipeline stage two, the

parity symbols associated with the first sub-row to arrive are valid. Subsequent sub-rows are

processed in identical 2-stage fashion.

An OTU-3 encoder core based on the architecture shown in Figure 3.11 would thus require 32

LFSR structures in parallel, 16 full sub-row buffers and 16 half sub-row buffers, the buffers

utilising 32 embedded block-RAMs. The architecture also introduces a sub-row’s worth of

additional latency and requires relatively complex pipelining and control logic.

Clearly a reformulation of the traditional Reed-Solomon encoder capable ofprocessing two

symbols per clock cycle would be useful in addressing this complexity. Fredrickson [47] has

followed this approach in formulating a word-wise encoder limited to generatingtwo parity

symbols, based on an analysis of the behaviour of a traditional encoder over two clock cycles.

Figure 3.13: Simple encoder for analysis over two clock cycles

For the simple example given, assuming that the message symbol inputs to the encoder aremi

andmi+1 respectively, Fredrickson notes that the contents of the registersp(0) andp(1) after

two clock cycles may be given by the following equations:

p(0) = g0g1(wi + mi) + g0(vi + mi+1) (3.14)

p(1) = g2
1(wi + mi) + g1(vi + mi+1) + g0(wi + mi) (3.15)

Additionally, Fredrickson has noted that the introduction of a fixed offsetfor all the powers of

α in any field-specific encoder realisation can be used to reduce the numberof Galois Field

multipliers required.
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Recall the generalised expression for the code generator polynomial was given by Equation 3.9

as:

g(x) =

2t−1
∏

i=0

(x − αj0+i) =

2t
∑

i=0

gix
i

For the encoder of Figure 3.13, defined for a single-error-correcting code with symbols from

GF (256) the generator can be expanded as follows:

g(x) = (x − αj0)(x − αj0+1) = x2 − (αj0 + αj0+1)x + α2j0+1 (3.16)

Hence the individual generator coefficients corresponding to the LFSRfeedback taps may be

given by:

g2 = 1; g1 = αj0 + αj0+1; g0 = α2j0+1 (3.17)

Noting that the field for this example isGF (256), the fixed offsetj0 can be chosen such that

eitherg1 or g0 equal 1, thus removing the Galois Field multiplier at that stage in the LFSR

circuit. Thus in one possible embodiment withj0 = 127 the g0 multiplier is eliminated. In

the other possible embodiment withj0 = 230 the g1 multiplier is eliminated. Fredrickson

demonstrates by inspection that the latter yields a more efficient hardware solution, with a

critical path traversing two Galois Field adders and one Galois Field multiplier as shown in

Figure 3.14.

Whilst this field-specific optimisation technique is relatively easy to apply to the encoder

example with a simple quadratic generator polynomial specified by [47], it becomes more

difficult to apply to larger generators where the coefficients comprise multipleterms inα.

Furthermore, identifying which coefficient elimination will result in an optimal hardware

solution becomes a non-trivial task, and the resultant architecture does not map intuitively to

the traditional encoder structure of Figure 3.11.
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Figure 3.14: Reformulated two-symbol encoder forg(x) = x2 − x + α206

3.5.3 A Modified Reed-Solomon Encoder for OTU-3

An alternative two-symbol Reed-Solomon encoder is proposed here. The starting point for

development of the new encoder is similar to that adopted by Fredrickson - analysis of the

behaviour of a traditional encoder system over two clock cycles. By deriving a new generalised

expression relating the parity symbol values to two input symbols rather than one, it is possible

to construct an encoder with a guaranteed optimal critical path delay which isindependent of the

Galois Field used and the size of the generator polynomial. The new approach is thus inherently

scalable and does not require any offset to be introduced in the Galois Field arithmetic.

The resulting architecture is more complex, in the sense that additional parallel multiplications

are introduced. However the new feedback coefficients remain constants which may be

pre-computed. Since the newly introduced multiplications are in parallel with the original

generator feedback taps, the critical path of the new encoder is the same as its predecessor,

traversing two adders and one multiplier. Consider the upper segment of a generalised encoder

structure as shown in Figure 3.15.

Here,p(m) represents the upper-most parity symbol in the code, andp(n) is an arbitrary parity

digit. Messagem0 is shifted into the encoder first, followed by messagem1. After one clock

cycle, the value stored inp(n) is given by:

p(n)0 = gn(p(m)0 + m0) + p(n − 1)0 (3.18)
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Figure 3.15: Most significant symbols of a Reed-solomon encoder

After a further clock cycle, messagem1 has been shifted into the encoder, and the value stored

in p(n) is given by:

p(n)1 = gn(p(m)1 + m1) + p(n − 1)1 (3.19)

This can be expanded to produce a generalised expression relating an arbitrary parity symbol

to two message symbols:

p(n)1 = gn(gm(p(m)0 + m0) + p(m− 1)0 + m1) + gn−1(p(m)0 + m0) + p(n− 2)0 (3.20)

p(n)1 = (gngm + gn−1)(p(m)0 + m0) + gn(p(m − 1)0 + m1) + p(n − 2)0 (3.21)

Reformulating the generalised expression to yield Equation 3.21, one can readily implement

an encoder structure based on the new arithmetic to compute parity digits by processing two

symbols simultaneously, as shown in Figure 3.16.

Figure 3.16: A modified Reed-Solomon RS(255,239) encoder for OTU-3
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Having now developed an encoder capable of processing two Reed-Solomon symbols per clock

cycle, there remains one further barrier to an OTU-3 compliant solution. Intrinsically, the

number of symbols per message word in any Reed-Solomon code is odd. Thus, in processing

such messages two symbols at a time it is necessary to deal with an odd cycle in every message

word, when one of the input symbols to the encoder is non-valid, as illustrated in Figure 3.17

for a simple RS(15,9) code.

In this example, data is presented directly to the two symbol encoder from the OTU-3 line

interface. For the RS(15,9) code, nine information symbols and six null parity symbols (to

be replaced by the contents of the encoder registers at the end of each calculation) for each

message word are presented to the encoder inputs. The symbols of the first message, denoted

m1x andp1x are presented first, followed by the first symbols of the second message,denoted

m2x. Since the encoder processes two symbols at a time (on input channels 1 and 2), the

fifteenth symbol (null parity) of the first message overlaps with the first information symbol of

the second. This results in an incorrect calculation of parity symbols for the second message

word.

Figure 3.17: Invalid data overlap in a two-symbol encoder

There are a number of possible ways to deal with this. For example, with adequate buffering

one could implement a standard encoder in parallel with the two symbol variantand switch to

the single byte stream during the odd cycles. This would add a significant amount of latency

and redundant hardware.

The solution proposed here for OTU-3 is to implement a wrapper, designedto fit around the

encoder core, which formats the G.709 compliant data in such a way that the encoder always

processes an even number of symbols. The wrapper does this by the insertion of a leading zero

symbol (which does not change the values stored in the parity registers) during the odd cycles.

Since the code is systematic, this leading zero also appears on the output datastream from

the encoder. When this happens, the wrapper removes the zero symbol, so that to any device

interfacing to the encoder, the data stream remains G.709 compliant.
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The encoder and wrapper have been implemented in VHDL and tested using behavioural

test-bench modules, with the output parity symbols verified against a known Reed-Solomon

tool from Bell Labs [48]. The new encoder utilises approximately 350 slices7 compared with

approximately 170 for the single symbol variant when built for the Virtex II Pro family of

FPGA devices, running at clock speeds greater than 200MHz. However, since only 16 of the

new engines are required for OTU-3 (compared with 32 of the traditional engines), and no

control logic is required to transfer data between cascaded encoder stages, the arithmetic logic

requirements of both solutions are nominally equivalent.

The principal advantage of the new architecture is the embedded memory saving. The OTU-3

encoder proposed here completely removes the need for any interim buffering of sub-rows, thus

saving 32 block-RAMs and removing the latency introduced in the single-symbol pipelined

implementation.

3.5.4 Reed-Solomon Decoding

Decoding Reed-Solomon codes is arithmetically more complex than the equivalent encoding,

and thus typically represents the performance bottleneck in FEC systems. The main processing

blocks in a typical Reed-Solomon decoder are shown in Figure 3.18.

Figure 3.18: A typical Reed-Solomon decoder system

3.5.5 Syndrome Calculator

Calculation of a special polynomial known as thesyndromeis an integral part of many decoding

schemes for block codes. Appreciation of the significance of the syndrome polynomial requires

7A slice is a standard Xilinx FPGA logic block, see [24] for details.
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a brief review of some further background coding theory. Some equations which will prove

useful in subsequent analysis are stated here without proof. For a detailed treatment the reader

is referred to [32, 35].

In the analysis of block codes it is common to use matrix notation (in addition to the polynomial

representation used thus far). For example, the cyclic code generated by g(x) = 1+x+x3 has

a corresponding generator matrix given byG:

Figure 3.19: Generator matrix forg(x) = 1 + x + x3

This matrix G is generally not in systematic form, but can be reformulated by simple row

operations, and presented systematically. In its general form, this matrix may be written in

terms of a sub-matrixP and an identity matrixI such thatG = [P Ik], as follows:

Figure 3.20: A systematic generator matrix

If the generator matrix is stated in this form, a corresponding parity check matrix also exists,

given byH = [In−k PT ] wherePT is the transpose of theP matrix shown above. Having

defined the parity check matrixH, the syndrome is given (without proof here) as the following

(n − k)-tuple, whereHT is the transpose ofH andr is the received vector:

s = r · HT = (v + e) · HT = v · HT + e · HT (3.22)

It may readily be shown thatv · HT = 0. Thus the syndrome is dependent only on the received

error vectore. This is what makes it so important as a decoding mechanism - since regardless

of the transmitted codeword, one has a way of determining (within the limits of the chosen

scheme) the error vector.
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Furthermore, returning once again to the familiar polynomial notation, it may readily be

shown [32] that the syndrome components can be related directly to the received error vector

as follows (wheren is the number of errors):

si =
n−1
∑

j=0

ej(α
i)j = e0 + e1α

i + e2(α
i)2 + . . . . . . + en−1(α

i)n−1 (3.23)

The syndrome coefficients are thus readily calculated using a simple divisioncircuit similar in

basic structure to a single encoder coefficient, shown in Figure 3.21.

Figure 3.21: A simple syndrome calculator circuit

3.5.6 Key Equation Solver (KES)

The task of returning a valid error polynomial from a syndrome polynomial isan inherently

difficult one. Assuming that the syndrome polynomial from the latest received codeword has

been successfully computed, then:

s(x) = s1 + s2x + s3x
2 + . . . + s2tx

2t−1 =
2t−1
∑

i=0

si+1x
i (3.24)

From Equation 3.23 it may be noted that the syndrome coefficients themselves may be

represented as a summation of received vector terms inα. Thus, substituting Equation 3.23

into Equation 3.24, the syndrome polynomial may be expressed as a double summation.

s(x) =
2t−1
∑

i=0

n−1
∑

j=0

ejα
(i+1)jxi (3.25)

Noting thatej is only non-zero ifj is an error location(j ∈ M) one may simplify and reorder

this summation to give:
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s(x) =
∑

j∈M

ejα
j

2t−1
∑

i=0

αijxi (3.26)

Expanding the inner sum of Equation 3.26 fully one obtains the following geometric

progression:

2t−1
∑

i=0

αijxi = 1 + αjx + α2jx2 + . . . . . . + α(2t−1)jx2t−1 =
1 − (αjx)2t

1 − (αjx)
(3.27)

Substituting the sum of this geometric progression into Equation 3.26 one obtainsthe following:

s(x) =
∑

j∈M

ejα
j 1 − α2tjx2t

1 − αjx
(3.28)

s(x) =
∑

j∈M

ejα
j

1 − αjx
−

∑

j∈M

ejα
jα2t+1x2t

1 − αjx
=

ω(x)

l(x)
−

u(x)x2t

l(x)
(3.29)

From Equation 3.29 it may be seen thatl(x) is the product of all the terms(1 − ajx) asj runs

through the error locationsM :

l(x) =
∏

j∈M

(1 − αjx) (3.30)

The roots ofl(x) are the inverses of the powersaj for whenj is an error location, thusl(x)

is commonly referred to as theerror locator polynomial, since its solution yields the error

locations. Therein lies the difficulty for practical systems - since Equations 3.25 through 3.30

are based ona priori knowledge of the error vector, which a practical real-time decoder will

not have.

From Equation 3.29 one may also derive the definitions of two other significant polynomials:

ω(x) =
∑

j∈M

ejα
i

∏

i∈M,i6=j

(1 − αix) (3.31)
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u(x) =
∑

j∈M

ejα
(2t+1)j

∏

i∈M,i6=j

(1 − αix) (3.32)

Having determined the error locations usingl(x), one can useω(x) to determine the error

values at those locations.ω(x) is thus commonly known as theerror evaluator polynomial.

Equally, one could useu(x) to determine the same error values, henceu(x) is sometimes

referred to as theerror co-evaluator; of theoretical interest though not actually required in

practice. Equation 3.29 is often restated without explicit reference tou(x) in the form of the

polynomial congruence8 known as Berlekamp’s Key Equation [49], after its discoverer. The

locator is commonly denoted byσ(x) in the literature; the notation adopted for the remainder

of this analysis.

σ(x)s(x) = ω(x) mod x2t (3.33)

This Key Equation is aptly named, being the cornerstone of BCH and Reed-Solomon

encoding. The Key Equation Solver (KES) block takes the syndrome as input and produces

the error locator and error evaluator polynomials as outputs. Since solutionof the key equation

is mathematically intractable, the KES architecture is typically the most complex in any

Reed-Solomon system.

3.5.7 Chien Search and Forney Calculation

The final stage in Reed-Solomon decoding is to establish the error locations and the error values

corresponding to those locations. Having established the error locator polynomial σ(x) one

seeks to find its roots, which yield the inverse error locations. Sinceσ(x) is a polynomial with

coefficients from a finite field, it is practical (at least for fields of manageable size) to substitute

every possible field element as a root. An elementαi is a root ofσ(x) if σ(αi) = 0.

This direct substitution method was first utilised by Peterson [50] and later formalised by

Chien [51] in the architecture shown in Figure 3.22. The technique is now commonly known

as the Chien search. The registers are initially loaded with the coefficients ofthe locator

polynomial:

8Two polynomialsf(x) andg(x) with coefficients from finite fields are said to becongruentmodulom if and
only if all coefficients of the difference polynomialf(x) − g(x) are divisible bym.
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σ(x) = 1 + σ1x + σ2x
2 + σ3x

3 + . . . . . . + σtx
t (3.34)

Multipliers for each power ofα are then clocked once, and the results of each(σiα
j)

multiplication summed and compared with zero. If the comparison is true, an errorlocation

has been found. The process repeats until all possible roots have been tested.

Figure 3.22: A chien search circuit

For binary codes, error correction is achieved simply by adding 1, modulo2 at the appropriate

error locations. For the non-binary case (including the Reed-Solomon) codes, an appropriate

error value must be determined. Forney [52] has formulated a solution relating the error values

yi to the evaluator polynomial and the derivative of the locator polynomial.

yi =
xg0w(x)

xσ(x)
(3.35)

The derivative of the locator polynomial simplifies to the odd powers ofσ(x), so the error values

may also be readily computed using simple systolic hardware structures. Error correction is

finally achieved by adding the values calculated in Equation 3.35 modulo 2 with thereceived

data, and delayed to match the processing time of the engine.

3.5.8 Practical Reed-Solomon Decoding

The steps described above are integral to most practical Reed-Solomon architectures. As has

been shown, the Syndrome Calculator is a relatively simple division circuit, much like the

encoder structure. Similarly, the Chien search and Forney correction functions lend themselves
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naturally to efficient hardware implementation. In contrast, the theoretical difficulties of solving

the Key Equation are mirrored in the various existing practical implementations, such that the

Key Equation Solver block remains the computational bottleneck in any decoder system. The

search for an optimal heuristic KES solution has thus driven significant research effort in this

domain.

The literature also reveals some interesting approaches to developing efficient architectures,

not exclusively focused on the Key Equation. Shen et al. [53] exploit the similarities in

structure between the syndrome calculator and encoder circuit to merge thefunctions into a

single hardware block. Seki et al. [54] have reported improvements in power consumption and

logic size based on a time-multiplexed RS decoder structure. At the arithmetic level, Strollo

et al. [55] introduce a bit-parallel multiplier structure to improve the efficiencyof their CMOS

implementation.

As in the case of the basic encoder functions, Aliathon Ltd. had previouslydeveloped a suite of

efficient arithmetic blocks for Reed-Solomon decoding. Considering this, and in keeping with

the thesis statement outlined in 1.3, it was decided that the search for gains and optimisations in

FPGA-based Reed-Solomon decoding should focus on possible architectural improvements.

Specifically, the goal here was to investigate possible optimisation techniques for OTU-3

systems, for which the current literature again suggested the Key Equationas a promising

starting point.

3.5.9 Towards Optimisation of the KES Architecture

As discussed in 3.5.6 the Key Equation Solver (KES) block is typically the most complex in

any Reed-Solomon decoder system. Two well documented approaches to solution of the Key

Equation dominate the literature. Massey [56] was the first to give a physical interpretation to

Berlekamp’s mathematics, reducing the problem (like Peterson before) to one of shift-register

synthesis. Their resulting heuristic solution has become known as the Berlekamp-Massey

algorithm.

This approach and in particular its “inversionless” variants [57, 58] (which remove the need

for the computationally intensive inversion of finite field elements), have proven popular

in contemporary implementations. In particular, Aliathon’s current KES architecture is

based on an inversionless Berlekamp-Massey implementation as specified bySarwate and
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Shanbhag [13]. Formal definition of this variant of the algorithm is given inAppendix A.

Equally applicable to solution of the Key Equation is the Extended Euclidean algorithm [36, 59]

which applies iterative polynomial division to generate scalar multiples of the error locator

and error evaluator polynomials simultaneously. Formal definition of the version presented by

Pretzel [36] is given in Appendix B; the algorithm is an intuitive extension ofEuclid’s division

theorem for finding the greatest common divisor of two integers - or polynomials in the context

of coding theory.

The Extended Euclidean algorithm has traditionally been favoured in decoder implementations

given its relative simplicity (the locator and evaluator polynomials are found simultaneously)

which tends to yield very regular, systolic hardware structures and relatively simple control

circuitry. In contrast, the Berlekamp-Massey algorithm tends to yield more complex, less

regular hardware structures and has been adopted in relatively few implementations, even

though (in its inversionless form) it potentially delivers higher performancesolutions, which

eliminate the need for polynomial division.

Given the relative strengths of each approach, it is perhaps not surprising that more

recent research has sought to combine the attributes of the Extended Euclidean and

Berlekamp-Massey algorithms. Sarwate and Shanbhag [13] for example,present a

reformulation of the inversionless Berlekamp-Massey algorithm to yield Euclidean-like

regularity in the resultant hardware structures. Of particular interest in this context is more

recent research by Truong et al. [12], which presents an algorithm (hereafter referred to as

the “hybrid decoding algorithm”) drawing on the mathematical bases of both theExtended

Euclidean and inversionless Berlekamp-Massey approaches. The work claims to achieve

decoding performance three times faster than that achieved in [58], and was thus deemed a

good prospect for further investigation with a view to implementation in an FPGA.

3.5.10 The Hybrid Decoding Algorithm

The hybrid algorithm is similar in structure and initialisation to the Extended Euclidean

algorithm, but uses a combination of linear operations and a distributed multiplication based

on the Berlekamp-Massey algorithm to remove the need for polynomial division.
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3.5.10.1 Formal Definition

Notation:

• Ω(x): The Evaluator Polynomial

• Λ(x): The Locator Polynomial

• δ: A Working field element - commonly referred to as the discrepancy

• γ: A Working field element

• k, l: Integer control variables

For each stage of the algorithm there are three working polynomials; for example in the case of

the evaluator in thekth iteration, one hasΩ(a)
k (x), Ω

(b)
k (x) andΩ

(c)
k (x).

1. Initialisation (Based on the Extended Euclidean algorithm).

SetΩ(a)(x) = xdmin−1 wheredmin is the minimum distance of the code.

SetΛ(a)(x) = 0, Λ(b)(x) = 1.

SetΩ(b)(x) = s(x) wheres(x) is the Syndrome Polynomial.

Setk = 1 andl = 0.

2. Shift(b) polynomials one position left (equivalent to multiplication byx). Incrementk.

Ω
(b)
k (x) = Ω

(b)
k (x).x

Λ
(b)
k (x) = Λ

(b)
k (x).x

k = k + 1 (if not first iteration)

3. Assignδ and γ from upper coefficients ofΩ(b)
k (x) and Ω

(a)
k (x). Compute current(c)

polynomials using multiplication techniques from the Berlekamp-Massey algorithm.

δ = Ω
(b)
d,k(x), γ = Ω

(a)
d,k(x)

Ω
(c)
k (x) = δ.Ω

(a)
k (x) + γ.Ω

(b)
k (x)

Λ
(c)
k (x) = δ.Λ

(a)
k (x) + γ.Λ

(b)
k (x)

If k = d − 1 then STOP.
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4. Conditionally translate working(a) polynomials for next iteration and updatel.

If δ 6= 0 and2l = k − 1 then

Set l = k − l

Set Ω
(a)
k+1(x) = Ω

(b)
k (x) andΛ

(a)
k+1(x) = Λ

(b)
k (x)

else

Set Ω
(a)
k+1(x) = Ω

(a)
k (x) andΛ

(a)
k+1(x) = Λ

(a)
k (x)

end if.

5. Update working(b) polynomials for next iteration.

SetΩ(b)
k+1(x) = Ω

(c)
k (x) andΛ

(b)
k+1(x) = Λ

(c)
k (x)

Go To 2.

3.5.10.2 Verification

The first stage in the investigation of the algorithm proposed in [12] was to verify that it was

functionally correct. Initially this was proven by hand, using a RS(15,9) codeword which uses

4 bits per symbol and is thus relatively easy to compute manually. The detailed working for an

example with a known error vector and syndrome is shown in Figures 3.23 and 3.24.

Note that numbers shown correspond to the power ofα of the field element coefficient in any

given position. The numbers along the top represent the order of the corresponding position.

For example, the final polynomial in thec position (the final entry in the table of Figure 3.24)

is given byΛ(c)(x) = α13x5 + αx4 + α9x3. Note also the areas of corresponding shading

reflecting where the delta (δ) and gamma (γ) values multiply each coefficient in thea andb

polynomials in Stage 3 of the algorithm. The arrows show where a left shift oftheb polynomial

has been applied.

The results produced by this example were shown to produce the correcterror locations and

values. The algorithm was subsequently simulated in VHDL using behavioural models9 with

known correct codewords, producing identical results to those provided by a known-good

behavioural Berlekamp-Massey equivalent.

9Not intended for logic synthesis.
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Figure 3.23: Detailed working of hybrid algorithm for the evaluator polynomial

Figure 3.24: Detailed working of hybrid algorithm for the locator polynomial
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3.5.11 VLSI Implementation

Once a degree of confidence in the basic operation of the hybrid algorithmhad been established,

the next stage was to consider the practical aspects of any FPGA hardware implementation. A

VLSI structure based on a direct implementation of the hybrid decoding algorithm had already

been proposed [60, 61] as illustrated in Figures 3.25 and 3.26 for the evaluator and locator

computations respectively.

Figure 3.25: VLSI architecture for evaluator computation based on a hybrid decoding
algorithm

Figure 3.26: VLSI architecture for locator computation based on a hybrid decoding algorithm

The architecture comprises banks of registers to store the coefficients ofthe working

polynomials. Cascaded adders and multipliers implement the distributed arithmetic required

in Stage 3 of the algorithm, and the update decision for polynomiala required in Stage 4 is
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represented in the figure as a series of switches (implemented as multiplexers).

The resultant architecture is highly regular, and thus potentially a good candidate for hardware

implementation. However the structure proposed requires(8t + 4) registers,(8t + 4) finite

field multipliers and(4t + 2) finite field adders in total to compute the locator and evaluator

polynomials, wheret is the error correcting capability of the code.

Thus although the direct implementation of the hybrid algorithm completes in only2t

clock cycles, initial comparison with Aliathon’s existing solution suggested thatan FPGA

architecture based on the former would be too large to be a credible alternative. With this in

mind, further study of the operation of the hybrid algorithm was undertaken, with a view to

identifying an improved architecture suitable for implementation in an FPGA.

3.5.12 Towards an improved KES architecture

Whilst a direct implementation of the hybrid algorithm does not yield a particularlyefficient

solution for OTU-3 systems, investigation of the algorithm’s behaviour across the correctable

range of error vectors yielded some interesting results pointing the way to anoptimised

hardware solution.

A synthesizable VHDL implementation of a Key Equation Solver based on the hybrid algorithm

was developed, and embedded in a test system comprising known behavioural models of

the Syndrome Calculator, Chien Search and Forney Calculation blocks. For comparison, an

existing Key Equation Solver (based on the Berlekamp-Massey algorithm and known to be

functionally correct), was also embedded in the test code. A behaviouralencoder was used

to generate valid RS(255,239) codewords. These codewords were corrupted with known error

vectors of fixed order from a single error tot errors (where again,t was the error correcting

capability of the code) and presented as inputs to the decoder.

The behaviour of individual coefficients in the evaluator and locator polynomials was then

observed on a per-iteration basis until the algorithm terminated. Coefficientswhich were

non-zero and therefore had to be computed during any given iteration were tabulated as shown

in Figures 3.27 to 3.34.
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Figure 3.27: Non-zero coefficients with 1 symbol error

Figure 3.28: Non-zero coefficients with 2 symbol errors
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Figure 3.29: Non-zero coefficients with 3 symbol errors

Figure 3.30: Non-zero coefficients with 4 symbol errors
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Figure 3.31: Non-zero coefficients with 5 symbol errors

Figure 3.32: Non-zero coefficients with 6 symbol errors
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Figure 3.33: Non-zero coefficients with 7 symbol errors

Figure 3.34: Non-zero coefficients with 8 symbol errors
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From these results, it was observed that as the locator grew in size, coefficients in the evaluator

were removed, such that the number of occupied coefficient positions in any given iteration

reached a maximum of(2t+2). It was further noted that because the locator polynomial grows

in a predictable manner, one may take the opportunity to right-justify its non-zero coefficients,

as shown in Figure 3.35 (where the locator coefficients occupy the rightmost portion of the

polynomial), such that all of the information required to complete the algorithm maybe stored

in (2t + 3) registers per concatenated polynomial.

Figure 3.35: Proposed coefficient justification for worst case error vector

A further improvement to the existing algorithm can be made, which whilst offering marginal

performance improvement in absolute terms, is of key significance to OTU-3 systems. Using

the initialization conditions specified in the original definition [12], the algorithm completes in

2t iterations, wheret is the error correcting capability of the code. However by appropriate

transformation of the Syndrome Polynomial inputs and working variables, it ispossible to skip

the first iteration (since all the information required for the second iteration ispresented at

initialisation), and allow the algorithm to produce a valid result every(2t − 1) clock cycles.
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This improvement is integral to the viability of the new decoder for 43Gbps systems. At

43Gbps, one receives 16 Reed-Solomon codewords in 127 clock cycles (processing two

symbols per cycle). Using a decoder based on the inversionless Berlekamp-Massey algorithm

- previously developed at Aliathon Ltd. - 32 engines are required comprising approximately

350 slices each to give a total utilization of 11200 slices.

For the RS(255,239) 8-error-correcting code, a prototype Key Equation Solver which stores

the evaluator and locator as a concatenated polynomial and performs the required polynomial

justification has been developed. The architecture decomposes to a seriesof multiplexers and

demultiplexers which control the datapath into the arithmetic blocks associated withthe original

algorithm. The structure is shown for a single coefficient in Figure 3.36.

Figure 3.36: Modified KES architecture for a single coefficient

Selection logic determines whether the currenta coefficient remains unchanged, or whether it

is assigned the previousb value, as defined in Stage 4 of the original algorithm. Additional

selection logic then determines whether the coefficients of the locator should be justified in

the current iteration. The new KES architecture can also exploit the modifiedinitialisation

proposed above to complete calculations in(2t − 1) clock cycles.
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The prototype KES can thus process 1 codeword in 15 clock cycles, or 16 codewords in 240

clock cycles. Therefore with 2 of the new engines, comprising approximately 2000 slices

each10, one may solve the key equation with a total utilization of 4000 slices, or 36% of the

original utilisation figure - a significant improvement.

10Built for Xilinx Virtex II Pro.
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Chapter 4
Packet Classification

4.1 Introduction

Packet Classification is a key enabling function for an increasing number of networking

applications, and in fact embodies a diverse range of techniques. In themost general terms,

classification applications seek to identify a data packet based on some significant tuple within

its header or payload, and associate some action with this identification. Iyer et al. [62] propose

the following definition:

Given a set of rules or policies defining packet attributes or content,packet
classificationis the process of identifying the rule or rules within this set to which
a packet conforms or matches.

Within this broad categorisation, packet classification techniques vary in accordance with the

numerous application areas. Internet Protocol (IP) routing and switching, Quality of Service

(QoS) provision [63], network security and intrusion detection [64], per-flow1 context and

monitoring [65, 66], server load-balancing, filtering and firewalls, and emergingcontent aware

applications are all driving a large body of contemporary research in thefield.

These diverse application areas create a number of challenges for the system designer.

Continued growth in the internet (thought conservatively to be a year-on-year doubling [67])

has brought increased network traffic volume and system line rates, whilst emerging

applications sensitive to delay and jitter demand packet forwarding performance significantly

beyond traditionalbest effortcapabilities.

As an example, a typical OC-192 routing link at 10Gbps receiving minimum-size40 byte

packets would require a classification decision every 32ns [68], basedon a rule database

typically in the tens of thousands. Similarly, contemporary flow monitoring systemsclaim

10Gbps throughput supporting 160,000 subscribers and up to 4 million flows [69].

1A flow is a group of related packets, typically linked by some addressing commonality.
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To more clearly delineate these application areas, and place the contribution of this research

in context, it is helpful to distinguish between three key types of Packet Classification;String

Matching, Longest Prefix Matching (LPM), andExact Matching.

4.1.1 String Matching

The huge increase in internet traffic volume has been mirrored by a commensurate increase in

the volume of malicious traffic such as viruses, worms and distributed denial of service (DDoS)

attacks, all of which can have a significant effect on network performance [70]. Such exploits

typically utilise both the packet header and the payload.

Thus Network Intrusion Detection Systems (NIDS) must have the capability to identify data

of interest which may be of variable length, and may occur at any offset within the packet.

Furthermore, the payload content may be malicious only in certain contexts, determined by the

packet header fields. The problem decomposes to one of String Matching, whereby one seeks

to find occurrences of a string or regular expression within another body of text.

Thus NIDS typically comprise some basic packet filtering capability based on the packet

header, plus a set of signatures, or strings of interest. Classification depends on establishing

a cross-product between these two types of match. For example, based upon identifying a

suspect protocol and destination port combination via an exact match in the packet header, one

might instruct a string search for an associated malicious signature in the payload.

4.1.2 Longest Prefix Matching

The initial standardisation of the Internet in September 1981 specified that each device

connected to an Internet Protocol (IP) network should be identifiable viaa unique, 32-bit IP

address value. This decision meant that there were 4,294,967,296 uniqueInternet Protocol

version 4 (IPv4) addresses available. In the early days after standardisation this seemed like

a virtually unlimited address space, and was subdivided into three principaladdress classes -

Class A (intended for very large organisations with potentially millions of connected hosts),

Class B (intended for medium-sized organisations with potentially hundreds ofthousands of

connected hosts) and Class C (for smaller organisations of a few hundred connected hosts).

Addresses within these ranges were assigned to organisations on request, initially without

much consideration for how addresses might be efficiently allocated.
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By 1993, the inefficiencies in thisclassfuladdressing scheme started to become significant,

creating the likelihood of near-term exhaustion of the Class B network address space,

problematic growth in the the size of backbone router tables and the possibility of complete

exhaustion of the IPv4 address space in the longer term [71]. Whilst a working group for IP

Next Generation (to emerge later as IPv6) would address the latter concern, an interim solution

was required to solve the Class B exhaustion and router table issues. This came in the form of

Classless Inter-Domain Routing (CIDR) [72].

CIDR eliminated address classes, and supported the concept of aggregation whereby a single

router table entry could encompass many individual network addresses as a CIDR block.

Consider the simple example of Figure 4.1. Four router table entries share thecommon

left-most address bits orprefix130.5.63 and a common rule to route with high priority. Thus,

the entries can be aggregated with a wildcard (∗) indicating that the router does not care what

the right most address bits are (since the same rule is actioned regardless of the contents of

these bits).

Four router table entries can thus be replaced with one, assuming one has the capability to

identify wildcard entries within IP addresses. CIDR addresses are generally assigned in a

way which reflects the topology of the network, thus thelongest prefixin the routing table

which matches an incoming packet’s address is generally tied to a forwardingrule representing

the most efficientnext hop for that packet. So, if the incoming packet had destination

address 192.168.24.30, and the router forwarding table contained the entries 192.168.* and

192.168.24.*, the latter would be returned as the longest prefix match. LPM techniques are

pervasive in Media Access Control (MAC) address-based switching,Asynchronous Transfer

Mode (ATM) switching and IP filtering, with matches based on the IPv4 “5-tuple” of source

address, destination address, source port, destination port and transport layer protocol.

Figure 4.1: Address grouping with prefix and wildcard
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4.1.3 Exact Matching

Packet routing and forwarding techniques hold an obvious importance for network operation, a

fact reflected in the volume of research dedicated to Longest Prefix Match solutions. However,

in addition to this fundamental operational level, there are a number of applications including

network monitoring, analysis and QoS provision which require more than a prefix-based

forwarding decision.

Developed by Cisco Systems, Inc. in 1996 and now the dominant internet monitoring

technology, Netflow [65] facilitates a wide range of networking applications including

accounting and billing, traffic engineering and network security. Packetsare assimilated into

flow records based on seven unique keys (the IP 5-tuple as discussedin 4.1.2 plus a Type of

Service (TOS) byte and Input Logical Interface field (ifIndex)). These keys then drive collation

of information on a per-flow basis - how many packets are associated with that flow within

a given sampling window? When was the flow created and destroyed? Whatprotocols and

service types are being utilised? These questions can be answered only by an exact match on

the fields of interest.

There are other applications where an exact match is important. Asynchronous Transfer Mode

(ATM) for example, transfers data in 48 byte cells. Thus, to transfer larger packets from

other protocols over ATM, the transmitter needs to fragment the data, and thereceiver needs

to reassemble it in the correct order. This Segmentation and Reassembly (SAR) function is

based on an exact match of the Virtual Channel Identifier and Virtual PathIdentifier field in the

ATM cell label. Similarly, QoS applications such as IntServ and Diffserv implement policies

based on exact matching of fields in the packet header. More recent has been the emergence of

Pseudo-Wire-Emulation-End-to-End (PWE3) [14] for the provision of guaranteed bandwidth

over a packet network. The emulation of traditional wireline services suchas E1/T1 over the

internet will also be driven by exact match techniques.

4.2 Complexity in Packet Classification

In a generalised sense, the task of packet classification has been shown to have high theoretical

complexity [73]. To understand this inherent complexity, it is useful to identify a number

of performance metrics which need to be considered in the design of packet classification

systems [62, 68, 74].
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4.2.1 Space, Time and Power Complexity

Space complexity refers to the upper bound on the space required to represent a rule or filter

database. Low storage requirements allow packet classification rules to bestored in lower

cost, higher bandwidth commodity static RAM (SRAM) or even embedded SRAM,but as

rulesets become bigger and more complex, more expensive higher density,dynamic memory

technologies (DRAM) may be required to support them. Practically, one seeks to implement

a packet classification scheme in the smallest, lowest cost memory technology available,

commensurate with the required line-rate performance.

Time complexity refers to the upper bound on the maximum number of steps or cycles required

to make a classification decision. Typically these steps or cycles are memory access times.

In many practical scenarios, one seeks to classify at the line rate of the incoming data (up to

40Gbps in emerging core routers). Thus, one seeks to minimise the number ofmemory accesses

required per classification decision. Power complexity refers to the upperbound of the product

of the number memory accesses required and the power dissipation cost per memory access.

4.2.2 Update Complexity

Update complexity refers to the upper bound on the maximum number of steps required to

perform an atomic insertion or deletion of a rule or filter in the database. In backbone routers

and certain firewall applications this may be a less critical metric, where ruleset updates happen

much less frequently than normal classification operations. However, in routers with per-flow

queuing or network flow monitoring applications, flows may be created and removed much

more frequently, such that the dynamic update performance becomes important.

4.2.3 Massive Linearity and Massive Parallelism

The trade-off between space, time and power is ubiquitous in electronic systems design, and

unsurprisingly drives much of the literature on packet classification. Thisresearch space may

be approximately bounded by examining the logical extremes of the performance metrics just

discussed.

Consider a classification database ofn entries. Any existing entry may or may not match the

current entry being processed. Such a match could be established usingan exhaustive search
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where one must compare the current entry against every existing entry inthe classification

database. One could compare the current entry with each entry in the database sequentially,

accessing one database entry per memory access time. This massively linearsearch has space

complexity O(n) (requiring nominally one location in memory space for each entry in the

database) and time complexityO(n) (requiring one memory access time for each entry in the

database and a search through the entire database in the worst case).

Alternatively, one could compare the current entry with the entire databasein a single memory

access time. This massively parallel search has space complexityO(n), but time complexity

O(1). This is in fact the approach taken in Content Addressable Memories (CAMs), which

dominated early lookup systems, and latterly Ternary Content AddressableMemories (TCAMs)

which added the ability to store wildcard bits required for massively parallel Longest Prefix

Matching. In comparing linear and parallel approaches to exhaustive search it is also important

to note that computational complexity scales linearly with parallelism. So although thelinear

and parallel searches have the same nominal space complexityO(n), the latter is far more

computationally expensive.

Figure 4.2: Standard SRAM(a) and TCAM(b) cells

4.2.4 Towards the Middle Ground

In reality, both massively linear and massively parallel approaches to packet classification are

impractical. As core and edge router tables expand to accomodate hundreds of thousands of

entries and more complex policies, and flow monitoring requirements extend to potentially

millions of subscribers, the time taken to linearly search through every possible match candidate
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becomes prohibitive at all but the lowest line rates. (T)CAMs are not a panacea either,

suffering from high cost per bit compared to standard memory technology(standard TCAM

cells are almost 3 times bigger than an equivalent SRAM cell [75]), storageinefficiency, high

power consumption, limited scalability to long input keys, and limited density [76]. Given

the limitations just outlined, it is unsurprising that much of the published work on packet

classification in fact occupies the algorithmic middle ground between a naı̈ve linear search on

one hand and a brute-force architectural solution on the other. This is thefocus of the research

which follows.

Of the three techniques discussed - string match, longest prefix match and exact match - the last

has been identified as of particular commercial interest to Aliathon Ltd. The development

of an FPGA-based exact match technology offers balanced risk and technical progression

for the company, facilitating the immediate enhancement of legacy products forATM, and

simultaneously creating a platform on which to build a suite of packet-processing IP cores in the

future. This commercial emphasis is reflected in the following discussion. A general overview

of contemporary string matching techniques is followed by a discussion (in a littlemore

detail) of current longest prefix match techniques. Finally, the state-of-the-art in exact-match

classification is discussed, as the principal background material for the current project.

4.3 Techniques for String Matching

As already discussed in 4.1.1 the ability to search through packets and identify potentially

malicious content is integral to Network Intrusion Detection Systems, and reported to account

for 70% of total execution time in Snort [77]. Classical string matching techniques originally

pioneered for text-based search functions (the UNIXgrep command for example) are thus

gaining renewed significance as the basis for compact and fast string matching techniques.

4.3.1 Aho-Corasick String Matching

Based on the Knutt-Morris-Pratt algorithm [78], the seminal Aho-Corasick technique [79]

provides algorithms for the construction of an efficient finite state pattern matching machine.

The authors summarize the problem as follows: Astring is a finite sequence of symbols. If

K = y1, y2, ....., yk is a finite set of strings calledkeywordsandx is an arbitrary text string, one

seeks all substrings ofx which are keywords inK, even if these substrings overlap.
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Figure 4.3: A näıve string matching algorithm

As a simplified initial illustration, consider a naı̈ve algorithm to search for a single text string

“aaaaa” within a larger portion of text“aaaabaaaabaaaaab”as shown in Figure 4.3. After

mutually left aligning the two strings, each symbol inx is compared with its aligned symbol

in K1 in turn until a mismatch is found, whereuponx is shifted right by one symbol and the

symbol-wise comparisons begin again.

This shifting mechanism is where the Knutt-Morris-Pratt/Aho-Corasick approaches

dramatically improve over the naı̈ve implementation. Observing the repetition of the “a”

symbol in x and K1 it may be noted that there is no chance that a match will be returned

by STEP 6 (or indeed by the next three shifts inx). The first mismatch thus results in

a multi-symbol shift as shown in Figure 4.4. This optimised pattern shifting basedon
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pre-processing the strings of interest is designed into thenext-statelogic in Aho-Corasick state

machines.

Figure 4.4: Pre-processed optimised pattern shift

4.3.2 Boyer-Moore String Matching

Better still is the Boyer-Moore algorithm [80], which does not rely on repetition in the search

string for performance improvement over a naı̈ve search. Figure 4.5 illustrates a Boyer-Moore

search in another simple example2, searching for the string “pill” within a longer string “the

caterpillar”.

Boyer-Moore analyses the search stringx from right to left, whilst shifting it (again on the

basis of the symbol match result) from left to right alongK1. Optimal shifts are based on a

pre-processed array containing an indication, for every possible symbol, if and where it exists

in the search string, and thus how far the string can be shifted in the event of a mismatch. More

generally, if the length ofx is M , one starts by comparing thelast symbol inx with theMth

symbol ofK1,K1m
. If there is a mismatch, one looks for therightmostoccurrence ofK1m

in

x and shifts accordingly. IfK1m
does not occur in the search string at all, then one can safely

shift it right byM symbols before the next comparison.

If one assumes that on average the majority of possible characters do notappear in the search

string, then the number of character comparisons required approachesN/M , whereN is again

the length ofK1 and M is the length ofx; an improvement over The Knuth-Morris-Pratt

algorithm which requiresN comparisons.

4.3.3 Contemporary String Matching Solutions

Some recent work in string matching builds on the classical techniques discussed in 4.3.1 and

4.3.2. Wu and Manber [81] note the difficulty in extending the Boyer-Mooreapproach to the

2From www.cee.hw.ac.uk/˜alison/ds98/node78.htmlc©Alison Cawsey.
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Figure 4.5: Boyer-Moore pattern shifting

multi-string matching problem, where (as in Network Intrusion Detection Systems)one seeks

to match potentially tens of thousands of patterns. They note that when there are many strings

to match, is becomes likely that most of the possible symbols will match in at least oneof the

search strings, reducing the number of multi-symbol shifts possible and degrading performance.

They propose the imposition of a minimum pattern length, and a novel string pre-processing

stage to preserve the speed of the Boyer-Moore approach for multi-stringmatching. The

Aho-Corasick approach has also been subject to more recent optimisation, notably by Tuck

et al. [82], who apply the ideas of node and path compression (in the spiritof [83] and [84],

discussed in 4.4.3) to dramatically reduce the size of the hardware implementationto 2% of
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the original. Clark and Schimmel [85] also leverage the use of finite state machines in their

design of multi-character decoders optimised for FPGA logic, claiming 10Gbpsperformance

for current data-set sizes.

4.4 Techniques for Longest Prefix Matching

Taylor [76] has already presented a good taxonomy of packet classification techniques

applicable to Longest Prefix Matching. An exhaustive review is not repeated here, since

longest prefix techniques are not the focus of this project. Nonetheless, longest prefix matching

dominates the literature, and no discussion of packet classification would becomplete without

some reference to this large body of work.

Contemporary techniques in this domain owe much to Gupta and McKeown who, having

identified that the classification problem was unsolvable in the worst case [86], suggested the

use of heuristics based on the inherent structure of routing databases.

4.4.1 Recursive Flow Classification

Leveraging and improving on techniques based on a cross product of packet fields [87],

a seminal contribution in the application of heuristics to the packet classificationproblem

is Gupta and McKeown’s Recursive Flow Classification [88]. The technique is based on

exploiting the empirically determined structure in any given dataset. The authors’ analyses

of real datasets returned a number of interesting characteristics, namely:

• That typically a maximum of 8 fields were specified in classifier rules. Source/destination

address, source/destination transport-layer port numbers, type-of-service field, protocol

field and transport layer protocol flags.

• That 17% of all rules had only 1 field specified, 23% had 3 fields specifiedand 60%had

4 fields specified.

• That the transport-layer protocol field is restricted to a small set of values.

• That it is common for many different rules in the same classifier to share a number of

field specifications.
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Table 4.1: A simple classifier dataset

The final point is illustrated by the simple classifier dataset of Table 4.1, takendirectly

from [88], and is the key observation in establishing a heuristic for reducing classification

complexity. The authors view the classification task as one of reduction (or decomposition).

For example, in the case of the transport-layer destination in Table 4.1, they note that although

the field is nominally specified over 16 bits, there is considerable structure (or repetition) within

the field. In fact, the possible values can be represented as only four sets{www=80}, {20/21},

{> 1023} or {all remaining numbers in the range 0-65535}. Allocating a unique code (or

equivalence class identifier - eqID) to each of these sets requires just two bits, hence the

reduction in complexity.

These equivalence class identifiers form the basis of the lookup, illustrated in Figure 4.6. For

the simple dataset of Table 4.1, each incoming packet is split up into its constituent fields. The

destination address, source address, transport-layer port and transport-layer protocol are used

directly as indices into four parallel memories.

The contents of these memories have been pre-processed to return the correct equivalence

class identifier. There are three unique destination addresses; 152.163.190.69, 152.168.3.0 and

152.13.198.4. Thus the eqIDs can be encoded using just two bits. By inspection, it can be seen

that two-bit eqIDs are sufficient for each of the other fields in the first phase lookup. Similarly,

in the second phase lookup it can be seen that there are four unique combinations of source and
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destination address encoded using three bits, and four unique combinations of transport-layer

port and transport-layer protocol, encoded using three bits.

In this case, eqIDs from the first-phase destination and source address lookup, and eqIDs from

the first-phase transport-layer port and transport-layer protocol lookup are concatenated and

used as indices into the second phase memory. The eqID returned from thissecond phase

lookup is the unique six-bit identifier for the current packet.

Figure 4.6: Example lookup using recursive flow classification

Recursive Flow Classification offers good throughput performance -approximately 30 million

packets per second with a 125MHz system clock in pipelined hardware - but at the cost

of memory inefficiency; the solution does not scale well to large classifiers.Additionally,

the pre-processing requirements make system update difficult when theseupdates happen

frequently.
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Table 4.2: A simple classifier dataset specified over source and destination address only

4.4.2 Grid of Tries

A popular approach to classification is the construction of a decision tree, or trie3. The incoming

packet is split into bits or groups of bits, and these are used to make branching decisions in the

trie structure. The rules or filters are typically stored in the leaf nodes of thestructure. Again,

following [76] consider the simple filter set specified over source and destination addresses in

Table 4.2.

Shown in Figure 4.7(a), the top half of the simple Set Pruning structure as defined in [89]

represents all the possible destination address prefixes in the classifier,with pointers into the

source address space from each node where a prefix match in the destination address space

occurs. For example, consider a bitwise search for the destination/source pair 00 ∗ /11∗.

One makes twozero(left-hand) transitions from the root node, where a pointer (P1) into the

appropriate source address sub-trie is found. One then makes twoone(right-hand) transitions

until a leaf node which contains filter F5 is reached; the best match for the destination/source

pair.

Whilst such a structure is an elegant visualisation of bitwise classification, it isinefficient, with

filters duplicated at multiple leaf nodes. To improve efficiency Srinivasan etal. [87] proposed

3From information retrieval.
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Figure 4.7: Set Pruning (a) and Grid of Tries (b) structure for the classifier of Table4.2

the Grid of Tries, Shown in Figure 4.7(b) where only one instance of eachfilter is stored in the

structure, with searches directed by switch pointers to potentially matching filters. This results

in reasonable memory efficiency and search time; the authors quote 2MB memory utilisation

to implement a classifier of 20,000 IPv4 filters (considering source and destination prefix fields

only).

A weakness of the Grid of Tries approach is poor scalability to classifiers beyond two

dimensions, where replication of data structures becomes necessary. However after studying

the characteristics of core router classifiers used by Tier 1 Internet Service Providers, Baboescu

et al. [68] argue that two dimensional classification remains powerful. They extend the

heuristics of Recursive Flow Classification by noting that packets typically match at most a

few distinct source-destination prefix pairs present in any ruleset. Thus, in their Extended Grid

of Tries scheme, even if the classifier is large, after pre-filtering on source-destination prefix,

one is left with a set of remaining filters which is small enough to be searched linearly.

Scalability to multiple field classification is addressed in another seminal scheme proposed by

Lakshman and Stidialis [73]. Considering again the destination and source prefixes shown in

Table 4.2. In the Bit Vector scheme, two tries are constructed, one for the destination prefixes

and one for the source prefixes as shown in Figure 4.8.
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Figure 4.8: Bit Vector structure for the classifier of Table 4.2

Each node in the structure is labelled with anN -bit vector, whereN is the number of

filters in the classifier. Bitj in this vector is set if the corresponding filter in the classifier

matches the prefix corresponding to the node. For example, in the destinationprefix trie the

left-most node corresponding to prefix00∗ is labelled11111011110 since it could match filters

F1, F2, F3, F4, F5, F7, F8, F9 and F10. When a multi-field packet header arrives in the Bit

Vector scheme, the trie for each field is traversed to return the bit vector label corresponding to

any match in that trie. A multi-field match is then returned based on the bitwise intersection of

these bit vectors.

Baboescu and Varghese [90] improve on this scheme, again by applying aheuristic approach

to the base algorithm. They note that in the databases they investigated (of the order of 100,000

filters) that packet headers typically matched at most four filters. As a result, they conclude that

vectors in the original bit vector scheme are typically very sparsely populated with set bits, and

reading 100,000 bits per node is inefficient. They propose aggregatingA bits of the original bit

vector into a single bit (which represents thebitwise orof the aggregated bits) to reduce the

required memory accesses.
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4.4.3 Expanded Tries - From Controlled Prefix Expansions to Tree-Bitmap

Some elegant extensions to theunibit structure of Figure 4.7 have been proposed, in the form

of expanded ormultibit tries, which seek to process multiple bits at a time to reduce the number

of memory accesses required per classification. Consider another simplified set of prefixes in

Figure 4.9.

Figure 4.9: Simple prefix database

To process these prefixes say, three bits at a time, one needs to deal with prefix lengths which

do not fit naturally into multiples of three bits. Srinivasan and Varghese [91] have proposed

the technique of Controlled Prefix Expansion to accommodate precisely this scenario. The idea

is to extend a prefix like1∗ (P1) into all its possible three bit expansions -100, 101, 110 and

111. In this case, the expansions101 and111 collide with prefixes P4 and P5 respectively. To

account for this P1 is given lower priority, since P4 and P5 represent the longest prefix match.

Expansion prefixes which collide with existing longer prefixes are in fact redundant, and may

be discarded.

The nodes of a three-bit expanded trie with Controlled Prefix Expansion for the simple prefixes

of Figure 4.9 are shown in Figure 4.10 [84]. Each node element has two entries. One entry

holds a rule or filter matching the prefix (simplified to the prefix name in the figure)and the

other is reserved for a pointer to a child node in the trie. The search terminates when a null

pointer is reached.

For example, consider searching for an input111010. The first three bits111 are used as an

index into the root node of the trie, where prefix P5 is stored. Since the associated pointer
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is not null, P5 is not the longest prefix match and the search continues, following the pointer

into the right-most child node. The second three bits in the search key010 are used as the

index into this node, where prefix P7 is stored. Since the associated pointeris null, the search

terminates, returning P7 as the longest prefix match. The authors quote storage requirements

after optimisation for the North American Mae-East exchange database at around 500KBytes.

Figure 4.10: A multi-bit trie with Controlled Prefix Expansion

The Lulea scheme [83] improves on the basic multibit trie structure by reducingthe amount

of data stored at each node using a technique called Leaf Pushing. Rather than storingbotha

rule and a pointer at each index in the node, only one of these are stored inthe Lulea Trie. In

the event that a filter and a valid pointer coincide, the filter ispushedinto all the free locations

in the downstream node indicated by the pointer. The search terminates whena valid filter is

found.
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Figure 4.11: A multi-bit trie with Controlled Prefix Expansion and Leaf Pushing

Storage efficiency is improved further in the Lulea scheme by defining a bit vector at each node

which indicates where filters have been duplicated and thus removes the need to store those

filters explicitly. Consider again the structure in Figure 4.11. The nodes canbe compressed

as shown in Figure 4.12. The first instance of given filter is stored explicitly, and its presence

indicated by setting the corresponding bit in the vector. Anyconsecutiveduplicates which

follow are not stored explicitly, but indicated by setting the corresponding bitin the vector to

zero. The bit vector thus becomes a signature for the filters stored at anygiven node.

Decoding according to the Lulea scheme is best illustrated with a simple example. Consider

searching for an input111111. Since (in this case) three bits at a time are being processed, the

first three bits,111 are used as an index into bit seven of the bit vector in the root node of the

trie. Then, starting from the left most bit in the vector, the number of bits equal to one, up to
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Figure 4.12: Node compression by bit vector in the Lulea scheme

and including bit seven, are counted. The result in this case is six, so the contents of location

six in the compressed root node are accessed.

Location six in the root node contains a pointer to the right-hand child node. The next three

bits of the input,111, are used as an index into the bit vector of the child node, again bit

seven. Counting from the left again, there are four bits set to one, thus location four in the

child node is accessed. Location four returns filter P5 - the longest prefix match - and the

search terminates. The Lulea scheme requires some 200KBytes to accommodate the Mae-East

database, a significant improvement on Controlled Prefix Expansion.

Eatherton et al. [84] propose some further enhancements to the multi-bit schemes just described

with their Tree-Bitmap structure. They note that Leaf Pushing makes it virtuallyimpossible

to bound system update times (since in the worst case the entire structure may have to be

re-written), and eschew it in favour of a novel two-bitmap encoding for each node. With

storage requirements of the same order as the Lulea approach, the authors claim support for
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25 million lookups per second with on-chip SRAM, and guaranteed update performance - at

least 10,000 updates per second. The Tree-Bitmap approach has gained industry popularity,

and is implemented in Cisco’s 40Gbps CRS-1 Router [92].

4.5 Techniques for Exact Matching

Exact matching poses some interesting challenges. On one hand, the task is simplified by the

fact that one need no longer accommodate the complexities of variable length prefixes, and

(initially at least) the classification task is restricted to packet headers. On theother, one must

now consider application areas where the use of heuristics may be impossible, since one may

have noa priori knowledge of the traffic profile. Rather than establish efficient classifiers based

on a known ruleset in a firewall or router database, one may now be required to classify packets

which, in the worst case, may exhibit little or no correlation in the way they appear in the

network. Additionally (and particularly in the context of flow monitoring) connections may

be set up or taken down much more frequently than say, a firewall filter setwould be updated.

Thus update complexity becomes increasingly important.

4.5.1 Trees

Tree-based techniques (discussed already in the context of longest prefix match) are also

applicable to an exact match search. Bennett [93] has proposed an elegant mapping of one such

tree structure into RAM. Consider the simple case of looking up the 32 bit input4 0x2E384534

illustrated in Figure 4.13.

Figure 4.13: Multi-stage lookup as specified by Bennett

The basic idea here is not new. The input key is partitioned into sub-blocksof multiple bits, and

a partial match is established on one sub-block in each stage of the lookup. Amiss is reported

40x denotes hexadecimal representation
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in the event of a mis-match in any of the sub-block lookups. Described by theauthor as a neural

network, the structure is effectively a multi-way trie, with each sub-block lookup a node in that

trie. What is more interesting is the way this structure is implemented in hardware, inwhat the

author calls ascattered memory deviceshown in Figure 4.14.

The five RAM blocks have 16 address bits and thus 65,536 addressable locations. Considering

again the lookup of 0x2E384534 (and assuming this data is indeed already stored in the system)

the first sixteen bits 0x2E38 are used as the address into the Level 1 RAM.The 12 bits stored at

this location represent a pre-programmed offset into the Level 2 RAM. This is then combined

with the next 4 bits of the input (0x4 in this case) to form the complete pointer into the Level 2

RAM, where another 12 bit offset is found, and the process repeats.Comparators at each level

in the search indicate a match or mismatch, the latter terminating the search.

Tal and Itzchak [94] propose another interesting variation on a tree structure for packet

classification which they call aLook-Ahead Tree. They note that the number of bits of interest

in a typical single tree node is significantly less than the number of bits which cantypically be

transferred in a single memory access. They thus propose an alternativecontiguous memory

model which allows multiple nodes to be accessed in a single cycle to bridge this gap in

efficiency.

4.5.2 Hashing

Processing data through a hash function -hashing- is useful in a variety of applications

including cryptography - where one seeks to create secure digital signatures for sensitive

electronic information; cyclic-redundancy-checking (CRC) - where one seeks to verify the

integrity of data which may have been corrupted over time or space; and information retrieval -

where one seeks efficient access to stored data via some index into a data structure known as a

hash table.

4.5.2.1 Simple Hashing for Packet Classification

In general terms, ahash function or algorithm is one which transposes or substitutes the

bits of some input data to produce a repeatable pseudo-random output. Such functions are

deterministic; that is if two outputs from such a function differ, one can say with certaintythat

the inputs which generated these outputs also differ. On the other hand, hash functions are not

88



Packet Classification

Figure 4.14: Multi-stage lookup implemented in RAM

injective; that is if two outputs from such a function are the same, one cannot say withcertainty

that the inputs which generated the outputs were the same.

Hash functions are typically defined in terms of adomain- the possible inputs to the function,

and arange - the possible outputs. Often hash functions will have an infinite domain, and

a range determined by some practical constraint - memory capacity being a typical example.

Although it is possible for a hash function to have a domain and range which are the same

size (in effect a one-to-one mapping, with a unique output for every possible input), it should

become apparent in the discussion which follows that such functions are of limited applicability

to packet classification.

Consider a packet classification scheme based on arbitrary 32-bit inputs. There are thus232 =

4, 294, 967, 296 possible input permutations, corresponding to over 4Gb of required storage

were one to permit a unique memory location for every possible input. Matchingthe domain

and range sizes would require a prohibitive amount of storage. Hashinginto a compressed range

89



Packet Classification

offers a more promising way forward. Say, for example, that one uses afunction which takes

any 32-bit input and generates an 8-bit uniformly random output signature. If one allocates

memory storage in a hash table based on this output signature rather than on the input data,

one need manage only28 = 256 memory locations. A perfect hash function will (with perfect

uniformity) distribute every possible input in the domain across this 256 locationrange.

Clearly, there is a catch. One cannot simply take an arbitrarily large domain and compress it for

free. In reality collisions occur, as shown in Figure 4.15. Consider a naı̈ve scheme in which the

32-bit input is simply truncated to 8-bits to generate a storage location (ignoring for now the

fact that the range distribution of such a scheme would be poor). In the domain, where all 32

bits of the input data are considered, Key 1 (0x1E5822CF) and Key 2 (FDFFDFCF) are clearly

different. However, after truncation to 8-bits into the compressed range,Key 1 (0xCF) and Key

2 (0xCF) become indistinguishable, resulting in a memory collision when one triesto use the

range index to store the information.

Figure 4.15: Memory collision in single hashing

Collision resolution thus becomes an integral part of any hashing based information retrieval.

Knuth’s ubiquitous techniques ofchainingandopen addressing[95] are well documented in the

literature. With chained collision resolution, each entry in the hash table is effectively a pointer

to a linked-list which contains all of the inputs which collided at that location. The lookup

operation thus becomes a traversal of a linked list in some additional memory space reserved

for collision resolution, a technique employed in [96] for per-flow bandwidth reservation.

Open addressing schemes includeLinear ProbingandDouble Hashing. In the former, in the

event of a collision in the hash table, one seeks to place the colliding data in the next available

location, so if locationx is occupied one tries locationx + 1, then locationx + 2 etc. This

can lead to an undesirable lack of uniformity known asclustering. This effect is mitigated
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in double hashing by generating a memory offsetp using a secondary hash of the input data.

In this case, when locationx is occupied one tries locationx + p. Tal and Rachamim [94]

propose a similar approach, using two independent hash functions on theinput data, one to

generate a table address and another to generate a data signature which isstored at that address

to accelerate retrieval.

Clearly the performance of any hash-based packet classification scheme is closely coupled with

the probability of collision in that scheme, since whatever collision resolution method one

implements will require additional memory accesses compared with a collision-free lookup.

The design of hashing systems thus poses some classic engineering trade-offs. As the size of

the hash function’s range approaches the size of its input domain, the chances of collision are

reduced (since one is applying minimal compression) - and lookup times are reduced at the cost

of memory. Reducing this range saves memory resource, but increases the chances of collision

and degrades lookup performance. Similarly, cryptographic strength hash functions will give

near perfect random distribution and reduce the likelihood of collision, but will be more difficult

and costly to implement than simpler CRC-based equivalents.

4.5.2.2 A Simple Probability Model for Single Hashing

In framing the behaviour of a single hashing system a little more precisely, the frequently used

“balls into bins” model is a useful analogy [97]. The basic question is as follows: One starts

with m balls andn bins. For each ball, one chooses a bin, uniformly at random, in which to

place the ball. When the balls have been exhausted, what can one say about the number of balls

in each bin? Or analogously, if one starts withm different packet headers for allocation into a

hash table ofn entries, what can one say about the number of packet headers associated with

each hash table entry when all the headers have been allocated?

Such questions have generated a battery of detailed mathematical analysis, introduced by

Gonnet [98] and Larson [99]. From such analyses one gains interesting insight into the

loading behaviour of the balls and bins experiment, and by analogy the collision behaviour

of a single-hash based classification system. One key result is of particular interest in the

discussions which follow and is stated without proof below.

Single hashing produces a binomial distribution in each hash bin, which in the limitis a Poisson

distribution. That is, if there aren bins andm items hashed into them, such that one may define
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a load factora = m/n, then the probability that a given bin hask items in it,P (k) is given by

Equation 4.1.

P (k) =
ake−a

k!
(4.1)

4.5.3 Contemporary Hashing Techniques

Hashing has inspired a significant body of contemporary research in packet classification.

Authors have noted that in terms of lookup times, hashing performs very wellon average,

but poorly in the worst case, when multiple collisions occur and multiple memory accesses are

required to resolve the lookup. Whilst the use of strong cryptographic hash functions reduces

the likelihood of such collisions, they are difficult to compute within the minimum packet

time, typically taking multiple clock cycles to produce a result [100]. An alternative approach

proposed by Srinivasan and Varghese [91] is to compute a suitable semi-perfect hash function

based ona priori knowledge of the entries to be hashed. Such computations can take several

minutes, making them impractical for systems with frequent dynamic content updates such as

TCP flow monitoring.

More promising are solutions based on multiple hashing, introduced by Broder and

Karlin [101], which have been shown to perform better than single hashing. In their multiple

table scheme, items which collide in the first table percolate through to a location in asecond

hash table determined by a second independent hash function; items which collide in the

second percolate down to the third, and so on. In the event of an item percolating through the

entire available hash space, a partial re-hash of the input items is computed.The authors make

the point that such re-hashing is seldom required. Lim et al. extend this approach by using a

small CAM, which may be accessed in parallel with the hash tables, to accommodate the items

which have overflowed [102].

Also leveraging the advantages of multiple hashing, two contemporary approaches to packet

classification appear to perform particularly well. The first approach uses a structure called a

Counting Bloom Filterand the second, an algorithm for improved load balancing known as

d-left. These are now considered in more detail.
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4.5.3.1 Counting Bloom Filters

A Bloom Filter [103] is a hash-based data structure which indicates whetheror not a given

item is a member of a set. The basic idea is illustrated in Figure 4.16. The item to be stored is

hashed usingk independent hash functions. Each hash function generates the address of a bit in

a bit vector of lengthm. Each bit in the vector addressed by a hash function is set, effectively

creating a signature for the item and indicating its presence in the set. Item signatures can

overlap however, resulting of the possibility offalse positiveresults, where one item signature

aliases with another.

Figure 4.16: A Bloom Filter

Bloom Filters have previously been used in both deep packet inspection and longest prefix

matching applications [104, 105]. By implementing a Bloom Filter in high bandwidth

embedded memory, one can identify very quickly when an item is not presentin the set, and

thus remove redundant and time consuming searches into off-chip memory. However, as Song

et al. [106] point out this does nothing to improve performance in the eventthat the bloom

filter indicates the presence of an item, and an off-chip search is initiated. They thus proposed

an improved structure called aCounting Bloom Filter.

In this embodiment, which they label aBasic Fast Hash Table, each bit in the original vector is

replaced by a counter. Upon insertion of a new item, each counter addressed by a hash function

produced by the item to be inserted is incremented. To query whether or notan item is already

in the set, one computes the requisite hash functions, and tests that all the addressed counters are
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non-zero. Consider the simple example of Figure 4.17, withk = 3 hash functions addressing

an array ofm = 12 counters.

Figure 4.17: Packet classification with a Counting Bloom Filter

Items x,y,z and w are inserted sequentially. When a new item arrives, each of the counters

addressed by the corresponding 3 hash functions is incremented and theitem stored in a

linked-list corresponding to that counter. Thus, in this scheme, each of the items is stored

in the systemk times.

The search procedure for an item is similar. When an item to be queried arrives, one computes

thek hash functions and interrogates the counters addressed by each. In the event that all the

counters are non-zero one knows (notwithstanding the possibility of a false positive, which can

be tuned to be low) that the item is stored in the system. The authors note that by traversing

the linked list associated with the counter with the lowest value, one can minimise thenumber

of external memory accesses required to resolve a lookup. For example,again considering

Figure 4.17 after all insertions have been completed, if itemy is queried, count values of 3,

2 and 1 will be returned from counters 3, 6 and 11 respectively. Choosing counter 11 as the

lowest value,y can be retrieved in a single memory access.

The authors go on to propose a number of optimisations, pruning and balancing the structure to

reduce storage and offering a probabilistic analysis which indicates that inthe worst case, any

item may be retrieved in a single memory access with a optimal filter configuration. The hash

space is implemented in external DRAM memory, and the counters stored locally inFPGA

embedded memory.
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4.5.3.2 From d-random to d-deft

Also based on multiple hashing are two related load balancing algorithms known as d-random

andd-left, which combine hashing with an element of choice regarding where an inputitem is

actually allocated. First analysed by Azar et al. [107], d-random splits then hash table locations

into d sections, each addressed by one ofd hash functions. The loads in each of the addressed

hash table locations are examined, and the current item inserted in the locationwith the lowest

load. Figure 4.18 compares a simple 2-random example with single hashing. Inthe 2-random

case, the current item hashes into location 5 in the left hand table and location13 in the right

hand table. The load (indicated by the circles in the figure) is 2 in both bins. Ind-random, such

ties are broken arbitrarily.

Figure 4.18: Single hashing (a) and two-random hashing (b)

The Always-Go-Leftor d-left algorithm first proposed by V̈ocking [15] is very similar to

d-randomexcept that in the case of a tie in the examined load, rather than allocate the item
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arbitrarily, it is always placed in the left-most bin. Bothd-randomandd-lefthave been analysed

using abstract and complex witness tree arguments [15, 108, 109] which offer bounds on the

likely maximum load in the system after a fixed number of items have been allocated,and

latterly using differential equations [16, 110–112] to yield numerical loading results for the

entire hash table.

Both d-randomandd-left algorithms offer significant performance improvements over single

hashing. Even in the simplest embodiments whered = 2, d-randomhas been shown to provide

an exponential decrease in the maximum observed load [107]. The asymmetry introduced when

breaking ties ind-left has been shown to improve the load performance still further [112]. This

improved load balance has obvious implications for packet classification; fewer collisions mean

fewer external memory accesses and faster lookup resolution.

4.6 Towards an FPGA-based Packet Classification Engine

Reiterating the design goals alluded to earlier, the focus of this research is toinvestigate and

design an FPGA-based packet classification engine with primary applicationfocus on exact

matching. Ideally one wishes to design such an engine with minimum time, space, power and

update complexity - in other words, one wants to be able to classify potentially millions of

flows at equipment line rates using reasonable amounts of FPGA resourceand external SRAM

or DRAM. Additionally, whilst the emphasis remains on exact matching capability for this

project, one nonetheless seeks to develop an approach which could migrate to the other lookup

paradigms discussed.

Tree structures and hashing schemes appear to offer the most promising ways forward. Trees

allow lookup performance to be specified in a completelydeterministicfashion. For example,

if one designs a multi-way tree to lookup keys of 64 bits, with 8 bits compared at each level

in the structure, one can guarantee traversal of the entire tree in 8 steps,or external memory

accesses, and thus provide a hard upper bound on worst-case lookuptimes. Therein also lies

the weakness in the tree-based approach, since lookup performance iscorrelated to the length

of the input key. Assuming that external memory access widths remain approximately constant,

longer input keys mean additional sequential memory accesses per lookup- clearly a problem

for system scalability to IPv6, where the additional address space alone means that lookup keys

will be almost 300 bits long (compared to 104 for the standard IPv4 5-tuple).
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With hashing-based schemes, even when average performance is good, it is virtually impossible

to make guarantees about the lookup time in the worst case, since one cannot guarantee collision

free operation. Thus hashing is often said to benon-deterministic. However, with the advent

of advanced hashing techniques as discussed in 4.5.3 one can approach deterministic operation

with very high probability. Further, the lookup performance of hashing based schemes is not

correlated with input key length; an important benefit in the move to IPv6.

Commercial considerations are also significant in identifying a way forwardhere, since

Aliathon Ltd. must remain free to release products based on whatever classification technology

is developed in the course of this research. The patent space is of particular significance.

For example, the optimised Tree-Bitmap technique developed by Eatherton et al. has

been patented by Washington University [113], and the use of Counting Bloom Filters in

classification applications is covered in two patent applications assigned to Global Velocity

Incorporated [114, 115].

With all the above points in mind, thed-left approach was selected as the best candidate for

further investigation. Whilst its applicability to packet classification has been suggested by

Broder and Mitzenmacher [16], it has received little further attention in subsequent published

work, despite promising initial results. Further, whilst hinting at the suitability ofd-left in a

dynamiccontext (where items are frequently deleted and inserted in the system) the authors

leave some interesting questions unanswered.

4.6.1 Understanding d-left: A Numerical Analysis

In the following discussion, the numerical approach introduced by Mitzenmacher [110] and

elaborated in conjunction with Broder [16] is followed, since this yields a detailed numerical

approximation of the expected loads across the entire hash table, rather than a bound on the

expected maximum observed load in the system. As should become apparent, from a hardware

design perspective, such numerical results are extremely useful. For convenience, let us initially

consider ad-left model whered = 2, since this is the simplest case to analyse, and the

incremental performance gains have been shown to diminish asd is increased further [16].

In this case,n hash bins are divided up into 2 groups ofn
2 bins each. Letyi(t) be the fraction

of the n hash bins that contain at leasti items and are in the left hand group afternt items

have been allocated. Similarly, letzi(t) be the fraction of then hash bins which contain
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at leasti items and are in the right hand group whennt items have been allocated. Thus

yi(t), zi(t) ≤ 1/2 andy0(t) = z0(t) = 1/2 ∀ t. If one choses a random hash bin on the

left, the probability that it contains at leasti items is thus given byyi(t)
1/2 = 2yi(t). Identically

if one choses a random hash bin on the right, the probability that it contains at leasti items

is 2zi(t). Mitzenmacher incorporates these simple probabilities into two differential equations

(for i ≥ 1) which describe the behaviour of a 2-left system as the number of binsn and the

number of allocated itemsnt approaches infinity.

dyi(t)

dt
= 2(yi−1(t) − yi(t))(2zi−1(t)) (4.2)

dzi(t)

dt
= 2(zi−1(t) − zi(t))(2yi(t)) (4.3)

To explain these equations, recall the basic operation of the2-left algorithm. The item to

be inserted will be hashed using two independent hash functions. The load in each hash bin

addressed by the hash functions will be examined and the new item allocated tothe hash bin

with the lowest load. In the event of a tie, the new item will be allocated left.

Let dt represent the interval of time in which one item is allocated in the hash table. Foryi(t) to

increase in this interval, the item to be inserted must choose a bin on the left withexactlyi − 1

items (with probability given by2yi−1(t) − 2yi(t)) and a bin on the right withat leasti − 1

items (with probability given by2zi−1(t)). The probability of both these events occurring in the

given time interval is simply the product of the individual probabilities, as given in equation 4.2.

Similarly, for zi(t) to increase over the intervaldt, the new item must choose a bin on the left

with at leasti items and a bin on the right withexactlyi − 1 items, with probability given by

the product as given in equation 4.3.

For convenience of notation, Mitzenmacher then proposes combining thesetwo equations

in terms of a single sequencexi(t), where theeven i terms represent the left-hand table

probabilities and theodd i terms represent the right-hand table probabilities, such thatyi(t) =

x2i(t), andzi(t) = x2i+1(t). So (fori ≥ 2) one obtains equation 4.4.

dxi(t)

dt
= 4(xi−2(t) − xi(t))(xi−1(t)) (4.4)
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So, say one wanted to calculate the fraction of bins in the left hand table with load at least 1,

y1(t) = x2(t). Substituting into equation 4.4 yields:

dx2(t)

dt
= 4(x0(t) − x2(t))(x1(t)) (4.5)

Sincex0 = y0 = 1
2 ∀ t andx1 = z0 = 1

2 ∀ t then:

dx2(t)

dt
= 1 − 2x2 (4.6)

Equation 4.6 is easily solved as an initial value problem sincex2(0) = 0, and has a general

solution given by:

x2(t) =
1

2

{

1 − e−2t
}

(4.7)

Thus as the number of items allocated tends to infinity, the fraction of the total binswith load at

least one which are in the left hand table tends to1
2 , as one would expect. In similar fashion, one

can obtain general solutions for the higher orderxi terms, although asi increases, the nested

xi−2 andxi−1 terms make the arithmetic progressively more difficult to deal with. Behaviour

of the termsx1 throughx7 is shown graphically in Figure 4.19.

Given the initial system scaling, one can then use thexi terms to analyse the loading at points of

interest in any given allocation. For example, the loading profile created bya 2-left allocation

of n items into2n hash bins could be found by evaluating thexi terms att = 1
2 , the profile

created by an allocation ofn items into4n bins by evaluating thexi terms att = 1
4 and so on.

Clearly it is impossible to derive a complete analytical solution here, since thexi vector is

infinitely long. However, the analysis presented in [16] shows that for practical 2-left systems,

the fraction of bins with load of leasti falls extremely quickly with increasing i (in fact

approximately as2−2.6i

) such that high loads are unlikely. Thus, one may truncate thexi vector

and still obtain very accurate loading predictions for systems of practical interest. Furthermore,

one can avoid the complexities of the higher orderxi terms by generating numerical, rather

than analytical, solutions to the differential equations.
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Figure 4.19: Expected behaviour of thexi(t) terms from the 2-left differential equations

The Euler and Runge-Kutte approximations [116] are classical methods forobtaining numerical

solutions to differential equations where general solutions are impossible or difficult to find.

The former is used to generate the numerical results in this research.

4.6.2 Existing Numerical Results

In [16] the authors present some promising comparative results, illustratingthe performance

gains of thed-left approach over single hashing. Table 4.3 shows these results for the2-left

case, where entries represent the fraction of the hash bins with loadexactlyi. For the2-left

case, these results have been generated numerically, using Equation 4.4.For the single hashing

case, one can establish the expected loading from Equation 4.1. Note that inthe2-leftequations,

although thexi terms reflect the fraction of bins with loadat leasti, by simple subtraction one

can calculate the fraction of bins with loadexactlyi. For example, if the fraction of bins with

load at least 3,x3(t) = 0.45 and the fraction of bins with load at least 4,x4(t) = 0.27 then the

fraction of bins with loadexactly3 is given byx3(t) − x4(t) = 0.45 − 0.27 = 0.18.

Recalling that the ratio of the number of items to be hashedm to the number of available

hash binsn is the load factora = m
n , one can see from Table 4.3 that in both cases, as the

load factor decreases, the loading performance improves. Intuitively one might expect this

since a more sparsely populated hash table will obviously produce fewer collisions (or bins
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Table 4.3: Expected fraction of bins with load exactlyi with variable number of items allocated
into n bins by single hashing (a) and 2-left hashing (b)

with multiple loads). However, relative to single hashing, and particularly apparent as the load

factor becomes more favourable, it may also be seen from Table 4.3 that theloading falls off

much more quickly when usingd-left. For example, with a load factor of12 (that is, allocating
n
2 items into n bins) the fraction of the bins with load exactly 5 is1.6× 10−4 when using single

hashing, but only1.4 × 10−42 when using2-left.

The authors of [16] illustrate how these numerical results correlate with real systems by

simulating the underlying allocation process in software. As an example, they consider the

case of allocating 32,000 items into 32,000 bins. The numerical results predictthat5.2× 10−8

of the bins will have load 4 or greater. Thus over say, 10,000 runs (where in each run, 32,000

items are allocated) one would expect to see around 16 or 17 bins with load 4.The authors in

fact observe a maximum load of 4 in 14 of the 10,000 simulated allocations.

4.6.3 Numerical Results at Improved Load Factors

In [16] the authors consider results for a limited number load factors down toonly 1
2 . A

natural question to ask is how ad-left allocation performs at more favourable load factors. This

was chosen as the starting point for further investigation. Using an Improved Euler numerical

method with an approximation interval of0.0005, the numerical results published in [16] were

successfully replicated. By the same method, an additional set of results for load factors of
1
3 , 1

4 , 1
8 , 1

32 and 1
64 were computed. A comparison with single hashing is again obtained using

Equation 4.1 and the results are shown in Table 4.4.
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Table 4.4: Expected fraction of bins with load exactlyi with variable number of items allocated
into n bins by single hashing (a) and 2-left hashing (b) at improved load factors

These results show that at more favourable (lower) load factors, the fraction of bins with higher

loads in ad-left allocation is dramatically lower than when using single hashing. For example,

with a load factor of 1
64 (that is, allocatingn

64 items into n bins) the fraction of the bins with

load exactly 4 is2.4×10−9 when using single hashing, but only1.0×10−63 when using2-left.

The improved load factors discussed here are of direct practical significance, since it appears

that hash table capacities of practical interest are readily supported by current generation

memory components. For example, a system capable of classification on64, 000 unique IPv4

5-tuples of 104 bits each, allowing a load factor of1
8 would require64, 000 × 104 × 8 =

53.25Mbits of RAM. Such a hash table could be implemented using 2 32Mbit QDR-II SRAM

devices. Similarly, a system with identical 5-tuple capacity, but a load factor of 1
64 to further

reduce the expected number of collisions could be implemented using 2 256MbitDDR-II

DRAM devices.

So how does one resolve the collisions that remain? The numerical results suggest that with

an appropriately chosen load factor, the number of colliding entries in ad-left hash table will

be small. This raises some interesting possibilities for an FPGA-basedd-left classifier. More

specifically, a natural question is - given advances in high-bandwidth FPGA embedded memory

technology (up to 12Mbits of embedded block RAM is available in emerging devices [117])

and an appropriately chosend-left topology to reduce the number of collisions, might it be

possible to resolve all these collisions on-chip, and thus create a lookup mechanism offering

the advantages of both determinacy and storage efficiency? The discussion which follows is an

attempt to answer this question.
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4.6.4 From Static to Dynamic Systems

All the previously published numerical results based on analysis using differential equations

have been for what might be termedstatic allocations. That is, one starts with a finite number

of items to be hashedm, and allocates these items into a finite number of hash binsn, after

which the process terminates. One then examines the load distribution in the system. This

model is useful in illustrating the performance improvements over single hashing, and is a

reasonable analogy for router or firewall applications where system updates are infrequent and

can be handled by re-hashing. In applications such as TCP flow monitoringhowever, flows

may be set up and destroyed frequently, such that the dynamic performance of the system is

critical. One must therefore consider how to better define and model such adynamicsystem.

Existing analyses do not provide the numerical results required to determinethe feasibility of a

dynamicd-left system in FPGA hardware. In [16] the authors propose the following dynamic

system. Up to some arbitrary point in timets, only the insertion of items occurs. Fort < ts

the system is thus described (as before) by Equation 4.4. Afterts, insertions and deletions vary.

The probability that an event is an insertion isp, and the probability that an event is a deletion

is 1 − p. Items to be deleted are chosen uniformly at random from all items. The authors thus

modify Equation 4.4 to account for deletions by noting that the total number of items in the

system is given by
∑

j≥0 j(x2j + x2j+1), and that the number of balls that can be deleted that

cause a reduction inxi is
{

Floor
{

i
2

}}

(xi − xi+2), whereFloor indicates “the largest integer

less than”. Hence the equation describing the behaviour of thexi terms comprises an insertion

and deletion term as follows:

dxi

dt
= 4p(xi−2 − xi)xi−1 −

(1 − p)
{

Floor
{

i
2

}}

(xi − xi+2)
∑

j≥0 j(x2j + x2j+1)
(4.8)

In [16] the authors consider lookup systems where all the items (including those which collide)

are nominally stored inexternalhash memory. The contents of external memory are read into

a line in internal local cache, where comparison with the queried data occurs. Failure in such

a system occurs when collisions cause the data fetched from external memory to exceed the

capacity of the local cache line. Themaximumload in the system is thus the critical metric.

In an illustrative example, the authors consider initially allocating 32,000 items into 16,000 bins

using 2-left, and thereafter either deleting or inserting an item, each with equal probability, until
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either a load of 6 is observed or 10,000,000 steps (where a step is an insertion or a deletion)

are completed. They observe that the (numerically predicted) fraction of bins with load at least

six after thestatic allocationof items is only7.2 × 10−19, so that the system should absorb a

large number of subsequent insertions and deletions before a load of 6 isactually observed. In

fact, over 100 trials, 10,000,000 steps were completed 75 times, although the smallest number

of steps before a load of 6 was observed in a trial was 121,805.

The authors go on to note that the maximum number of items one expects to be in the system

appears to be a significant factor in dynamic operation. Similar analyses of dynamic systems

have been presented in [15, 109], suggesting that if the number of items in adynamic system

is bounded, then the maximum load in that system is also bounded, with high probability.

Specifically, from [15] the following is stated for an infinite sequence of insertions and

deletions:

Suppose that at mosth ·n items exist at any point in time. Then the always-go-left
(d-left) algorithm yields maximum loadln(ln n)

d·lnφd
+ O(h), with high probability at

any fixed time stept

Analogous arguments are presented in [108] in the context of minimising congestion in

circuit-switched networks - the maximum observed load in the system is again ofcritical

concern here. However, in establishing the feasibility of an FPGA-basedd-left system where

collisions are resolved internally, the maximum observed load is only part of the picture.

4.6.5 Overflow Sufficiency

The system proposed here will enforce physical separation between external memory for the

primary hash space, and embedded internal FPGA memory which will be usedto resolve

collisions. The basic idea is as follows: Any items which collide with an existing entry in the

external hash space will be stored in the embedded memory. On lookup, the external memory

and embedded FPGA memory will be searched in parallel. Since one only everstores one

item per hash location in external memory, the lookup operation will require only one external

memory access time5. Although there may be multiple items to resolve in embedded memory,

this will be offset by much faster internal memory access times. The critical metric in this

5For 2-left, there will of course be two memory accesses, one left and one right, but these can be done in parallel.
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system is thus not themaximumload in any hash bin, but thetotal number of items which end

up in FPGA memory.

Bins with load 0 or load 1 are of no significance here - since these bins are either empty or

have an entry which is physically stored in external memory, and requires no internal resource.

However, bins with load 2 require 1 entry to be stored in external memory, and a colliding

entry to be stored in embedded memory, bins with load 3 require 1 entry to be stored in external

memory and 2 colliding entries to be stored in embedded memory, and so on. The cost, in terms

of embedded memory resource, of all these bins of higher load becomes thecritical design

criterion. One must ensure that the available embedded memory capacity is never exceeded or

information will be lost and the system will fail. In the context of single hashingNorton and

Yeager [118] describe this criterion asoverflow sufficiency.

4.6.6 A New Study of Dynamic Systems

Thestaticbehaviour ofd-leftand the apparent boundedness of themaximumload when the total

number of items is bounded in the dynamic case, suggest the intriguing possibilitythat overflow

sufficiency may be achievable in FPGA memory. However none of the analyses previously

discussed offer any insight into the fraction of bins in the system which require the support of

embedded memory. An alternative numerical model of a dynamicd-left system is proposed

here. Without significant loss of generality, one can restrict the dynamic behaviour of the

system to produce numerical results which indicate the required embedded memory capacity

for a given external load factor.

Once again, a2-left system is considered first, since this is the simplest to analyse. The key

simplification is to place a hard upper boundM on the maximum number of items ever present

in the system. Initially,M items are allocated using2-left such that the system is full. Then,

rather than considering an arbitrary sequence of insertions and deletions and their respective

probabilities, since there is a hard upper bound on system capacity, new items may only be

allocated when existing items are deleted. A simple way to model this is to assume that at the

upper boundM , existing items are removed (uniformly at random) and replaced by newd-left

insertions, one at a time, such that the total number of items in the system remains constant.

This would seem a reasonable approximation of worst-case behaviour. The equation modelling

the dynamic behavior of thexi terms now simplifies to:
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dxi

dt
= 4(xi−2 − xi)xi−1 −

{

Floor
{

i
2

}}

(xi − xi+2)

M
(4.9)

4.6.7 Numerical Results for Dynamic Systems

Keeping the physical implementation in mind, from Table 4.4 it may be noted that after the

static allocation of items the majority utilisation of embedded memory locations will be due

to hash bins containing two items. For example, consider the static allocation of 1000 items

into 4000 bins using2-left. Since the load factor in this case is1
4 , one would expect on average

0.0027 × 4000 = 10.8 of those bins to contain 2 items after a static allocation. Thus for

a typical allocation, 10 or 11 embedded locations are required to support the bins of load 2.

Since thexi terms fall off so quickly ind-left the equivalent utilisation for bins of load 3 is only

5.2× 10−9 × 4000 = 0.00002 such that on average, there are no bins of load three and thus no

cost in terms of embedded memory. Given that the majority utilisation of embedded memory

in the static case is attributable to bins of load 2, let us assume that this remains the case in

dynamic systems and neglect any contribution from bins of higher load - seeking to validate

this assumption later using simulations of the underlying random processes; for now, this keeps

the volume of data generated by numerical simulation manageable.

The system behaviour ast → ∞ is approximated as follows. For load factors of1
2 , 1

4 , 1
8 , 1

16 , 1
32

and 1
64 the loading after static allocation is obtained by running Equation 4.4 fort ≤ ts wherets

represents the time at which system capacity is reached. Thexi values att = ts are then used as

the initial conditions for the dynamic deletion and insertion phase, governed by Equation 4.9 for

ts < t ≤ tt wherett is some arbitrary time at which the numerical approximation terminates.

A new set of numerical results were generated in exactly this fashion. Thexi values were

post-processed to yield the fraction of bins with load exactly 2 as the simulation progressed,

revealing an interesting interaction between thed-left insertion of new items, and the uniform

random deletion of items at the capacity boundM - the system appears to reach a steady-state.

Figure 4.20 shows the behaviour for a system with load factor1
4 . The loading after the static

allocation is obtained by approximating Equation 4.4 up tot = 0.25 indicating that 0.0027 of

the bins will have load 2 at this point. After continuous insertion and deletion atthe system

limit, the fraction of bins with load 2 initially increases (creating an s-shaped profile), but then

reaches an apparently steady-state value - approximately 0.0062 in this case. The measurements

were repeated for systems of differing load factors, shown in Figure 4.21. Note that since each
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Figure 4.20: Fraction of hash bins with load exactly 2 for a load factor of1
4 , with

deletions/reinsertions at the system capacityM

halving of load factor yields approximately a ten fold improvement in the steady-state loading,

a logarithmic scale is used.

The new numerical results are promising, suggesting that the proposed FPGA-based

classifier may be viable even for very large systems. For example, say oneis required to

accommodate classification of 1,000,000 flows in a dynamic system. With a load factor

of 1
64 one needs 64,000,000 hash bin locations - implementable in DDR-DRAM. From

Figure 4.21 the maximum number of bins one would expect to have load 2 is given by

2.23982 × 10−7 × 64, 000, 000 = 14.3, such that one nominally requires only 14 or 15

embedded memory locations to support the system.

4.6.8 Software Simulation of Dynamic 2-Left Systems

The authors of [16] note that (based on number theory dating back to Kurtz [119]) the

probability of deviating significantly from the loads given by the differentialequations falls

exponentially in the size of the system in terms of the number of hash bins,n. By inference

then, for practical systems of finite size, one would expect some degree of variance in the

predicted load. To investigate this variance, and test the validity of the startingassumption

(namely that for systems of practical interest, bins with load 3 or more have negligible impact

on the required embedded memory resource) a system simulation was written in C++.
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Figure 4.21: Fraction of bins with load 2 for varying load factor, with continuous deletion and
reinsertion at the system capacityM

The simulation generates 32-bit keys, representative of packet headers, which may be

randomised or sent sequentially to thed-left classifier. Note that although IPv4 keys are

typically 104 bits long, key size is not critical here, since one seeks merely tounderstand

the distribution of the loads. The simulation uses 2 table-based Cyclic Redundancy Check

(CRC) functions [120] to generate hash locations for item allocation, and an open-source

random number generator for uniform random deletion of items. The simulation monitors

the loads in every hash bin, and in real time computes the embedded memory costto support

the system. Note that unlike the numerical approximations previously discussed, the system

simulation accounts for bins with load higher than 2. The embedded memory requirements

are periodically logged in an output file. To keep data volumes and simulation execution

times reasonable, only load factors of1
2 , 1

4 , 1
8 and 1

16 were modelled. The first set of results,

shown in Figure 4.22 reflect a system containing 16,384 items, with a variable number of hash

bins. The second set of results shown in Figure 4.24 reflect a system of262,144 hash bins,

with a variable number of items. The predicted embedded memory requirement from the

corresponding numerical simulation is shown as a dashed line on each subfigure.
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Figure 4.22: Embedded memory utilisation for a 2-left classifier with 16384 items and variable
bins, under dynamic deletion and insertion of items
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Figure 4.23: Normalised variance from numerically predicted load for the systems shownin
Figure 4.22

110



Packet Classification

Figure 4.24: Embedded memory utilisation for a 2-left classifier with 262144 bins and variable
items, under dynamic deletion and insertion of items
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Figure 4.25: Normalised variance from numerically predicted load for the systems shownin
Figure 4.24
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4.6.9 Interpreting the Software Simulation Results

Some care is required in interpreting Figures 4.22 and 4.24. They serve to illustrate only the

relationship between the dynamic behaviour and steady state value reachedin a real simulation

of the underlying random processes, and their equivalents predicted by the numerical model.

Since the embedded memory cost falls off so rapidly with improving load factor,they-axisin

each of the graphs must be appropriately scaled such that the behaviourin transition from static

to dynamic operation may be observed. Thus, in Figures 4.22 and 4.24, although the embedded

memory cost for load factor116 (subfigure(d)) appears to exhibit more variance than that for

load factor1
2 (subfigure(a)), this is merely an artefact of scaling - in fact the oppositeis true;

the variance in embedded memory cost improves as the load factor reduces,as illustrated in the

corresponding relative frequency plots, Figures 4.23 and 4.25.

4.6.9.1 Characterising Variance

Figures 4.23 and 4.25 comprise a set of normalised relative frequency curves. These are readily

constructed by postprocessing the data used in Figures 4.22 and 4.24 respectively. When steady

state behaviour is observed, the embedded memory cost output is periodically sampled to

construct the corresponding relative frequency distribution. A loadingoffset is added such

that these curves are normalised around the expected mean value for a system of load factor12
so the distribution shapes may be more easily compared.

As a specific example, consider how Figures 4.22 and 4.23 relate for systems of load factor
1
2 and 1

16 respectively. With 16384 items and 32768 hash bins (load factor1
2 ) the steady state

embedded memory cost predicted by Equation 4.9 is approximately 1581, shown by the dashed

line in Figure 4.22(a). With 16384 items and 262144 hash bins (load factor1
16 ) the equivalent

cost is approximately 12, shown by the dashed line in Figure 4.22(d). To make like-for-like

comparison of the variance around these predicted means easier, an offset of1581−12 = 1569

is added to each point in the load factor1
16 relative frequency curve, Figure 4.23(d). In other

words, although the embedded memory cost for a load factor of1
16 varies around a mean of 12

for this system, the distribution is shifted up thex-axis for comparative purposes. Equivalent

offsets are added for the other load factors modelled, so that they may be compared on the same

scale.

From these plots it may readily be seen that choice of load factor is important inestablishing
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well bounded embedded memory costs. The variance around the numericallypredicted mean

in the observed embedded memory cost is notably more spread out at higherload factors. In

particular, an undesirable high-side roll-off is observed at load factor1
2 . At lower load factors

the situation improves significantly. For example, as shown in Figure 4.25, with 262144 hash

bins and 131072 items (load factor1
2 ) the difference between the highest and lowest observed

embedded memory cost at steady-state is approximately 600. With 262144 hash bins and

16384 items, the difference between the highest and lowest observed embedded memory cost at

steady-state is approximately 30. This is consistent with the number theory alluded to in 4.6.8,

and suggests that for large systems, where load factors down to1
64 are realisable in DRAM,

variance will not significantly impact the efficiency of the proposed implementation.

4.6.9.2 Comparison with Single Hashing

A comparison with dynamic systems based on single hashing yields very favourable results.

For each of the load factors previously discussed, an equivalent C++simulation based on single

hashing was constructed. Interestingly, with single hashing, during the dynamic phase of the

simulation steady state behaviour is reached immediately. This is what one might expect, since

the single hash function represents (approximately) uniform random allocation of items, and

the deletion mechanism in the simulation is a uniform random number generator. Hence in

the dynamic phase each “event” is a uniformly random insertion followed immediately by

a uniformly random deletion - with no net effect on the embedded memory requirements.

The numerically predicted steady-state embedded memory cost for dynamic operation of

single hashing systems is thus easily obtained from the basic allocation predictions - given

in Equation 4.1.

Note that since the number of bins of load higher than two does not fall awayso quickly with

single hashing, these bins of higher load must be considered when calculating the embedded

memory costs. Figure 4.26 shows the steady state behaviour just describedfor a single hashing

system with 32768 items and 262144 hash locations. In this case, From Equation 4.1 it may

readily be shown that approximately 1808 hash bins will contain two items, and that 76 hash

bins will contain three items. Since for each of these bins of load three, two itemsmust be

stored on-chip in the proposed implementation, the embedded memory cost is 76 x2 = 152.

Contribution from bins of load four and higher is negligible. The total numerically predicted

embedded memory cost for the system (shown by the dashed line in Figure 4.26) is thus
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approximately1808 + 152 = 1960, which again correlates well with the steady-state value

reached in the system simulation.

Figure 4.26: Embedded memory utilisation for a single hashing classifier with 32768 items
and 262144 bins, under dynamic deletion and insertion

Correlating the results for the set of systems considered, one may see thatsince bins of

higher load fall away much more quickly when using2-left, it outperforms single hashing -

dramatically so at better load factors. Measured in terms of the embedded memory cost required

to support the system during dynamic operation2-left is approximately 2.2 times better at load

factor 1
2 , 4.6 times better at load factor1

4 , 12.5 times better at load factor1
8 and 41.8 times better

at load factor1
16 , as summarised in Table 4.5.

4.6.9.3 Interim Conclusions

In interim summary, the correlation between the embedded memory requirements predicted

by numerical approximation and those observed in the simulation of the underlying random

processes appears to be excellent. The combination of the loading plot during the static and

dynamic phases of operation, and the relative frequency distribution of the embedded memory

cost during the dynamic phase provide a reasonably complete picture of system behaviour.

From these one may observe that a2-left system initially exhibits the predicted “s-shaped”

transition during dynamic operation and eventually reaches a steady-state value consistent
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Table 4.5: Embedded memory requirements of 2-left and single hashing classifiersfor
simulated systems at varying load factors

with that numerically predicted. This validates the starting assumption that for thesystems

considered, bins of load three make a negligible contribution to the total embedded memory

cost of the system.

As expected, variance in the embedded memory cost when the system reaches steady state

is observed. Again, at more favourable load factors, the relative frequency distribution

characterising this variance is notably sharper and taller - one could speculate that for systems

of infinite size this distribution would be a line of height 1, centred on the numerically

predicted steady state value. For systems of practical size with appropriately chosen load

factor, it appears (at least from this small subset of simulations) that the additional embedded

memory required to accommodate variance and guaranteeoverflow sufficiencyas t → ∞

will be reasonable; an assumption which will be tested later in comparing a prototype

hardware implementation with existing published work. Ultimately, for commercial systems

development more rigorous characterisation would be required here, using systems of

millions of items and larger load factors over long measurement intervals - suchrigorous

qualification and verification effort is considered beyond the scope of the current discussion.

Notwithstanding this need for more rigorous characterisation, it is clear that2-left outperforms

single hashing as a dynamic classification paradigm.
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4.6.10 Defining Dynamic Systems Analytically

Noting that the numerical and system simulations discussed so far exhibit very favourable

steady-state behaviour with well bounded embedded memory resource requirements, it is

natural to inquire if one might establish a more general analytical model describing the system,

such that firm conclusions could be drawn about the system behaviour as t → ∞. In short,

might it be possible to prove analytically that the system is unconditionally stable?Whilst it is

possible to derive an equation describing the observed system steady-state, it appears difficult

(if not intractable) to obtain a general solution from which any conclusionsmight be drawn.

To illustrate the complexities of any analytical approach, recall Equation 4.9 which described

the dynamic system previously defined and modelled. One may separate this equation (which,

for convenience, originally used the combinedxi(t) notation) into two equations inyi(t)

(reflecting the fraction of bins with loadat leasti in the left hand table) andzi(t) (reflecting

the fraction of bins with loadat leasti in the right-hand table);M again represents the total

number of items in the system:

dyi(t)

dt
= 2(yi−1(t) − yi(t))(2zi−1(t)) −

i(yi(t) − yi+1(t))

M
(4.10)

dzi(t)

dt
= 2(zi−1(t) − zi(t))(2yi(t)) −

i(zi(t) − zi+1(t))

M
(4.11)

The embedded memory cost analysis is based on the fraction of bins with loadexactlyi, given

by wi(t) as follows:

wi(t) = (yi(t) − yi+1(t)) + (zi(t) − zi+1(t)) (4.12)

Differentiating, one obtains:

dwi(t)

dt
=

{

dyi(t)

dt
−

dyi+1(t))

dt

}

+

{

dzi(t)

dt
−

dzi+1(t)

dt

}

(4.13)
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Substituting Equation 4.10 and Equation 4.11 into Equation 4.13 and consideringsome

stationary (in time) point where apparent steady state behaviour of the system occurs, one

obtains, after some algebraic manipulation:

dwi(t)

dt
= ∆2(zy)i−1 + ∆(i(∆(yi(t)) + ∆(zi(t)))) = 0 (4.14)

Where∆ and∆2 are the first and second difference operators [121, 122] with respect to the

loading spacei. The non-linearity introduced by thezy product term means a general solution

to Equation 4.14 may be difficult or even impossible to find (since no standard differential

solution forms are applicable here). Unfortunately then, at least by following the preceding

analysis, it does not appear feasible to draw conclusions about the unconditional stability of

the system. Given these difficulties, an alternative approach is to verify thesystem empirically,

by considering more general operational models. In other words, to establish how stable and

robust the proposed system is, let us try to break it.

4.6.11 More General System Use-Cases

Up to now consideration has been given to a system which behaves in a waywhich is easy to

generalise and thus to model with a differential equation. That is, a dynamic classifier which

is empty att = 0, is filled to its capacity according to ad-left allocation of items governed

by Equation 4.4, and then continues operation according to a “one-out-one-in” protocol at this

system limit, governed by Equation 4.9 ast → ∞. In real classification systems, operation is

unlikely to be so rigorously defined. For example, in the context of flow monitoring, one may

wish to delete a flow for which no packets have been seen in a certain time interval. Items in the

associated classifier will thus typically be time-stamped and deleted according tosome ageing

protocol, which introduces the possibility ofbulk deletions and insertions in the system when

multiple items expire at the same time.

Since equations governing the insertion of items, and the deletion/insertion of items at a fixed

capacity have already been established, to consider more general use cases one need only add

an equation governing deletion in isolation. This follows naturally from Equation 4.9, where

the insertion term may be removed such that the fraction of bins with load at least i under bulk

deletion is given by:
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dxi

dt
= −

{

Floor
{

i
2

}}

(xi − xi+2)

M ′
(4.15)

Note thatM is replaced withM ′ in Equation 4.15 since under continual deletion the number

of items in the system is no longer static, and must be accounted for in any numerical

approximation. With three modes of operation (insertion, deletion, both) more general system

use-cases may now be modelled, though one assertion remains in place. That regardless of how

items arrive or expire, the system has a fixed capacityM .

A system with 16384 items and 65536 hash bins (load factor1
4 ) was chosen for further

analysis. In the first use-cases considered, items are allocated up to the system capacity,

and deletion/insertion continues at the system limit (as before) until steady-state behaviour

is observed. One then perturbs the system by deleting and reinserting items inbulk, again

up to the system capacity, whereupon deletion and insertion at the system limit recommences.

Figure 4.27 shows the results for both numerical approximation and system simulation of this

behaviour for bulk deletion and insertion of 2000 items (subfigures (a) and (b)) and 8000 items

(subfigures (c) and (d)). Excellent correlation is again observed between the numerical model

and the system simulation, and after perturbation the system reaches the samesteady-state

previously observed. The number of embedded memory locations requirednever exceeds this

value (associated with deletion and insertion at the system limit) - approximately 408 for the

system considered.

To build confidence in the system, some further general use-cases weremodelled. Since

tailoring the software simulation for the systems of Figure 4.27 proved time consuming, and

since consistent correlation with the numerical results had been established, it was decided to

use only numerical models for the remainder of the use-case analysis. Four additional scenarios

were considered. In the first, system capacity was reached by continuously inserting 2 items and

deleting 1. In the second, upon reaching the steady state at the system capacity, an additional

8000 items were added and deleted in bulk, followed by continual deletion andinsertion at the

system limit - note that this use-case is actually illegal, since the system limit is exceeded, but

is included as an interesting perturbation of the steady-state nonetheless. In the third, the 16384

items are inserted in two batches, with interim insertion/deletion phases. That is,8192 items are

inserted, one then deletes and inserts items such that the number of items remainsat 8192, one

then adds a further 8192 items, and recommence deletion and reinsertion at the system limit. In
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the final scenario, the system limit is reached by staggered insertion of 6000 items followed by

deletion of 1000 up to 15000, with a final top-up insertion to 16384, followedby deletion and

insertion at the system limit. The results are shown in Figure 4.28.

One may observe that, with the exception of the use-case where the system limitis deliberately

exceeded, the embedded memory location cost never exceeds the level predicted by deleting

and inserting items continuously at the system limit. Even for the illegal use-case, the same

steady-sate value is reached when the illegal items are removed. Thus, again with the caveat that

more rigorous characterisation would be required as part of commercial systems development,

it is asserted that2-left is robust and stable under dynamic operation.

4.6.12 Simulations with Real IPv4 Data

As an additional check on the viability of the proposed implementation, real IPv4 traces

including some from the National Library for Applied Network Research [123] were used

as the input to a system simulation with 16384 items and 65536 hash bins. As before, to

establish the apparent upper bound on the embedded memory requirements,items are allocated

by 2-left, with items subsequently deleted and inserted at the system limit. The traffic details

are summarised as follows:

• Figure 4.29(a):Random input data- As previous simulations.

• Figure 4.29(b):Bell Labs Input Trace- A one week contiguous internet access IP header

trace collected at Bell Labs research, Murray Hill, New Jersey.

• Figure 4.29(c):Leipzig II Trace- An illustrated 1-day GPS-synchronized IP header trace

captured simultaneously at either side of the University of Leipzig’s central Internet

access router.

• Figure 4.29(d): Salzburg FH Trace- A contiguous internet access IP header trace

collected at the University of Applied Sciences (Fachhochschule) Salzburg’s packet

capture point.

The results are shown in Figure 4.29 and suggest that repeatable and consistent behaviour

with real IPv4 data as inputs to the system is achievable. The highest embedded memory cost

(observed when using the Bell Labs traffic) was approximately 475, compared with a maximum
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value of approximately 450 when using random input data. In general, thecorrelation between

simulations using synthetically generated random keys and those using realdata is good. Use

of better hash functions, or additional random multipliers as suggested in [16] should improve

repeatability across such simulations further.
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Figure 4.27: Embedded memory utilisation for a 2-left classifier with 16384 items and 65536
bins, showing bulk deletion and insertion of items
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Figure 4.28: Embedded memory utilisation for a 2-left classifier with 16384 items and 65536
bins, under more general use-cases
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Figure 4.29: Embedded memory utilisation for a 2-left classifier with 16384 items and 65536
bins, with IPv4 trace data as input
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4.7 A Prototype Hardware Implementation

The preceding analysis has produced some interesting and potentially veryuseful outcomes.

The results obtained by considering dynamic systems, initially following a simple rule whereby

new items are added on a “one-out-one-in” basis and latterly considering more general modes of

operation, suggest that an FPGA implementation based on2-left is viable and robust. Further,

it appears that at appropriate load factors, such an implementation will perform dramatically

better than single hashing. On this basis, and to facilitate comparison with other contemporary

classification approaches, it was decided to proceed to the investigation and implementation

of an FPGA-based hardware prototype. Recall the solution proposed in4.6.5. Items will be

allocated according to a2-left insertion into two hash memories (nominally implemented in

external RAM). If the RAM location chosen by2-left is free, the item will be stored in external

memory at that address. In the event of a collision, the item will be stored in FPGA embedded

memory. Upon an item query, the external and internal memory spaces will besearched in

parallel.

To facilitate faster prototyping it was decided that, rather than develop a fulldiscrete

memory system, the prototype be implemented exclusively in embedded FPGA memory.

Partitioning the prototype into areas of block RAM emulating the “external” hashtables

(which would ultimately be implemented in discrete SRAM or DRAM) and a separate area of

block RAM fulfilling the collision resolution function, was deemed appropriate toestablish

proof-of-concept. Modelling the system in this way removes the complexity ofimplementing

embedded memory controllers (a non-trivial task, especially in the DDR-DRAM case), and

allows many more classification decisions in a given test interval, since embedded RAM offers

higher bandwidth access. Note that the following discussion will still refer to“external” hash

tables (despite implementing the structures internally in this instance) since the hash table

locations in the prototype will behave exactly like their discrete equivalents.

Embedded FPGA memory is, of course, a finite resource. The prototype system size must

therefore be chosen appropriately such that the combined requirements of the twod-left hash

tables and the correspondingoverflowmemory do not exceed the embedded RAM capacity of

the chosen FPGA.

The required capacity for any given system can be estimated by the numerical means already

detailed. However in considering a dynamic system where the hash memory and collision

125



Packet Classification

resolution memory are physically separate, one must extend the numerical analysis by

introducing the concept of itempromotion- a prerequisite to maintaining memory efficiency

in the proposed implementation.

4.7.1 Promotion and Memory Efficiency

Consider the simple hash tables shown in Figure 4.30, following the balls into binsanalogy.

Subfigure (a) shows a generic (implementation independent) hash table, where the bins have

theoretically infinite capacity. Thus, for example, although items 1,8 and 11 areall allocated

to location A1, there is sufficient capacity to store them all. Every item maintains apermanent

association with the hash bin it is allocated to. The deletion of items is as straightforward as

insertion. If say, item 5 were deleted, the load in bin A7 would reduce from 2to 1, with item

10 still present in that bin.

Finite hash bin capacity complicates matters. In the proposed implementation, one may only

store a single item at each address in the external hash tables. In Subfigure (b), since items

8,9,10 and 11 hash into addresses which are already occupied, they arestored in embedded

FPGA memory for collision resolution, and any associativity with a hash table address is

lost. In this case, when item 5 is deleted from address A7, a memory inefficiency is created.

Location A7 is now free, and item 10 hashes to that location, but is not usingit. Since, in this

embodiment, any associativity between item 10 and location A7 was lost when theformer was

stored in collision resolution memory, there is no way topromotethe item back into external

memory and fill the “memory hole”. Thus, although location A7 now has a nominalload of

1, the item comprising that load is still stored on-chip, and the embedded memory cost of the

system is higher than it should be.

4.7.1.1 Modelling Memory Inefficiency in 2-left

The discussion in 4.7.1 raises concerns about the impact of inefficient memory utilisation in

dynamic systems ast → ∞, particularly with respect to the steady-state behaviour previously

observed. It was therefore deemed necessary to develop a better understanding of this

inefficiency, and update the numerical models for dynamic systems to reflectthis. Again, to

simplify matters, let us assume that a favourable load factor is chosen and thus that bins of

load 3 and higher have negligible impact on the embedded memory costs, and can be ignored.

126



Packet Classification

Figure 4.30: Simple hash tables - implementation independent (a), and with physical
separation between primary hash space and collision resolution overflow(b)

One may thus define a hash bin to beinefficientonly if it has a load of 1, with the item stored

in the embedded FPGA overflow memory rather than in the hash table location directly.

So how might a hash bin become inefficient? By the definition above, one must find a hash

bin with load 2, and delete the item in that hash bin which is physically stored at theexternal

hash location. This results in a bin of load one, with an associated item stored inthe overflow

memory. Conversely, an inefficient hash bin may be returned to an efficient state if the item

persisting in overflow memory is itself deleted, or if a future insertion “plugs” the memory hole.

All three possibilities must be accounted for in mathematically modelling memory inefficiency.

Consider initially the left-hand hash table in a dynamic2-left system. Letp1(t) be the fraction

of inefficient bins in the left-hand table - that is, the fraction of bins in the left-hand table, with

load 1, where the item is stored in overflow memory. As for all the preceding dynamic analysis,

let dt be the interval of time during which an item is deleted and a new item inserted. Forp1(t)

to increase in this interval, one must choose an item for deletion which is in a hash bin of load

2, and is physically stored in the external hash table location - let us call this “Event 1”. With a

uniform random deletion distribution, the probability of Event 1 occurring isgiven by:

P (E1) =
2l2(t)N

2M
=

l2(t)N

M
(4.16)
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wherel2(t) is the fraction of bins in the left-hand table with loadexactly2, N is the number of

bins in the system andM is the number of items. Forp1(t) to decrease in the intervaldt, one

must either delete an item from an inefficient bin - let us call this “Event 2”, or insert an item

into an inefficient bin - let us call this “Event 3”. Event 2 and Event 3 have probabilities given

by Equations 4.17 and 4.18 respectively:

P (E2) =
p1(t)N

M
(4.17)

P (E3) = 2x3(t)p1(t) (4.18)

The net change inp1(t) is thus a simple combination of these 3 probabilities, given by

Equation 4.19, and by completely analogous arguments an equivalent differential equation for

the fraction of inefficient bins in the right hand table,qi(t), is given by Equation 4.20, where

r2(t) is the fraction of bins in the right-hand table with loadexactly2.

dp1

dt
=

l2(t)N

M
−

{

p1(t)N

M
+ 2x3(t)p1(t)

}

(4.19)

dq1

dt
=

r2(t)N

M
−

{

q1(t)N

M
+ 2x4(t)q1(t)

}

(4.20)

The impact of inefficient memory utilisation may then be modelled numerically. At timet = ts

the static allocation phase has just completed, and since there have been no deletions,p1(t) =

q1(t) = 0. From ts ≤ t < tt wherett is again some arbitrary but finite simulation time one

may then model Equations 4.19 and 4.20 in parallel with the original dynamic system model to

establish how many bins of load 1 are inefficient at the end of the process.After completing this

process for load factors of12 , 1
4 , 1

8 and 1
16 it was observed that the system continued to exhibit

steady state behaviour in the dynamic phase, but that the embedded memory cost at which this

steady state was reached was approximately double that for system withoutphysical separation

of hash and overflow memory space. A new set of software simulations were also constructed

for each of these load factors. The results are shown in Figure 4.31, withgood correlation again

observed between the actual system behaviour and the numerically predicted steady state value,

shown as a dashed line in each subfigure.
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Figure 4.31: Embedded memory utilisation for a 2-left classifier with 16384 items and variable
bins, under dynamic deletion and insertion of items without promotion
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4.7.1.2 Design Trade-Offs in Implementing Promotion

One need not live with the memory inefficiencies just described, but one cannot resolve the

problem without some cost in terms of logic utilisation and performance. The problem lies in

the loss of associativity between the item stored in the embedded FPGA overflow memory and

the external table location to which it initially hashed. To resolve this, in addition tostoring the

item itself in embedded FPGA memory, one could store two additional pieces of information -

a flag to indicate whether the item was allocated to the left or right hash table, and the address

in that table at which the item collided, causing it to enter the overflow memory in thefirst

place. Thus, when an item is deleted, one could search the internal overflow memory for

entries with a matching flag/hash pair, and select the item for promotion back to the external

memory location. This process restores full associativity between overflow items and hash table

addresses, removing the inefficiency detailed in 4.7.1.1.

Clearly there is a logic cost. Say the items to be classified are IPv4 keys, 104 bits long and are

being allocated into a hash space of220 = 1, 048, 576 locations. To support the associativity

just described one must store the key itself plus an additional 20 hash address bits and a left/right

flag bit - a 20% overhead on every item stored in the overflow memory. Thereis also a cost in

terms of update performance, since in addition to the first parallel search tolook for the item to

be deleted, one must initiate a secondary search of the internal memory to lookfor promotion

candidates.

Having given due consideration to all of the above points, it was decided toimplement a system

withoutany promotion mechanism, since initial comparisons with other published approaches

suggested that even when running at sub-optimal efficiency, the proposed implementation offers

performance improvements. This point will be revisited in more detail later.

4.7.2 Prototype System Dimensions

Recalling the decision to implement a classifier entirely in embedded FPGA memory, the initial

prototype system was specified with the following parameters:

• 32768 32-bit6 hash table locations, comprisingleft andright tables of 16384 locations

each.
632 bits are not actually required here, since the input items are accessedvia pointers. 32 bits allocated to provide

headroom for any later changes or experimentation.
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• An maximum input capacity of 4096 32-bit items, with an additional 32 bits allocatedto

store associated state or context information.

• A collision resolution capacity of 128 items.

The hash table locations can be implemented in embedded block RAM. The FPGA used in

the prototype platform discussed in 2.3.4 has 216 such RAMs available, each providing 512 x

36-bit memory locations. The hash space thus requires 64 of these. Additionally one requires

16 block RAMs to support a systemstate tablewhich will keep a list of the current contents and

any associated information or actions. In real world applications, such a table might be used

to store timestamp information, or to associate some filtering or forwarding decision with each

input. The collision resolution space can be implemented in distributed RAM, utilisingaround

only 1% of the available logic resource to support 128 x 60 bit entries. A small amount of

additional block RAM resource is also required to control allocation and deallocation of state

memory, and to support diagnostics.

4.7.3 Basic Circuit Operation

Recall once again the basic operation of the2-left algorithm. When an item arrives to be

allocated, one choses a random location in the left-hand table, and a random location in the

right-hand table. The item is placed in the location with the lowest load, and ties are always

broken by placing the item in the left hand table. Mirroring this behaviour, and maintaining the

consistency of the2-leftalgorithm with physical separation of memory areas, a proposed packet

classification architecture is shown in Figure 4.32. A description of basic circuit operation

follows.

4.7.3.1 Allocating a New Item

Assume that the current input item does not already exist in the system. When the new input

item arrives, two corresponding hash functions for that item are computed. FunctionH1

provides a pseudo-random address into the left hash table, and function H2 a pseudo-random

address into the right. The left and right hash table locations each return apointer into state

memory, where the input items of interest are actually stored, together with anyassociated

context information. Indirect addressing in this fashion improves the efficiency of the

implementation. Since the items themselves must be stored in state memory anyway, there is
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Figure 4.32: Initial prototype classification architecture

no requirement to explicitly store them in hash memory - a pointer from hash memory into

state memory suffices. This decouples the size of the hash memory from the input item length.

In the case of the initial prototype, since the system has a capacity of 4096 items, each hash

location need only store a 12-bit pointer (and a count, discussed in more detail later).

The pointers returned from hash memory are then used to address the statememory which

returns the items at the addressed locations for comparison with the currentinput. At the same

time, a fast parallel search of the overflow memory compares all of its contents with the current

input. Since the item does not already exist in the system, all three comparators (left hash table,

right hash table and overflow memory) will return a miss, so the current input may be identified

as new. At this point, the2-left counts associated with each of the hash table locations are

examined. If the right hand count is less than the left the item is associated withthe right hand

table, otherwise the item is associated with the left, and the corresponding count at the hash

table location incremented.

The termassociatedis used deliberately since at this point, no decision has yet been taken as to

where the current item willactuallybe stored. If the item is allocated left, and the left hand hash

table location is free, one writes a pointer into state memory to the left hash table, and writes

the item itself into state memory. If the item is allocated left, but the left hand hash table is
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already occupied by a pointer to another item - acollision - then the item itself is written to the

overflow memory, along with its hash table address, a flag bit to indicate that theitem collided

in the left table, and the item’s subsequent address in state memory. Analogous arguments apply

to collisions in the right hash table. Avalid bit is set in the new overflow memory location, to

indicate that it is a valid candidate for future searches.

4.7.3.2 Updating an Existing Item

If the current input already exists in the system, one of the comparators willreturn a hit. If the

item is found in one of the hash memories, the pointer into state memory at the appropriate

location is used to update the context information associated with the input. In theinitial

prototype, one simply increments a context count associated with the input. Note that this

is not the count associated with2-left, merely the number of times one has seen an input in

the current classification period. If the item is found during the parallel lookup of the overflow

memory, the corresponding state table address stored at the overflow location is used in similar

fashion to update the context.

4.7.3.3 Deleting an Old Item

In practical classification applications, such as TCP flow monitoring and packet filtering, one

may wish to stop monitoring a particular item and remove it from the system, perhaps based on

some ageing protocol, whereby inputs which have not been seen over a designated monitoring

period are discarded. Effectively, somewhere in the software monitoringhierarchy, a decision

is taken to remove an item from the state memory. This item is passed to the classification

engine along with a delete flag, and traverses the same datapath as before.

The item for deletion is hashed to produce two addresses into hash memory, which return

pointers into state memory as before. In parallel, the overflow memory is searched. Since the

item has been flagged for deletion, one of the comparators will return a hit. If the item is found

in hash memory, the associated2-left count is decremented, and the pointer to state memory

cleared. The state table location is subsequently freed for use by any newinput item which

arrives.

If the item for deletion is found in the overflow memory, the hash address andflag stored at that

overflow location are used to decrement the appropriate2-left count in hash memory. The state
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table address stored at the overflow location is subsequently freed for use by any new input item

which arrives, and thevalid bit stored at the overflow location is cleared to discard it from any

future searches of the overflow memory.

4.7.4 Implementing Fast Overflow Search

The ability to search the overflow memory efficiently is key to the performance of the overall

engine. For a system with hash space implemented in DDR-DRAM one would seek to complete

the on-chip embedded memory lookup in around the same time as it take to retrieve astate table

pointer from the discrete memory device. Completing the on-chip search more slowly than

the DRAM access time means that this becomes the performance bottleneck in the system;

completing the on-chip search significantly faster than the DRAM access time is redundant,

since one must always wait for the state table pointer to complete the classification operation.

A full analysis of discrete hash and state memory access timing is dependent on the memory

device type, hash address width and memory data width and was deemed beyond the scope of

the current implementation. Instead, based on similar parallel lookup schemes implemented

previously by Aliathon, it was decided initially to allow 4 system clock cycles perinternal item

lookup.

4.7.4.1 A First Attempt

The prototype system allocates 4096 items into 32768 locations; a load factor of 1
8 . Numerical

analysis for an ideal system with this load factor predicts that under dynamicoperation, a

maximum of approximately0.0006 x 32768 = 19.66 items will end up in overflow memory.

Since the initial prototype does not implement any promotion from overflow memory, one must

also account for memory inefficiency as modelled by equations 4.19 and 4.20, which predict

that this will increase to0.001182 x 32768 = 38.73 items. An overflow memory space of 128

items was thus chosen to give more than enough headroom to characterise the variance in this

numerically predicted loading. To allow an input comparison every 4 system clock cycles, the

overflow memory initially proposed was thus structured as shown in Figure 4.33.

Since in any given block RAM one may only address a single memory location in each clock

cycle, the overflow memory is constructed of 8 block RAMs of 16 32-bit locations each. This

supports storage of up to 128 32-bit inputs. A common read pointer steps through each RAM,
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Figure 4.33: Block RAM architecture to facilitate an input comparison every 4 system clock
cycles

incrementing once every clock cycle such that in 16 clock cycles, the entirecontents of the

overflow memory may be read. Since one comparison every 4 clock cycles isrequired, 4 inputs

are buffered and compared in parallel during each traversal throughthe overflow memory.

Thus, in 16 clock cycles, 4 inputs may been compared with every overflow memory location -

equivalent to an average throughput of 1 comparison every 4 clock cycles.

4.7.4.2 Complexities and Limitations

Initial implementation efforts based on the overflow memory structure proposed above raised

a number of difficulties, both in the context of the current prototype and in thecontext of

scalability to systems of practical size. By way of illustration, consider the simplified 4-bit

comparator logic shown in Figure 4.34, for comparison of a 4-bit numbera with 4 peers

b, c, d, e. To comparea with one of its 4-bit peers -b say - one needs 8 logic inputs which,

in FPGA terms, utilise 2 4-input LUTs . The first LUT comparesa0 with b0 anda1 with b1,

the second comparesa2 with b2 anda3 with b3. The results of the 4 individual bit comparisons

are then aggregated in a second layer of logic. To aggregate all the parallel comparisons (with

b, c, d ande), a third layer of logic is required.
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Figure 4.34: Parallel comparison of a 4-bit number with 4 others

In the case of the initial prototype, 32-bit numbers are compared. Thus a single comparison

requires 64 inputs to the first layer of logic, and produces 16 outputs to a second layer, which

in turn produces 4 outputs to a third layer, which produces the result. A fourth layer of logic is

required to aggregate the results of the four parallel comparators. Whilstthis basic comparator

logic may readily be made to run at speeds approaching 200MHz on the target platform for

the classification prototype, it raises concerns about scalability to IPv4 and particularly IPv6

systems. Comparison of 2 128-bit input keys, for example, presents 256bits to the first layer

of logic. Aggregation of 4 parallel comparisons of this width requires 5 layers of logic, and

significant FPGA routing resource, both of which act to make timing closure more difficult.

A further difficulty arises as a direct consequence of the latency through the system. In the

case where four parallel comparisons are performed, 16 clock cyclesare required to buffer

4 inputs and read the appropriate pointers and context information from memory, 16 clock

cycles are required to step through the overflow memory for comparison, and 16 clock cycles

are required to write updated information to the memories based on the results. The non-zero

time (or latency) between reading context information from state memory and writing updated

context information back represents a non-atomic read-modify-write loop,which introduces

the potential for spurious context update and degraded system capacity.

To illustrate the problem, let us consider some specific scenarios which are likely to occur in

real classification systems. Say the latency through the classifier istl, and an item - a packet

headerA - already exists in state memory with an associated count of 6. That is, packets with
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headerA have been seen by the system 6 times previously during the current classification

period. There then follows a burst of 4 input packets with headerA during a time interval less

thantl. The first of these packets to arrive will trigger a match withA in the state table, and

cause the associated count to be incremented. However, the latency in the system is such that

the subsequent inputs in the current burst, fetch a count from state memory which has not yet

been updated. Thus each of the 4 inputs fetch a count of 6 and incrementit to 7. As a result,

after the final packet in the burst is processed the count in state memory associated withA is

only 7, when it should be 10.

As another example, let us assume that packet headerA does not currently exist in the system.

There then follows a burst of 4 input packets with headerA, again in a time interval less than

tl. The first packet to arrive will generate a miss in all the system comparators, and cause a

new state table entry to be generated forA. However, the latency in the system is such that

the subsequent inputs in the current burst also generate a miss in all the system comparators

(since the new entry forA has had insufficient time to be created), and three new entries for

the remaining packets are also created, causing a spurious reduction in thesystem’s capacity.

Similar scenarios might be envisaged for items scheduled for deletion, although since the

deletion mechanism is controlled directly by the system, this could be engineeredto avoid

any contention.

To preserve the integrity of context updates, one could introduce a mutualexclusion

scheme [124] whereby context information may only be accessed under semaphore control,

and is thus always guaranteed to be valid. Such a scheme introduces non-determinacy in

state table access time however - an unacceptable characteristic, considering the initial design

motivations. A better solution in the context of the current implementation is to introduce a

cache, which restores the atomicity of system context update using local memory access. The

basic idea for a system with 4 inputs buffered at any one time, and a read-modify-write latency

of 16 clock cycles is illustrated in Figure 4.35.

The cache contains the item and context information for inputs which have been classified but

not yet updated in state memory. It is positioned after the primary classificationlogic, acting

like a shift-register, with inputs from the primary classification logic and outputsused directly

to update the state table. As shown in Figure 4.35, itemsA, B, C andD already exist in the

cache. That is at some timet− x wherex ≤ 16, A, B, C andD have already been seen by the

system. Note that the other cache locations are also occupied, but are marked as “don’t cares”
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Figure 4.35: Cache structures to preserve context accuracy

since they have no bearing on the outcome of this example. The itemsA, B, C andD arrive

at the system again, and during cyclet have been processed by the primary classification logic,

which fetched the associated (and now out-of-date) context information from the state table.

To check that the context information fetched from the state memory is valid, onechecks to

see if the current item already exists in the cache. During cyclet one searches forD in the

cache. This search returns a hit at location 9. The context information originally fetched

by the primary classification logic is thus deemed out-of-date, and overwrittenbased on the

context information stored at location 9 in the cache. In the case of maintaininga simple count

associated withD, if the count value returned by the primary classification logic wasy, then

the value stored in the cache at location 9 would have beeny+1 and the value used to overwrite

the new occurrence ofD would bey + 2.

During cyclet + 1, the cache shifts right. Location 15 is read from the cache and written to

state memory, itemD and its new context are written to location 0, and the original version of

D (now at location 10) is tagged as old (D′) and not included in any further searches. Also in

cycle t + 1, the search for the next input itemC commences. This returns a hit at location 7

and the process repeats.

Unfortunately, comparator performance and latency in the proposed architecture are

antagonistic problems. One may try to ease logic timing in the primary classification logic

by pipelining or allowing additional clock cycles to traverse the overflow memory space.

This increases the latency through the system however - necessitating a larger cache - and

since a parallel search of the cache itself requires comparator logic, the timing problems are

transposed rather than solved. Conversely, to reduce the latency through the system to the

point where little or no cache is required would demand prohibitive amounts ofparallelism
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in the primary comparator. Acknowledging that these difficulties would be compounded in

systems with long inputs and high packet rates, it was decided to abandon theapproach of

brute-force parallel search and completely restructure the overflow memory - again by taking

advantage of thed-left algorithm.

4.7.4.3 A 2-level, d-left Architecture

From the preceding analysis it is evident that after allocating 4096 items into 32768 hash

locations, one would expect a maximum of 38.73 items to end up in overflow memoryduring

dynamic operation of the old system. Given the attendant difficulties of resolving these overflow

items directly in embedded memory, it was decided to apply a different approach. Namely,

rather than store overflow items from the external hash space directly, one allocates them

into a small secondary2-left scheme, implemented in block RAM. Whilst this at first appears

somewhat inefficient (since embedded block RAM is a scarce resource,and hash memories are

sparsely utilised by design) it goes a long way to simplifying the resolution of entries which

end up on-chip.

For the prototype system, approximately 40 items will end up colliding in the primary hash

space. Allowing 512 locations in the second level2-leftallocation thus provides a load factor of

better than18 . By an identical numerical approximation to that applied to the primary allocation,

one would expect less than0.0006 x 512 = 0.3072 items to overflow both the first and second

2-left allocations. This means that in theory a very small, register-based, third level overflow

memory is now sufficient to guarantee robust dynamic operation, since onlyvery rarely will

items collide at both levels in the hash space. This removes the need for brute-force parallel

lookup on all but the smallest structures in the design. The proposed architecture is illustrated

in Figure 4.36.

4.7.5 New Circuit Operation

Allocation, update and deletion of items in the new system is similar to the previous

embodiment, except that one now has a secondary hashing layer, which replaces the parallel

block RAM lookup. One must be a little more careful in maintaining correct load counts here,

to ensure that allocations at both levels of the2-left scheme are made correctly. Consider the

case shown in Figure 4.37.
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Figure 4.36: Revised prototype architecture with 2-level, 2-left hashing

A new input itemC is allocated left by the primary2-leftscheme, and collides with a pointer to

an existing itemA. It thus filters through to the secondary allocation, where it is placed right,

but collides again at this level with a pointer to another existing itemB. ItemC must therefore

be placed in the overflow memory, and since it hashed left in the primary allocation, and right in

the secondary allocation, one must increment the appropriate counts at each level. In this way,

the2-left protocol is adhered to at all levels in the system. WhenC is written to the overflow

memory, it is tagged with an external and internal flag, such that in the eventthatC is deleted

from the system at some point in the future, the appropriate counts may be decremented.

4.7.6 Resource Utilisation

Whilst in systems of practical size, the external hash space and state memorywould be

implemented in discrete DRAM and SRAM devices, for the initial proof of concept here,

the entire infrastructure is implemented entirely in embedded FPGA memory. In the revised

implementation, the first layer of the architecture remains unchanged. One initially allocates

4096 items into 32768 hash locations, the latter utilising 64 embedded block RAMs.As before,
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Figure 4.37: Maintaining correct load counts in a 2-layer, 2-left allocation

one also requires a further 16 block RAMs to support thestate tableassociated with the entries

in this first hashing layer.

Now, instead of implementing a contiguous overflow memory in distributed RAM, one

constructs a secondary hashing layer in embedded block RAM. To achieve a load factor of

better than1
8 at this level, one needs 512 hash locations - easily supported in this case with

a single block RAM. An additional block RAM is required to support the second levelstate

table, and approximately 328 bits of register-based logic are sufficient to provide a third level

overflow capacity of 8 items. A small amount of additional resource is again required to

control allocation and deallocation of state memory, and to support diagnostics.

4.7.7 Numerical, Software and Hardware Results Compared

Recall the expected loading in the prototype system. When allocating 4096 items into 32768

hash locations, with no promotion between the hashing levels, the preceding numerical analysis

predicts that approximately 40 items will percolate through to the second hashing level.

Providing a hash space of 512 locations at this level provides a load factor of better than1
8 ,

such that one would expect less than 0.6144 items to percolate through to the final overflow

level. Since the numerical model is imperfect for systems of finite size, one would expect the

system to exhibit variance about these numerically predicted values.
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To characterise this variance in the 2-level architecture, a final software simulation in C++ was

written, which periodically reported the loading in both the second level hashspace, and the

third level overflow memory. The second level results were then processed as before to produce

a relative frequency distribution.

To complete the proof-of-concept, a 2-level d-left hardware implementation was written in

VHDL and targeted at the prototype platform developed in 2.3.4. The classification logic was

fed by a pseudo-random key generator, providing a new key every 16 clock cycles at a system

clock period of approximately 6ns (or a system frequency of 170MHz),and left to run for

a gating period of 4 hours. Thus with one deletion/insertion event every 16x 6 = 96ns, the

behaviour of the system may be analysed over approximately1.5 x 1011 events.

Figure 4.38: Characterising internal loading in a 2-level d-left implementation

The allocation of internal state memory in the hardware implementation is controlled by a

simple data structure known as afree buffer queue. This structure simply holds the available

state table addresses and allocates them on demand, on a first-in-first-outbasis. When a new

item arrives for allocation into the internal state memory, an available location is read orpopped

from the free buffer queue. When an item is deleted, its state table location is freed up and

written orpushedback onto the free buffer queue as an available location for some future entry.

This free buffer queue is implemented in block RAM. One may thus use its associated read

level to determine how many items are stored in the level 2 hash space at any point in time, as

shown in Figure 4.38.

In the prototype implementation, the free buffer queue read level associated with the level 2

hash space is sampled once every 65536 system clock periods - approximately every 0.4ms.

The sampled read level then acts as an address into a histogram RAM. Before running the
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system, this RAM is initialised to zero at each of its 128 locations. Once running, when a

histogram RAM location is addressed by the classification logic, its contents are incremented

by 1. So if the read level is 40, one adds 1 to the contents of histogram location 40. With 32 bits

available at each RAM location one can guarantee that it will not overflow during the 4 hour

gating period. The values held in this RAM at the end of this period may then be processed to

produce a hardware generated relative frequency plot of the loads inthe level 2 hash space.

A comparison of software and hardware generated results is shown in Figure 4.39. Good

correlation in the level 2 loading is observed between the software simulation and the hardware

implementation, and both exhibit a mean load very close to 40, as predicted by thepreceding

numerical analysis. Finally, the maximum load observed in the third level overflow memory

was 1 over 500,000 events in software simulation and 2 over1.5 x 1011 events in the hardware

implementation, suggesting that the small overflow space allocated in this system ismore than

adequate.
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Figure 4.39: Comparison of software simulation and hardware implementation results for a
2-level, d-left classifier with 4096 input items
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4.7.8 Performance Comparison

Having established the basic viability of the proposed implementation, one now seeks to

establish a performance benchmark. The difficulty here lies in deciding what to compare

the proposed implementation against. Let us reiterate some of the points discussed in 4.5.

Legacy solutions for exact matching are typically limited in terms of lookup performance

or implementation efficiency. Techniques based on simple single hashing [95]where all the

system entries are stored in external memory, scale efficiently and perform well on average,

but very poorly in the worst case - making any claim about high line-rate capability difficult

to support. Conversely, techniques based on trees [93] offer guaranteed worst-case lookup

times but bind those lookup times to the length of the input item. Further, the exact matching

applications of interest here may not be simplified by any heuristic, since there is noa priori

information about the input items. Tree structures are difficult to optimise as a result.

Based on these foundation techniques, one may thus trade off implementation efficiency and

deterministic lookup performance. Whilst tree structure optimisations applicableto exact

matching have been suggested [94], attempts to optimise hashing schemes havereceived more

detailed attention in the literature and appear to produce better results. Such optimisation

focuses on making hash-based lookup more predictable by reducing the number of collisions

which occur by using, for example, cryptographic strength hash functions [100], semi-perfect

hash functions [91] or techniques based on multiple hashing, introduced in [101].

Of the latter techniques, the use of Counting Bloom Filters implemented in embeddedmemory

as proposed by Song et al. [106] appears to offer the best results, claiming classification

resolution in a single external memory access time. The authors base their results on

simulations of a system withn = 10, 000 input items andm = 128, 000 external hash

locations. To guarantee resolution of a lookup in a single external memory access, one chooses

an optimal configuration for theirShared-Node-Fast-Hash-Table(SFHT) structure according

to the Equation 4.21.

k =
m ln 2

n
(4.21)

In this case,k is the optimal number of hash functions used to address the Counting Bloom

Filter. Thus for 10,000 input items and 128,000 external hash table locations, 10 hash functions
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are required. The authors show that 3-bit counters in the embedded filterare adequate in this

case. The basic system classification logic therefore requires3 × 128, 000 = 384 Kbits of

embedded SRAM.

Now consider 10,000 input items into the proposed 2-level, 2-left architecture. Allowing 80,000

external hash table locations gives a load factor of1
8 in the first level hash space. From the

preceding analyses, without any promotion between the hashing levels, one would expect

approximately0.0012 × 80, 000 = 96 items to percolate through into the embedded second

level hash space. Facilitating a load factor of1
8 at this level thus requires8 × 96 = 768

embedded hash locations of 10 bits each - a total of 7.68 Kbits of embedded SRAM.

From this second level hash space, one would expect0.0012 × 768 = 0.9216 items to fall into

the third level overflow memory. Provision for 8 such overflow locations at41 bits each requires

328 bits of embedded logic, and would seem reasonable to guarantee overflow sufficiency and

lookup resolution in a single external memory access. In total, the basic system classification

logic therefore requires just over 8 Kbits of embedded SRAM. So with the caveat that the first

level hashing space must be divided in two (and thus requires 2 discrete memories in parallel

of m
2 locations each to resolve the lookup in a single memory access time), the 2-level,2-left

FPGA implementation proposed here requires 62.5% of the external memory resource, and

just 2% of the embedded internal SRAM required by the equivalent Counting Bloom Filter

architecture.
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Summary

This research has focused on the development of FPGA-based architectures for Next

Generation Communications Networks, specifically addressing two key technologies in high

bandwidth networking - Forward Error Correction and Packet Classification. As a preliminary

to the concluding discussions, a brief summary of the points already presented now follows.

5.1 Chapter 1

Chapter 1 introduced the concept of System Level Integration as an amalgam of disciplines

evolved to manage the complexities of multi-million gate System-on-Chip devices, andto close

the associatedproductivity gap- the discrepancy between transistor density and the number

of transistors which may be incorporated into a design in a staff month. ASICs, ASSPs and

FPGAs were discussed as the principal variants of System-on-Chip device. The advantages of

deploying FPGAs in low volume, high complexity applications were discussed; particularly the

mitigation of risk as networking standards emerge.

Maintaining competitive advantage by delivering FPGA-based solutions which are smaller

and faster than those of their competitors was emphasised as strategically important to the

sponsors of this research, Aliathon Ltd. This emphasis was encapsulatedin a thesis statement,

which asserted that theoretical research and detailed operational studyof the algorithms which

underpin emerging networking standards, combined with an architectural-level focus on FPGA

design, would yield solutions which bettered the state-of-the-art. ForwardError Correction and

Packet Classification were introduced as the principal areas for investigation.

5.2 Chapter 2

Chapter 2 presented some technical and commercial background. The term “next generation”

was qualified as embodying both a transition to higher bandwidth systems and a migration to
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packet-based networking. Specifically, the evolution of the Optical Transport Network (OTN)

and the ubiquity of Internet Protocol were discussed as the key commercial motivations for the

work presented in this dissertation.

FPGA architectures were discussed, using the Xilinx Virtex II Pro device as an example,

and the differences between FPGAs and ASICs/ASSPs were outlined in thecontext of their

respective design flows. The system design trade-offs between logic utilisation, clock speed

and processing time were highlighted.Abstractionandtechnology independencewere outlined

as best-practice guidelines followed at Aliathon Ltd.

Finally a description of an FPGA-based configurable network interface card designed as a

precursor to the principal research work was presented.

5.3 Chapter 3

Chapter 3 presented the outcomes of the first major research phase of theproject, on Forward

Error Correction (FEC). A brief introductory discussion outlined reasons why one may wish

to encode data for communications. Block Codes were identified as the focusof this research

and Finite Field Theory was introduced as the mathematical framework on whichthe analysis

of such codes is based. The Reed-Solomon codes were defined, with RS(255,239) of particular

interest as the code deployed in the Optical Transport Network (OTN). The particular challenge

of implementing FPGA-based Forward Error Correction for 43Gbps OTU-3 systems was

discussed.

5.3.1 Reed-Solomon Encoding

Reed-Solomon encoding was introduced, and the mapping of the required mathematical

operations to hardware structures illustrated. The limitations of a single-symbol encoder in

the context of OTU-3 systems, which require two symbols to be processed inevery system

clock cycle, were identified. When using a single-symbol engine, in everyclock cycle two

input symbols arrive and only one may be processed. Thus to keep up withthe incoming data,

parallel encoders, data buffers and pipelined logic must be introduced.

A novel two-symbol encoder based on reformulated arithmetic was presented to address these

issues. The new encoder is based on a generalised expression relatingan arbitrary parity symbol
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to two input message symbols, and can thus process two symbols in every system clock cycle -

completely removing the need for any interim data buffering.

Since the number of symbols per message word in any Reed-Solomon code is odd, in processing

such messages two symbols at a time it is necessary to deal with an odd cycle in every message

word, when one of the input symbols to the encoder is non-valid. A wrapper was thus proposed,

designed to fit around the encoder core, transparently formatting the datain such a way that the

encoder always processes an even number of symbols, but the data remains OTU-3 compliant

at the equipment interface.

5.3.2 Reed-Solomon Decoding

The Syndrome Calculator, Chien Search, Forney Calculation and Key Equation Solver block

were then introduced as the building blocks of a Reed-Solomon decoder. The Key Equation

Solver (KES) block, which takes the syndrome as input and produces theerror locator and

error evaluator polynomials as outputs, was identified as the most difficult to implement in

hardware, since solution of the key equation is mathematically intractable.

Two well documented approaches to the solution of the key equation were discussed - the

Berlekamp-Massey algorithm, and the Extended Euclidean algorithm. A contemporary

“hybrid” algorithm [12] drawing on the mathematical bases of both approaches was then

introduced and identified as an interesting candidate for further study.

Operation of the algorithm was verified in longhand, and tested against known good behavioural

models. A previously published VLSI architecture based on the hybrid algorithm was then

discussed. It was noted that an FPGA architecture based on a direct implementation of this

VLSI model would not compare favourably with Aliathon’s existing solution (based on a variant

of the Berlekamp-Massey algorithm).

It was thus decided to investigate the operation of the hybrid algorithm further, with a view to

identifying possible optimisations. A synthesizable VHDL implementation of a Key Equation

Solver based on the hybrid algorithm was developed, and embedded in a test system comprising

known behavioural models of the Syndrome Calculator, Chien Search andForney Calculation

blocks. The behaviour of individual coefficients in the evaluator and locator polynomials was

then observed on a per-iteration basis until the algorithm terminated, over thefull range of

correctable error patterns.
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From this investigation, two optimisations were proposed. It was noted that thealgorithm’s

working polynomials could be concatenated and normalised to reduce the storage requirements

from 8t + 4 symbol locations to4t + 6, wheret is the error correcting capability of the code.

This optimisation also reduces the number of finite field multipliers required from8t + 4 to

4t + 6 and reduces the number of finite field adders required from4t + 2 to 2t + 3. Further

it was noted that modifying the initial conditions allowed the algorithm to complete in2t − 1

clock cycles. This improvement, though small in absolute terms, was found to beintegral to

improved performance at 43Gbps.

A prototype FPGA architecture based on the optimised hybrid algorithm was then developed.

The prototype Key Equation Solver can process 1 codeword in 15 clock cycles, or 167

codewords in 240 clock cycles. Therefore with 2 of the new engines, comprising approximately

2000 slices each, the Key Equation may be solved with a total utilisation of 4000 slices.

In contrast, a decoder based on the inversionless Berlekamp-Massey algorithm - previously

developed at Aliathon Ltd. - requires 32 engines comprising approximately 350 slices each to

give a total utilization of 11200 slices. The new implementation thus requires just36% of the

original utilisation logic for operation at OTU-3 line rate.

5.4 Chapter 4

Chapter 4 presented the outcomes of the second major research phase ofthe project, on Packet

Classification. The topic was introduced as a key enabling function for an increasing number

of networking applications, including Internet Protocol (IP) routing andswitching, Quality of

Service (QoS) provision and network security. Three principal types of classification were

described - String Matching, Longest Prefix Matching and Exact Matching - the latter being

of particular commercial interest to Aliathon Ltd., facilitating the immediate enhancement of

legacy products for ATM, and simultaneously creating a platform on which tobuild a suite of

packet-processing IP cores in the future.

The space, time, power and update complexity of classification operations were discussed and

a review of previously published classification solutions presented. Existing exact matching

techniques were presented, including schemes based on decision-trees, neural networks, Bloom

filters and hashing. It was noted that state-of-the-art techniques based on trees offer completely

deterministic classification or lookup times, but scale poorly to systems with long headers.
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Conversely, contemporary techniques based on hashing scale better but are non-deterministic,

such that worst case lookup times can be poor.

Solutions based on multiple hashing were identified as more promising candidatesfor FPGA

implementation. Of these, a structure known as a Counting Bloom Filter and a loadbalancing

algorithm known asd-leftappeared to perform particularly well. Commercial considerations (in

particular the existence of patents covering FPGA-based Bloom Filter implementations), and

some interesting gaps in the existing analysis ofd-left suggested the latter as a good starting

point for further investigation.

A numerical analysis of thed-left algorithm was then presented. This analysis initially

followed the existing published work, based on differential equations, ofMitzenmacher and

Broder [16]. Their results for static systems were replicated and extended to include systems

with more favourable load factors, whered-left was shown to perform significantly better

than single hashing. These initial results prompted the following question - given advances

in high-bandwidth FPGA embedded memory technology and an appropriately chosen d-left

topology to reduce the number of collisions, might it be possible to resolve all these collisions

on-chip, and thus create a lookup mechanism offering the advantages ofboth determinacy

and storage efficiency? Additional numerical analysis was deemed necessary to answer this

question.

In [16] the authors considered lookup systems where all the items (includingthose which

collide) are nominally stored in external hash memory. The contents of external memory are

read into a line ininternal local cache, where comparison with the queried data occurs. Failure

in such a system occurs when collisions cause the data fetched from external memory to exceed

the capacity of the local cache line. Themaximumload in any hash location in the system is

thus the critical metric.

It was noted that in proposing to resolve hash collisions ininternal FPGA memory, the

maximum load in any hash bin is not the critical metric - rather thetotal number of items which

collide in the external hash space is crucial. The desired system attribute in this regard was

defined asoverflow sufficiency[118]. A new numerical analysis was thus proposed, intended

to establish whetheroverflow sufficiencyin a dynamic context was actually possible. Initial

analyses, supported by a series of software simulations developed in C++, suggested that

the amount of FPGA embedded memory required to support ad-left classifier was bounded,
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reaching a predictable steady state value during dynamic operation at the system capacity.

Attempts to prove the unconditional stability of this system analytically were not successful,

since the differential equation resulting from the analysis was non-linear and did not readily

yield a solution. It was thus decided to proceed empirically, testing the system under more

general modes of dynamic operation, and using real IPv4 data traces asinputs. Repeatable

steady state behaviour continued to be observed. On this basis it was decided to proceed with a

prototype FPGA implementation.

A discussion of the initial prototype architecture was then presented, and the implications of

introducing physical separation between the primary hash space and the overflow memory

discussed. The concepts of promotion and memory efficiency were introduced and a revised

numerical model proposed to account for them. To maximise the number of classification

decisions which could be made in a given test interval, and to remove the needto implement

discrete memory controllers, the prototype classifier was implemented entirely in embedded

FPGA memory. The basic circuit operation was then described, and the complexities and

limitations associated with the architecture discussed.

A novel 2-level, 2-left architecture was proposed as an improved classifier prototype, resolving

the difficulties associated with complex comparator logic and caching identified inthe

earlier system. The prototype was augmented with basic diagnostics and exhibited excellent

correlation both with numerically predicted results and software simulations of the underlying

random processes. The 2-level, 2-left FPGA implementation proposed requires 62.5% of

the external memory resource, and just 2% of the embedded internal SRAMrequired by a

Counting Bloom Filter architecture of equivalent capacity.
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Chapter 6
Conclusions and Further Work

The work presented here has considered System Level Integration through the application

of programmable logic to some of the design challenges posed by next generation

communications networks. Such networks reflect an industry demand for higher bandwidth

connectivity compounded by the need to support increasingly diverse payload data. The risks

and costs associated with development of fixed functionality devices such as ASICs and

ASSPs in this dynamic environment, mean that FPGAs increasingly representa competitive

alternative.

With these points in mind, this dissertation has sought to combine analysis of the algorithms and

techniques associated with two important networking paradigms - Forward Error Correction

and Packet Classification - with an informed approach to the development ofFPGA-based

architectures. The thesis statement of Chapter 1 asserted that such an approach could yield

solutions which better the state of the art. The Reed-Solomon architectures ofChapter 3 and

the classifier prototype of Chapter 4 are offered as justification of this assertion, and in support

of the conclusion that the work presented has been broadly successful.

To qualify that conclusion, and by way of final summary, some areas for improvement and

suggestions for future work are presented.

6.1 On Forward Error Correction

The logic proposed in 3.5.12 for the optimised Key Equation Solver runs at approximately

170MHz. Whilst this is nominally fast enough to support 43Gbps line rate operation, it allows

no margin for the degradation due to system jitter associated with multiple switching gates in

near-full FPGAs. Two aspects of the design appear to be critical here.Firstly, there is a large

routing delay associated with theδ andγ symbols which must be routed to multiple coefficients

to implement the distributed multiplication required by the algorithm. This could be improved

by experimenting with register replication to reduce the large fanout on the associated nets.
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Secondly, the selection logic combined with the arithmetic blocks form a critical combinatorial

path in the design. In particular, the assignment of theb polynomial is determined by an

input multiplexer (for initialisation), a combinatorial path through the Galois Field multipliers

and adder, and an output demultiplexer which determines whether shifted, non-shifted or zero

symbols are passed through.

Experiments with a simplified single coefficient model suggest that the efficiency of the

selection logic can be improved by normalising the polynomials in a single stage, asshown

in Figure 6.1. This restructuring takes advantage of the fact that the FPGAcan implement a 4

to 1 multiplexer in a single CLB, by using an internal construct called an F5 multiplexer. The

Key Equation Solver requires further engineering effort to integrate these changes.

Figure 6.1: KES architecture for a single coefficient with improved timing

The Syndrome Calculator, Chien Search and Forney Calculation have notbeen studied in

detail. Further work is required to understand the implications for these blocks in OTU-3

systems, where two symbols must be processed in every clock cycle. The Syndrome Calculator

in particular, being similar in basic structure to an encoder, may yield to a mathematical

reformulation similar to that applied in 3.5.3. Further, it would be interesting to extend such

reformulation to consider systems processing 4 symbols per clock cycle - perhaps as a candidate

architecture for an OTU-4 system.
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Table 6.1: Resource utilisation for OTU-3 FEC architectures

Significant further development work is required to integrate the architectures developed

in this dissertation into an OTU-3 chipset. Specifically, for a complete OTU-3 solution,

interleaver/de-interleaver, mapper/de-mapper and framer/de-framer cores are all required.

Table 6.1 gives some indicative percentage utilisation figures for the architectures developed in

this dissertation, which suggest that high-end Virtex II Pro or Virtex IV devices would be good

candidate platforms for such a chipset.

Finally, industry adoption of Forward Error Correction in general remains an interesting topic,

worthy of ongoing study. The authors of [125] note that the codes considered in this dissertation

are optimal for systems spanning less than transoceanic systems, but that for transoceanic

applications concatenated codes or product codes offer a better choice. Intriguingly, ITU-T

Recommendation G.975 [126] offers multiple suggestions for such strong codes or “super

FEC” schemes but does not actually standardise on one - reflecting the uncertainty which

remains in this field. Discussion with a number of Aliathon’s customers towards the end of

the research period documented here, suggests that equipment manufacturers may be adopting

the management functions specified by ITU-T G.709, but seeking to implementtheir own

proprietary FEC schemes, optimised for their particular network topologies.

6.2 On Packet Classification

The architecture developed in Chapter 4 represents a promising proof-of-concept around which

an FPGA-based classification product could be based. However, further investigation and

development work are required to build a genuine product on the ideas presented here. Attempts

to derive a complete analytical model of the observed steady-state behaviour of the system were

155



Conclusions and Further Work

not successful. Therefore, it was not possible toprove that the classifier is unconditionally

stable during dynamic operation. The analysis presented in 4.6.10 was not exhaustive, so the

existence of such a proof remains an open question.

The system also needs to be more rigorously tested, ideally in a real networkenvironment in

parallel with third-party equipment for independent verification of the classification behaviour.

The GIGEMON - an open platform for passive monitoring of optical GigabitEthernet networks,

based on an Endace DAG4.3GE dual channel network monitoring card [127], and the Agilent

Technologies N2X Multi-services Tester [128] would provide an excellent test environment -

facilitating complete control over traffic generation and comparison logs fortraffic capture.

Figure 6.2: Fraction of bins with load 2 for varying load factor, with continuous deletion and
reinsertion at the system capacityM , for a 3-left (a) and 4-left (b) allocation
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The likely performance of real, discrete memory based classification systemsbased on the

proposed architecture needs more detailed analysis. Whilst the system nominally classifies

input items in a single external memory access, the actual line-rate capability willdepend on the

memory technology used. Very large classification systems will most likely be implemented

in discrete dynamic RAM; achieving efficient access to such devices is non-trivial and itself

worthy of detailed investigation.

The possibility of using higher orderd-left allocations is suggested. Whilst the benefits of

higher order systems follow a law of diminishing returns, a numerical modelling of 3-left

and4-left allocations, shown in Figure 6.2, suggests they may also provide a viable basis for

alternative FPGA-based classifier topologies. Finally, since the completion of the research

documented in this dissertation, additional publications of interest have emerged. The authors

of [129] discuss the benefits of allowing items to be moved during insertion into multiple-choice

hashing structures in hardware, and in [130] the integration ofd-left hashing and Bloom Filters

is proposed.
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Appendix A
An Inversionless Berlekamp-Massey

Algorithm

Guide to notation:

• λi : Locator polynomial coefficients

• ωi : Evaluator polynomial coefficients

• δ : Discrepancy,b : Working polynomial,k : Control variable

• γ : Working GF element

Inversionless Berlekamp-Massey (iBM) Algorithm

Initialization:

λo(0) = bo(0) = 1, λi(0) = bi(0) = 0 for i = 1, 2, . . . , t. k(0) = 0. γ(0) = 1.

Input: si, i = 0, 1, . . . , 2t − 1.

for r = 0 step1 until 2t − 1 loop

begin

Step iBM.1 δ(r) = sr · λ0(r) + sr−1 · λ1(r) + · · · + sr−t · λt(r)

Step iBM.2 λi(r + 1) = γ(r) · λi(r) − δ(r)bi−1(r), (i = 0, 1, . . . , t)

Step iBM.3

if δ 6= 0 and k(r) ≥ 0 then
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begin

bi(r + 1) = λi(r), (i = 0, 1, . . . , t)

γ(r + 1) = δ(r)

k(r + 1) = −k(r) − 1

end

else

begin

bi(r + 1) = bi−1(r), (i = 0, 1, . . . , t)

γ(r + 1) = γ(r)

k(r + 1) = k(r) + 1

end

end loop

for i = 0 step1 until t − 1 loop

begin

Step iBM.4 ωi(2t) = si · λ0(2t) + si−1 · λ1(2t) + · · · + s0 · λi(2t)

end loop

Output: λi(2t), i = 0, 1, . . . , t. ωi(2t), i = 0, 1, . . . , t − 1.
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Appendix B
An Extended Euclidean Algorithm

The algorithm is performed on a table with four columns - quotientq(x), remainderr(x), u(x)

andv(x).

If greatest common divisor of two polynomials gcd(a(x), b(x)) is given byr(x), the Extended

Euclidean algorithm returns polynomialsu(x) andv(x) such thatr(x) = u(x)a(x)+v(x)b(x).

Definition:

Step 1:

Initialisation. In rows−1 and0, leave the quotient column empty. The entries in the remainder,

u(x), andv(x) columns area(x), 1 and0 in row −1 andb(x), 0 and1 in row 0. Set iteration

countk = 0.

Step 2:

Calculation ofq(x). Divide r(x)k1 by r(x)k producing the quotientq(x) and the remainder

r(x).

Step 3:

Calculation ofr(x), u(x) andv(x). The formulae determiningr(x)k+1, u(x)k+1 andv(x)k+1

are:

r(x)k+1 = r(x)k1q(x)k+1r(x)k

u(x)k+1 = u(x)k1q(x)k+1u(x)k

v(x)k+1 = v(x)k1q(x)k+1v(x)k

Go to Step 2.Terminate when the degree ofr(x) is less thant, wheret is the error correcting

capability of the code. For details of failure conditions when this capability is exceeded see [36].

The algorithm returns the error locator and error evaluator polynomials when the inputs are

a(x) = x2t andb(x) = s(x).
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Appendix C
An Outline Business Plan

A business plan submitted to the University of Glasgow in fulfilment of the business and

management requirements of the Engineering Doctorate.

Declan Hegarty

Institute for System Level Integration

Aliathon Ltd.

Evans Business Centre

Pitreavie Court

Dunfermline

Fife

KY11 8UU

Registered Company SC216137

Tel + 44 (0)1383 737736

Fax + 44 (0)1383 749501

www.aliathon.com
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An Outline Business Plan

C.1 Executive Summary

• Aliathon is a dynamic Scottish start-up company, founded in 2001, deliveringworld-class

IP core products to global telecoms and datacoms ‘markets.

• These markets will be worth some $20 billion by 2008.

• Aliathon’s proven business model is beginning to establish market share; poised to deliver

40% revenue growth in the next financial year by building on an established international

customer base.

Figure C.1: Aliathon revenue growth 2001-2006

• Aliathon operates in the high value-added microelectronics sector, with the potential to

generate additional high quality jobs for Scotland and bring a significant revenue stream

into the Scottish economy.

• Aliathon is thus an excellent fit with the targets, key markets and technologies identified

in Scottish Enterprise’s unified strategy for microelectronics and optoelectronics for

2005-2009 [131].

• Aliathon now seeks engagement with Scottish Enterprise to evaluate ways to consolidate

and accelerate growth of the business. Principal areas for discussionand development
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include the development of an appropriately scaled marketing mix, consolidation of

existing strategic partnerships with Xilinx, Inc. and Altera Corp., and support for ongoing

research and development. Other areas of interest include the protectionof strategic

intellectual property, management training and assistance with executive appointments.

C.2 Company Overview

C.2.1 Introduction

Aliathon designs, develops, verifies and sells Intellectual Property (IP)solutions for the

communications industry, targeting an advanced family of chip devices knownas Field

Programmable Gate Arrays (FPGAs). In this context, Intellectual Propertyrefers to the design

blocks or cores which run inside these chips, comprising a global market estimated to be

worth $1.27B in 2004 [132]. Such IP cores may be combined to provide complete silicon chip

solutions for a wide range of communications and networking applications.

Figure C.2: Total global IP revenue, 2004 -$1.27 Billion

In general, electronic equipment typically comprises one or more printed circuit boards (PCBs)

which host and interconnect a number of discrete integrated circuits (IC)designed to perform

a specific function. Gordon Moores famous prediction from 1965 [1] correctly stated that

the transistor density (and thus processing power) of such integrated circuits would double

approximately every eighteen months.

The communications chip market today is predominantly addressed by high performance

FPGAs, Application Specific Integrated Circuit (ASIC) and Application Specific Standard

Products (ASSP) solutions, capable of integrating many functions (including high speed

wireline and wireless capabilities) on a single chip, thus replacing multiple legacydevices and

reducing system cost.
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Gartner Dataquest estimate this market to be worth some $30 billion, growing to $45 billion

over the next five years.

Figure C.3: Market for communications chip solutions 2000-2010

Aliathon designs, combined with leading edge FPGA technologies will continue todisplace the

incumbent solution providers and win market share in this timeframe for the following reasons:

• ASIC/ASSP development is very expensive, at up to $30 million for modern devices [9].

Aliathon can reduce the overall system design cost to end users.

• FPGA designs can be implemented faster than ASICs/ASSPs. Aliathon can thusreduce

time to market for end users.

• FPGAs are completely reprogrammable. Evolving standards and customer requirements

can therefore be easily tracked. Aliathon can thus reduce the risks of new product

development for end uses.

C.2.2 Operational Summary

• Aliathon is a limited company SC216137, registered at 10 Craighouse Place, Saline, Fife,

KY12 8TQ, Scotland.

Location of Principal Operations

• Aliathon will continue its current operations at Evans Business Centre, Pitreavie Court,

Dunfermline, Fife, KY11 8UU, Scotland.
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Main Operational Activities

• Development Engineering: Including both work to expand our product portfolio, and

design activities to extend or enhance existing products.

• Customer Support: Including technical post sales support (included in the price of the

core), maintenance and bug fixing.

• Sales and Technical Marketing: Including detailed technical and commercial discussion

of new opportunities with FPGA partners and potential customers.

Current Staffing Complement

• Mr. Steve McDonald, Director

R&D Architecture and Implementation, Sales & Marketing, Finance, HR

• Mr. Jed Martens, Director

R&D Architecture and Implementation, Sales & Marketing, Finance, HR

• Mr. Ulises Hernandez, Senior Design Engineer

R&D Architecture and Implementation

• Mr. Declan Hegarty, EngD Research EngineerResearch and Development

• Mr. Peter Sinka, EngD Research EngineerResearch and Development

• Mr. Gavin Fleming, Management Consultant

• Mr. Kevin Dineley, Software Consultant

Infrastructure Requirements

• Aliathon’s premises currently comprise two managed offices at the Evans Business

Centre, Dunfermline. Aliathon’s current offices offer adequate accommodation for two

additional employees and additional engineering equipment. Additional office space is

readily available within the building.

• Aliathon’s development work is carried out using high end simulation and synthesis tools

to support system development. The majority of Aliathon’s business correspondence is
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transferred electronically, including the distribution of IP cores to customers. Office

facilities include telephone, fax and broadband internet connectivity.

C.2.3 Industry Overview

Technological advance and significant growth in the Internet, wireless technology and

broadband adoption are fuelling the communications industrys return to growth.

New applications and technologies such as wireless internet access, voice-over-Internet

Protocol (VoIP) telephony, virtual private networking and third generation (3G) mobile

services are generating huge demand for bandwidth and improved quality of service. As a

result, the traditionally disparate disciplines of voice and data communications are converging

to deliver networks capable of providing what are becoming known as thetriple play services:

voice, video and data.

Equipment deployed in the Access, Enterprise, Metro and Core networks(see section C.5.2 for

more detail) to provide these services is thus becoming much more complex as operators seek

to accommodate high volume and a wide range of traffic types. Equipment manufacturers thus

face increasing pressure to source Integrated Circuit solutions from expert designers.

Aliathon is ideally positioned in the industry value chain as presented by Thomson and

Strickland [133] to deliver these solutions, with a growing portfolio of sophisticated

communications products supporting both legacy and next generation network equipment.

Figure C.4: Aliathon’s position in the communications/networking value chain
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C.3 Products

C.3.1 The FPGA Advantage

Many Integrated Circuits (ICs) for communications applications are extremelycomplex

devices. Traditionally, the market has been dominated by Application SpecificIntegrated

Circuits (ASICs) and Application Specific Standard Products (ASSPs). ASICs are silicon

chips designed exclusively for one customer, usually encompassing a range of functionality

focused on addressing the requirements of a particular standard or protocol. ASSPs are

typically of similar complexity, but marketed as part of the chip vendors portfolio, and usually

purchased by more than one end customer.

Figure C.5: FPGA versus ASIC/ASSP in communications systems

ASICs and ASSPs are known asfixed functionalitydevices. They are hardwired internally and

their behaviour cannot be modified once they have been manufactured. Thus, ASIC and ASSP

vendors seek to accommodate the widest possible range of functions to attract a wide customer

base. Typically this results in a device with a wide range of functions of whichonly a subset

will be used by any given customer, and thus a device which is larger, morepower hungry and

more expensive than it needs to be.

In contrast, FPGAs are completely reprogrammable devices, allowing easy customisation on

a user-by-user basis. Aliathon’s customers can therefore enjoy the benefits of reduced cost,

power, and time to market afforded by our highly optimised solutions. A wide range of FPGA

platform devices are available from the market leaders in the industry, Altera Corp., and Xilinx,

Inc. Aliathon has recently secured preferred partner status with both these suppliers, and our IP
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is designed to run seamlessly on any of their FPGAs, giving our customers awide range of IC

platforms to choose from.

C.3.2 Product Portfolio

Aliathon’s current product portfolio and roadmap is shown below, with telecoms and datacoms

IP shown as distinct product segments (some historical background is provided in C.8.1). The

transmission speed applicable to each product is shown on the vertical axis, with the product

timelines on the horizontal axis. Thus, the bottom left of each figure shows lower speed

products available today , the top right showing the faster, emergent technologies still under

development. A complete product technical taxonomy is given in C.8.2.

Figure C.6: Aliathon portfolio and roadmap for telecoms IP

Figure C.7: Aliathon portfolio and roadmap for datacoms IP
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Table C.1: Aliathon customer matrix

C.3.2.1 Current Customer Matrix

Aliathon boasts a customer base which has grown since the company began trading to include

some of the worlds leading communications companies. Product sales to date are summarised

in Table C.1

C.3.2.2 Target Customers

Aliathon’s target customers are principally Network Equipment Manufacturers (NEMs) or the

various complementary enterprises which go along with them, such as networkmonitoring and

test equipment suppliers. These clients supply service providers with the infrastructure and test

capabilities required to deploy their networks and services.
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The “Tier 1” companies profiled in Aliathon’s recent market analysis [134] were Alcatel, Cisco

Systems, Huawei Technologies, Siemens, Ericsson, Lucent Technologies, Nortel Networks,

Fujitsu, Nokia, Juniper Networks and Marconi. These companies carry significant influence in

the communications industry and typically steer the standards bodies upon which the majority

of industry activity is based. However, they represent only a small subset of Aliathon’s potential

customer base.

As a complement to this high level industry analysis, Aliathon has developed aninitial targeting

matrix of some 130 potential clients, from which the estimated revenue opportunity is over

$21 million based on Aliathon cores already developed. Aliathon’s ongoing new product

development will increase both the breadth of this client base, and its revenue potential. The

complete target customer matrix is shown in Addendum III.

C.4 Competitive Environment

Aliathon faces competition for sales to Network Equipment Manufacturers (NEMs) on two

fronts; from ASIC and ASSP providers who supply their customers with Integrated Circuit

products and whom we seek to displace and from peer providers of Intellectual Property who

enable their end customers to either design and manufacturer their own ICs,or produce FPGA

solutions.

C.4.1 ASIC/ASSP Competitor Profiles

The ASIC and ASSP providers profiled here are well financed, have significant communications

technology, have established sales and distribution channels and enjoy close relationships with

the incumbent equipment manufacturers. Importantly, they depend on the markets in which

Aliathon operates (or seeks to) for large percentages of their revenue, and are thus given detailed

attention in Aliathon’s market analysis. A brief summary profile of each competitor is included

here.

The wireline market is dominated by Broadcom and Intel who generate much of their revenue

from the consumer broadband and physical layer IC segments. These segments are subject to

rapid price erosion and commoditization risk, and operate on economies of scale with which

Aliathon (and fundamentally the baseline cost of most FPGAs) cannot currently compete.
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Aliathon’s value proposition is strongest in the high end communications applications

where we can most easily differentiate. The incumbent suppliers here areAgere Systems,

Infineon Technologies, Vitesse Semiconductor, PMC-Sierra and AMCC.These competitors

together accounted for 17% of the wireline ASIC/ASSP market, worth $6.538billion globally

in FY20041. By combining the latest FPGA technologies with our leading edge IP, and

leveraging the marketing and sales capabilities of our FPGA partners, Aliathon is extremely

well positioned to displace ASICs and ASSPs from next generation network equipment.

Figure C.8: Wireline ASIC/ASSP Market, 2004 -$6.5 Billion

Agere Systems

Agere design, develop, manufacture and sell integrated circuit solutionsfor the high density

storage, mobile wireless, enterprise and telecommunications networks markets. In fiscal 2004,

they realigned their business into operating segments tailored to the markets in which they

operate. Ageres total revenues were $1,839M in FY2003, rising to $1,912M in FY2004, a

4% increase year-on-year. Of that revenue, $635M came from storage, $469M from mobility,

$513M from Enterprise and Networking and $268M from telecommunications.

Infineon Technologies

Infineon is the semiconductor spin-off from its parent company Siemens, and was established

as a public company based in Munich in April 1999. Infineons operations are organised into

the following business groups: Wireline Communications (COM), Secure Mobile Solutions

(SMS), Automotive and Industrial (AI) and Memory Products (MP). Infineons net revenues

were 6,152M in FY2003 rising to 7,195M in FY2004, when the company returned to

profitability for the first time since FY2000.

1Source: Altera Corp., Communications ASSP Market Share Figures.
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Applied Micro Circuit Corporation (AMCC)

AMCC design, develop, market and support integrated circuits for the communications and

storage equipment markets. AMCCs revenues were $131M in FY2004 risingto $254M as of

March 2005, of which 50.8% came from communications, 25.4% from embedded products

and 20.3% came from storage. Geographically, 48% of AMCCs revenue came from the U.S.,

19.8% came from Europe and Israel and 24% came from Asia Pacific. Sales to Nortel Networks

accounted from 11% of total revenues for FY2004.

PMC-Sierra

PMC-Sierra design, develop, market and support high-speed broadband communications and

storage semiconductors and MIPS-based processors for service provider, enterprise, storage

and wireless networking equipment. PMC-Sierras revenues were $249Min FY2003 rising to

$297M in FY2004. They cite an inventory work off period in 2H04 as negative impacting

revenues during this period, though much less significantly than during equivalent phases in

1999 and 2000.

Vitesse Semiconductor

Vitesse is a supplier of high performance ICs targeting manufacturers in thecommunication

and storage industries. Vitesse products target the enterprise, metro andcore segments of

the network. Vitesses revenues were $156M in FY2003 rising to $218M in FY2004. The

company has been running at an operational loss since FY2000, and implemented significant

restructuring programmes in 2001, 2002 and 2003.

C.4.2 IP Provider Competition

In addition to the principal ASIC and ASSP silicon vendors profiled above,Aliathon faces a

competitive threat from various providers of IP, targeting a range of device technologies. These

competitors range from large, publicly listed companies like the FPGA vendorsthemselves, to

smaller specialist IP design houses.

Obtaining accurate information on the latter group of companies is difficult. Aliathon must

continue to monitor the progress and strategies of all these companies to position itself

effectively in the future.
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AlteraandXilinx

Altera and Xilinx dominate the market for programmable logic devices, and havesignificant

resource available for IP development. Both companies offer IP which competes directly with

Aliathon’s products. Aliathon has to date differentiated itself by offering superior technical

performance, but may suffer pricing pressures in the future from these vendors given their

triplicate role of supplier, partner and competitor.

Modelware

Modelware provide a wide range of IP cores for both ASIC and FPGA technologies in

the telecommunications and networking markets. Their products currently address ATM,

packet interfaces, Ethernet and HDLC and their current bias is towards lower value, higher

volume generic interface IP. However, combined expertise in FPGA and communications

means that they face lower barriers to entry into Aliathon’s high value marketsthan many

other competitors.

CG-CoreEl

CG-CoreEl are a programmable solutions and design services provider headquartered in

Bangalore, India. They offer turnkey product development for PCBs, FPGAs and ASICs. The

global success of companies based in India, Asia-Pacific and China hastraditionally been built

around a low cost business model. Such companies are leveraging these successes to increase

their innovative capacity. CG-CoreEl thus remain a direct competitive threat, although their

current standard IP portfolio does not compete directly with Aliathon’s.

Innocor

Innocor is predominantly a provider of telecom and datacom manufacturingtest equipment, but

offer an expanding portfolio of IP solutions including GFP controllers andATM solutions.

Flextronics

Flextronics is a multinational design services company headquartered in Singapore, with

revenues totaling $15.9B for year ending March 2005. They offer a huge range of system

design services including ASIC and FPGA services. Recent acquisition of key assets from

Nortel Networks means they are well positioned to development competitive products in

telecommunications and networking.

173



An Outline Business Plan

Conexant Systems

Conexant Systems, Inc., design, develop and sell communications semiconductor systems

solutions including ICs, software and reference designs. Conexant recently completed the

acquisition of Paxonet, and thus own a broad portfolio of IP which competesdirectly with

Aliathon’s. Conexants positioning of these products within its wider portfolio isnot yet clear.

C.4.3 SWOT Analysis

Aliathon’s position within its competitive environment may be summarised by an analysis of

the strengths, weaknesses, opportunities and threats [135] which our market and competition

present.

C.4.3.1 Strengths

• Technical expertise: Aliathon has a proven track record in delivering superior FPGA

designs to demanding timescales.

• Self-funding: Aliathon has an established revenue stream which is independently funding

our ongoing development work.

• A global customer base: Including some of the worlds leading equipment manufacturers.

• An established portfolio of products.

• An ability to demonstrate these products working in real hardware: This is a key

differentiator for an IP company, allowing us to demonstrate conformance tostandards

and interoperability with third party equipment.

• Low marginal costs for sales of existing products.

• Aliathon IP cores are technology independent: All our products are designed to run on

any FPGA technology. This brings significant value to our customers, whocan chose an

optimal device from a broad catalogue.
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C.4.3.2 Weaknesses

• Limited resources: Relative to our larger competitors Aliathon has a small design team,

and limited access to cash for development work, sales and marketing activities.

• Relatively low profile within the industry.

• Lack of ISO9000 certification, formal processes: This may limit our credibility in the

eyes of larger enterprises. In general, Aliathon’s working processes are not formalised

or thoroughly documented. IP source code is not always comprehensively commented,

particularly where projects are subject to time pressures.

• Marketing and sales activities and direct engagement with customers are limited.

• Aliathon’s website needs to be updated: We need to improve the appearance and

functionality of our web presence, and integrate customer support capabilities, such as

bug tracking and dedicated customer pages. The quality of online documentation needs

to be improved.

• Aliathon’s pricing strategy is ad-hoc: We need to conduct further analyses to better

understand the value of our products to the end user, and formalise our pricing structures

to leverage maximum value.

C.4.3.3 Opportunities

• Displacing ASICs and ASSPs in communications equipment: With ASIC and ASSP

development costs approaching $30M at the 90nm process node, replacing such devices

with FPGAs is an increasingly attractive proposition for NEMs.

• Developing our partnerships with Xilinx and Altera: This offers huge potential for new

design wins, cooperative system design projects and building relationships with key

customers.

• Marketing: This side of Aliathon’s business is currently underdeveloped. Raising our

profile and actively selling our products offers a major growth opportunity.

• Exploiting new technologies: Aliathon’s small size can be an advantage, allowing us to

respond quickly to new market opportunities. Emerging technologies currently of interest

include ATCA, NG SONET/SDH, GFP, OTN and Ethernet/IP/MPLS.
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• Migration towards converged networks: Exemplified by BTs progress towards the

21st Century Network. Aliathon holds significant expertise in design for complex

communications systems. New technologies will offer ongoing opportunities to leverage

these skills in new markets.

C.4.3.4 Threats

• Partnerships with Xilinx and Altera: Partner programmes continue to generate significant

interest in Aliathon’s products. Addressing this interest is time consuming, and diverts

focus and effort.

• Legal threats from competitors and customers: As an IP business, Aliathon faces the

possibility of legal challenge from our competitors in the event that our designs infringe

existing patents. Customers may also seek indemnity in this case. Aliathon also needs to

protect its own IP.

• Direct competitive threat from ASIC, ASSP and IP providers.

• Technology migration away from legacy SONET/SDH.

• Overload: Closely tied in with our Xilinx and Altera partnerships, and our small design

team, is the risk of overloading our limited resources.

C.4.4 Aliathon and the Five Forces Framework

Although some aspects will overlap with those already identified in the preceding SWOT

analysis, it is nonetheless helpful to consider Aliathon’s competitive positionwithin the

framework of another seminal strategic model that of Porters Five Forces of Competition [136].

In applying such a framework to Aliathon’s competitive position it is important to understand

some of the models limitations.

Grant [137] has criticised the static nature of the model in assuming a stable andexternally

influenced industry structure. This is certainly a limitation with respect to the electronics

industry, where competitive dynamics shape the industry. New entrants with superior

technologies can effectively create a market where none previously existed. Grant also

questions the validity of direct correlation between environment and profitability. Additionally,

we can extend Porters model to consider a sixth force - that of complements [137, 138].
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Figure C.9: Porter’s forces of competition

C.4.4.1 The Threat of New Entrants

The capital barriers to entry into Aliathon’s markets are relatively low; in theory anyone

with adequate resources to support the design flow for FPGA IP could begin developing such

products. Similarly, economies of scale do not present a significant barrier to entry for potential

new entrants since high end communications systems are shipped in relatively low volume and

command high value.

The most significant barrier to entry is the level of technical expertise required to design and

develop competitive silicon solutions. This expertise comprises both a detailed understanding

of legacy, current and emergent communications standards, and expert chip design capabilities.

Constant pressure to deliver smaller, faster and more efficient solutionsmean that only the

most capable design teams can compete. However, given the dynamic natureof the industry

with frequent divestiture and acquisition of intellectual property and expertise, the competitive

threat from new entrants needs to be regularly evaluated, and Aliathon’s competitive analysis

kept up to date. Another significant barrier to entry for would-be competitors is Aliathon’s

partnership with both Xilinx and Altera, which secures a valuable distribution and marketing

channel.
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C.4.4.2 The Bargaining Power of Suppliers

For Aliathon’s core business, this competitive force is not really quantifiable in the context

originally intended by Porter, since the development of IP cores is a primaryinput to the design

of communications systems, and not dependent on any supply chain. WhilstXilinx and Altera

supply the FPGAs on which Aliathon IP will ultimately run, they are not principalsuppliers

to Aliathon, since it is our mutual end customers who purchase the devices. Aliathon may be

subject to influence by suppliers of Electronic Design Automation (EDA) toolsused to develop

its products. Overall however, the bargaining power of suppliers is low.

C.4.4.3 The Bargaining Power of Customers

Product differentiation is again of fundamental importance in mitigating the bargaining power

of our customers, and leveraging maximum value from our products. Aliathon cores must

continue to outperform competitive IP core offerings in terms of silicon area used, power, speed

and density. In competition with ASIC/ASSP providers, Aliathon cores must continue to offer

a clear cost advantage to the customer.

Aliathon faces pressure both from end-customers directly, and from Xilinx and Altera, who

may seek to incentivise strategic customers to purchase their FPGAs by offering artificially low

prices for IP solutions.

C.4.4.4 The Threat of Substitution

Replacing ASICs and ASSPs is a core part of Aliathon’s business development strategy.

Substitution is therefore both a threat and an opportunity. On one hand, Aliathon must seek

to leverage the support of our FPGA partners to promote these devices asideal substitutes for

ASICs and ASSPs in communications systems; on the other, Aliathon must continue to produce

highly competitive designs to prevent FPGAs being substituted by ASICs or ASSPs in existing

designs. The former is the more significant challenge, as established ASICand ASSP users

often need to be carefully educated and convinced of the merits of FPGA technology if they are

to switch.
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C.4.4.5 Direct Competition

Aliathon’s overall competitive position is summarised in C.4.1 and C.4.2. Aliathon must

continue to differentiate its products, providing superior quality, performance and cost benefit

to the end user.

C.4.4.6 Complements - A Sixth Force

Chip solutions for the communications industry comprise more than just the core hardware

design itself. The design needs physical hardware to run on. Thus the FPGA providers, Xilinx

and Altera are vital complements to Aliathon’s business. Aliathon IP adds significant value to

the FPGA providers, since they can present their target customers (andthus Aliathon’s) with

proposals for complete hardware solutions a much stronger value proposition than merely

offering empty platform FPGAs.

Chip solutions require a register interface and driver layer software to manage the contents of

these registers. Application layer software and a user interface are alsorequired to make chips

usable. These represent key complements to Aliathon’s core products themore complete the

solution the more valuable it is to the end customer.

An ongoing part of Aliathon’s strategy is to pursue synergistic partnerships with providers

of complementary products, such as software drivers. The partnershipprogrammes of Xilinx

and Altera represent an opportunity for collaboration with these companiesand their other

partners on a project by project basis. However, the competition betweenthese vendors is

fierce, and they will seek to consolidate competitive advantage by extractingmaximum value

from Aliathon as a partner company when pursuing opportunities. This canplace significant

strain on our resources.

C.5 The Market Environment

C.5.1 PESTLE Analysis of the Macro-Environment

C.5.1.1 Political Influences on Aliathon

Aliathon’s opportunities and ability to compete locally and globally are subject to anumber

of political influences of varying scope. Fundamentally Aliathon operates within a climate of
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relative political stability. However, geo-political instability in other regions maynegatively

impact levels of capex in the markets to which Aliathon currently sells its products.

Additionally and in common with other enterprises, Aliathon’s operating margin is directly

impacted by taxation levels. Such generalised factors constitute the political fabric within

which Aliathon must operate.

Whilst such factors are important, political decisions which filter directly into the

communications industry are potentially of greater interest. Many sectors of the

communications industry are moving towards deregulation, presenting a significant threat to

incumbent operators in the industry, and an opportunity for smaller enterprises to compete.

For example, Nippon Telegraph and Telephone (NTT), an incumbent operator in Japan, has

been forced to reduce tariffs due to increased competition following deregulation. Markets

based on emergent technologies such as Fibre-to-the-Home (FTTH) areset to follow similar

deregulated models. Washington has additionally unveiled the Broadband Consumer Choice

Act 2005 paving the way for sweeping deregulation of broadband-based applications. This

will incentivise challenge to incumbent suppliers and ultimately help to broaden Aliathon’s

customer base.

Federal mandates and government or commission directives which demand provision of

key technologies are also of significant interest to Aliathon. The FederalCommunications

Commission (FCC) has recently introduced the Enhanced 911 directive (E911) which sets rules

for the provision of reliable emergency services by wireless providers.This has stimulated

significant activity in mobile location technology development. In the internet domain, a recent

U.S. Department of Defense (DoD) mandate has stipulated that all Information Technology

(IT) assets procured after 1st October 2003 should be Internet Protocol version 6 (IPv6)

capable. IPv6 is likely to provide the backbone for many of the convergedtriple play services

required in next-generation-networks (NGNs), but adoption since standardisation has been

slow. Mandates such as that issued by the DoD, which represents a potential $50 billion per

annum market opportunity, are thus likely to stimulate technological development directly.

North American resistance to wider adoption of IPv6 is in part borne of the fact that 70% of the

available IPv4 address space2 has been allocated there. Political influence on adoption of IPv6

infrastructure is thus likely to come from the European and Asia-Pacific theatres. The Japanese

government has already issued a number of high profile statements outlining itscommitment

2IPv4 uses 32 bit addresses, most of which have been consumed. IPv6 uses 128 bit addresses.
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to IPv6. A formal mandate is likely to follow. British Telecoms 21st Century Network (21CN)

plans represent another significant commitment to the technology.

The Asia-Pacific region represents a significant growth opportunity forthe communications

industry, with extremely large populations in countries such as India and China, served by

a comparatively poor established network infrastructure. Internationalpolitical relationships

will play a key role in determining how these opportunities are realised. China and India

have both been cited by the U.S. Trade Representative as upholding unfair trade barriers to

telecommunications imports, with excessive regulatory requirements and unfair protection for

native equipment manufacturers. The U.S. strategy to enforce its right to open competition in

these regions could ultimately include retaliatory trade sanctions, which may impact Aliathon’s

ability to build business relationships with enterprises in both North America and Asia.

C.5.1.2 Economic Influences on Aliathon

Aliathon is subject to a number of macro-economic forces which influence ormay influence in

the future the way in which the company operates. Aliathon sells its products in an international

market place. Unfavourable exchange rates could therefore negatively impact margins and

demand reviewed pricing structure for Aliathon’s products. Variable rates of inflation may also

directly impact Aliathon’s operations.

C.5.1.3 Socio-Cultural Influences on Aliathon

Much of the increased demand for the services offered by next generation networks has been

generated by socio-cultural shifts in populations throughout the world. End users desire

increasingly sophisticated data-driven products and applications, and are increasingly mobile.

Levels of disposable income across Asia are rapidly increasing, fuelling demand for broadband

connectivity and mobile services.

Socio-Cultural influences can have a profound influence on the uptakeof new applications. In

South Korea for example, whose citizens represent the highest concentration of broadband users

in the world, uptake of television on demand based on Internet Protocol (IPTV) has been strong.

Yet in Singapore, uptake of similar services has been less emphatic; principally because societal

norms (and laws) are more strictly enforced. Thus gambling and other adultmultimedia, which

have been mainstays of consumer demand in many regions, are less popularhere. Cultural
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influences and differing business practices are also likely to colour discussion between Western

enterprises and emergent Asian players in NGN markets. This may affect Aliathon directly in

future discussions with potential Asian clients, or indirectly through Aliathon’s FPGA partners.

Security concerns have continued to resurface in the wake of terroristattacks on and after

September 11th 2001. Such concerns will influence decisions and legislation concerned with

the deployment of new communications infrastructure. The extension of Mobile Location

Services (MLS) and wire-tap capabilities in converged networks are two examples of

technologies with security implications, and both are areas of intense activity and discussion.

C.5.1.4 Technological Influences on Aliathon

Technological factors are not merely part of the macro-environment in which Aliathon operates;

rather they represent the foundation of Aliathon’s business, and the single most influential

external variable in determining the success of current and future operations. As such, they are

dealt with in detail in the latter sections of this report. The general technological environment

in which Aliathon operates is best illustrated by elaborating on the points introduced in the

executive summary.

Increase in the volume and complexity of network traffic has led to the development of new

technologies for more efficient networks. A key driver for network operators is the reduction in

capital and operational expenditure, both the subject of increased corporate focus since the

industry downturn of 2001. Such emergent technologies offer higher bandwidth capacity,

greater efficiency and easier maintenance. The complexity of silicon solutions required by

OEMs is increasing in response to these demands.

The Synchronous Optical Network (SONET) in North America and Japan and the Synchronous

Digital Hierarchy in the rest of the world have become the established standards for optical

networking. Whilst these standards continue to generate revenue at all levels in the industry,

their technological bases are traditional voice telephony. Incremental increases in voice traffic

through the network in recent years have been outshone by an exponential increase in data

traffic. Hence the emergence of the term “converged networks” which embodies the myriad of

technological advances designed to unify the transmission of voice, videoand data over next

generation network infrastructure.

This infrastructure is evolving from the traditional Public Switched Telephone Network (PSTN)
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“circuit switched” model to a “packet switched” system, based on Internet Protocol3(IP). IP has

revolutionised data networking, but it is not optimised for transfer of delaysensitive signals such

as video and voice. Techniques such as Multi-Protocol-Label-Switching (MPLS) and DiffServ

have emerged to improve matters, providing Quality-of-Service (QoS) guarantees for packet

based networks.

C.5.1.5 Legal Influences on Aliathon

The semiconductor industry is intensely competitive, and competitors within the industry

are frequently engaged in litigation to protect intellectual property rights. Since intellectual

property constitutes Aliathon’s core product portfolio, legal aspects concerning protection of

this portfolio are of key significance.

In addition to protecting its own intellectual property, Aliathon may need to enter into

legal agreements with potential clients to indemnify the latter in the event that Aliathon

inadvertently infringes an existing patent; necessitating withdrawal of the clients product. The

risks associated with such infringement are mitigated by the knowledge that since FPGAs are

inherently reprogrammable, reengineering of infringing designs is likely to be possible.

Additionally, potential clients may seek legal agreements to secure access to IP cores and

FPGA-based systems provided by Aliathon in the event that the company enters administration.

Again the nature of programmable technology mitigates the likely impact such a scenario

would have on Aliathon’s clients. Trade restrictions and industry regulationmay also influence

Aliathon’s ability to operate successfully in certain markets.

C.5.2 Market Segmentation by Network Space

Aliathon operates within the communications industry, which is of vast scope. The company

is not generally involved in the design or manufacture of high volume consumer products or

customer premises equipment (CPE) which are largely commoditized markets with economies

of huge scale.

Our target applications are high value, high complexity and principally deployed as part of the

network infrastructure. In this context our markets may be broadly segmented [139] into the

3As distinguished from Intellectual Property
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Core, Edge, Metro, EnterpriseandAccessspaces. As shown in Figure C.10 Aliathon IP is

enabling leading edge capabilities across all of these network spaces.

Thecorenetwork is the ultra high speed (typically 10Gbps or greater) optical fibre backbone

carrying the aggregated traffic from all service types around and between cities, and long haul

between continents. The core network is characterised by high speed and large traffic volume,

with limited intelligent functionality.

The edge is literally the edge of the core network, comprising much of the networks

intelligence in terms of traffic monitoring, policing service level agreements, aggregating

different protocols, provisioning security and ensuring end-to-end quality of service.

Themetropolitanarea of the network, ormetro, is a fibre optic infrastructure which provides

high speed communications (typically 2.5Gbps or greater) over a city centre or other regional

area. Themetro is self managing within its own geographical area and provides the bridge

between theaccessinfrastructure and thecore.

Theenterprisearea of the network includes equipment deployed primarily in businesses for data

communications and other local area network applications. Such equipment includes switches

and routers of inter-office and intra-office communications.

Theaccessnetwork encompasses the network interface to the end users, and the aggregation of

end user traffic onto themetroinfrastructure. Physical access nodes can be wired (optical fibre,

twisted pair copper or HFC4) or wireless (wi-fi or WIMAX).

C.5.3 Market Segmentation by Technology

It is also possible to segment key markets in the communications industry according to the

technologies or protocols deployed in the network. Aliathon have sourcedand analysed detailed

information on this basis from Infonetics Research, a leading market research firm specialising

in networking and telecommunications.

The markets reviewed represent both those which are reinforcing the diversity and volume of

traffic through the network, without necessarily being markets within which Aliathon would

directly compete; and those which represent direct opportunities for the company. The latter

were given more detailed consideration. The key points of interest are summarised here.

4Hybrid Fibre Coax
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Figure C.10: Aliathon cores across the network span

C.5.4 Telecom/Datacom Market Fundamental Drivers

Market research indicates that the communications industry remains a vast opportunity for both

the incumbent and small to medium enterprise (SME) players like Aliathon. 2003was the last

year of major cutbacks in capital expenditure, notably in the optical transport systems market

where Aliathon holds significant expertise. This segment alone is poised to deliver 13% growth

over the next three years [140], with revenues reaching $19.4 billion in 2008.

Figure C.11: Optical Transport Systems Growth
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C.5.5 Market Analysis Highlights and Conclusions

• Fundamentally, broadband penetration is fuelling unprecedented demand for

communications bandwidth. The development of next generation services,particularly

video, will drive this trend further after initial broadband growth plateaus. This provides

a sound economic underpinning for communications markets, and Aliathon’s core

business.

• In broad terms, the industry is moving slowly away from legacy Time domain

Multiplexed (TDM) services to packet based networking and is currently ina

hybrid/transition mode, where Multi-Service Provisioning Platforms (MSPPs)are

prevalent. MSPPs can offer ATM, IP, Frame-Relay, PWE3 and Ethernet (a mix and

match of legacy and emerging technologies) on the same chip. Aliathon offersindustry

leading solutions to support this model.

• A number of technology segments, summarised in Table C.2, offer significantgrowth

opportunities through the forecast period ending 2008. Detailed equipment categories are

given in [134]. Of particular note is strong growth in Ethernet equipment and services,

and FTTx access technologies.

• SONET/SDH revenues are projected flat in both the metro and long-haul segments,

but the total market size for this equipment remains extremely high. Aliathon holds

significant expertise in these key technology segments.

• Ethernet is becoming a dominant transport standard, and given reported cost benefits

of up to 70% at the OC-192 (10Gbps) technology node, looks set to displace legacy

SONET/SDH equipment gradually over the forecast period [141]. The Operations,

Administration, Maintenance and Provisioning (OAMP) aspects of Ethernetas a carrier

technology are the subject of much current industry debate. Aliathon’s Optical Transport

Network solutions are potentially a key enabling technology for Carrier Ethernet. Our

blue-chip customers agree.

• Other emerging technologies look set to drive and/or exploit the technologymigration

to a unified IP/MPLS network. These include IMS, GPON and PWE3. The latter

technologies will be investigated as part of Aliathon’s ongoing commitment to new

product development, and its research partnerships with the Institute for System Level

Integration.
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Table C.2: Market size and forecasts in key technology segments

C.5.6 Aliathon’s Marketing Activities

As identified in C.4.3.2, Aliathon’s limited marketing activity is a key area for development

within the company. The companys success to date has been based on focusing significant

efforts on the development of technically superior IP. As a result, non-technical aspects of the

business remain underdeveloped. Competitive analysis suggests that leading ASIC and ASSP

developers typically recycle 10-20% of annual revenues into sales andmarketing activities.

Aliathon needs to begin to scale its non-technical efforts in this direction.

The main objective is to grow Aliathon’s business, by considering an appropriately scaled

marketing mix [142]. Partnership with Xilinx and Altera gives Aliathon a unique opportunity

as a small company to leverage market information and form close relationships with large

customers. This will need to be cemented by our independent marketing efforts, which will

allow us to target groups of smaller customers who may not be of strategic interest to Xilinx

and Altera, but who nonetheless represent a significant opportunity for Aliathon.

C.5.6.1 Product

Fundamentally, Aliathon needs to continue to differentiate its IP based on the quality of our

engineering. However, these efforts need to be complemented by excellent customer support,
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Table C.3: Aliathon IP core pricing 2005

and quality documentation for our cores, both of which are essentially partof the end product

we ship to the customer. Aliathon also needs to build on relationships with new customers and

our FPGA partners to better align our future product roadmap with customerneeds.

C.5.6.2 Price

Aliathon’s pricing strategy has not yet been formalised, but is essentially cost-based, with core

prices (shown in Table C.3) based on development outlay plus profit mark up. Identifying the

most appropriate price and business model for our IP sales is part of anongoing review within

Aliathon. Our current sales are based on a one-off license fee payment allowing the customer

(within an agreed scope) unlimited use of the product.

This model may limit Aliathon’s ability to leverage the true value of its products from

customers, since there is no incremental benefit to us if the end customer users our product in

high volume.

A key alternative iscost-per-usemodel, which allows Aliathon to benefit from volume sales,

just as the ASIC and ASSP vendors do. Such a model is difficult to police; current FPGAs do

not offer adequate protection against unlicensed reuse of IP designs.
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C.5.6.3 Placement and Distribution

Aliathon is not reliant on placement or distribution of our product, since the product is easily

released electronically directly to the end customer.

C.5.6.4 Promotion

Increased emphasis on promotion needs to become an integral part of Aliathon’s ongoing

marketing strategy. Positioning the benefits of our IP running on FPGAs is not a trivial task, and

requires the education and motivation of both end customers, and the applications engineers at

Xilinx and Altera. Technical presentations and training seminars represent a good forum for

this. Aliathon could easily broaden its target audience for such presentations. Aliathon could

also leverage current design wins as a springboard to making presentations on our product

family direct to end customers

Aliathon’s profile within the electronics industry as a whole is low. With adequateresources,

Aliathon could raise this profile through key industry media, such as Light Reading, Lightwave

or Electronics Weekly to increase awareness both of the Aliathon brand, and of the technology

advantages we offer. This needs to be preceded by a review of our brand image, and an overhaul

of our web presence and documentation.

Product demonstration is another cornerstone of Aliathon’s promotional strategy. IP cores

running on real hardware platforms are a much more powerful selling toolthan simulation

models or documented timing performance. Such hardware platforms can be readily connected

to established industry test equipment, and the performance of Aliathon’s products can be

shown to meet industry standards. This dramatically boosts customer confidence in Aliathon’s

technical capabilities.

C.6 Strategic Plan

C.6.1 Overview

Based on the preceding analyses and the emerging growth trend in Aliathon’s business outlined

in financial information which follows, the company has identified some key points of strategy

required to build on its successes to date. These are outlined below.
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C.6.2 Migration to IP Sales

Aliathon has successfully built a portfolio of valuable intellectual property since it began

trading. Initially, the income required for this portfolio development came fromdesign services

contracts with a small component from IP sales. As the portfolio has matured,the IP sales

component in the revenue stream has steadily increased, such that the IPdevelopment business

is now profitable and self-funding.

Consolidation and growth of Aliathon’s IP sales business is thus a key strategic goal over the

next two years. This will take precedence over design services activities, although the latter

may continue to offer opportunities for growth and will not be discounted completely. The

points which follow have been identified as essential steps towards realisingthis goal.

C.6.3 Increase Direct Marketing Activity

To date Aliathon has taken a reactive role in pursuing opportunities for IP sales, without a

dedicated sales force or coordinated marketing strategy. There is thus significant opportunity

accelerate Aliathon’s growth by actively marketing and selling our products, as discussed in

section C.5.6. Aliathon will also seek to leverage the support of Scottish Enterprise in this

context.

C.6.4 Consolidate Partnerships with Xilinx and Altera

Aliathon’s FPGA partners are of key importance. They provide leads anddetails for potential

IP sales opportunities, and employ large sales forces which can work on Aliathon’s behalf.

Ongoing discussion with both key vendors will seek to identify ways in which Aliathon

can realize the value of these partnerships, whether through better awareness of Aliathon’s

capabilities amongst Xilinx and Altera sales engineers, or access to privileged marketing

information.

C.6.5 Develop Standard Products

Aliathon has the potential to greatly reduce its incremental cost of sales by developing a suite of

standard products, which require minimum additional engineering effort for sales to multiple

customers. This approach requires development of standard register sets and core wrappers,
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which make Aliathon’s products easier to reuse. Such standardisation increases the up-front

development costs of Aliathon’s cores, but improves profitability in the long term. Aliathon

has already begun this standardisation process and will continue to integrate this into the core

development process.

C.7 Financials

C.7.1 Overview

Aliathon is independently funded and privately owned, and despite the global downturn in the

communications industry in 2001, has delivered year on year revenue growth and sustained

profitability. As the industry returns to health worldwide, Aliathon is well positioned to

accelerate its growth, and seeks the assistance of Scottish Enterprise to fulfill this potential.

Aliathon emerged as an expert design services company in 2001 and has successfully migrated

this business to become a leading supplier of high value communications IP cores for FPGAs.

Figure C.12: Aliathon revenue trends: IP core sales vs design services

Ongoing contact with customers and internal estimates on the size of the potential market for

Aliathon’s solutions suggest that there is significant scope to consolidate and accelerate the

growth trend shown in Figure C.12.
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C.7.2 Revenue Projection

Based on IP core sales to date, likely future sales from current negotiations and the overall

revenue opportunity identified some 12M based on an initial targeting matrix of 130 potential

customers it is possible to project Aliathon’s average monthly revenues through to March 2008,

based on the companies current business model.

Historical data is limited, so projected figures used in cash flow and income statements are

based on averaged points between a more aggressive polynomial best fit and a linear best fit

line (based only on core sales since joining the Altera and Xilinx partner programmes projects)

which predicts more modest growth.

Nonetheless, Aliathon’s market research indicates that even the more aggressive revenue

projections are achievable based on current resources, for a number of reasons. Firstly,

Aliathon’s partnerships with Xilinx and Altera are still in their infancy. Aliathon can continue

to leverage high quality support from these vendors to grow revenues.

Additionally, Aliathon’s current business is based on minimal sales and marketing activities.

Development of the latter represents a significant opportunity for revenue growth. Aliathon’s

incremental cost of sales is decreasing with our increased focus on standard products.

Additionally, Aliathon need only convert 6% of the total opportunities identifiedin C.3.2.2, to

outperform the per-annum revenue projection for 2008.

Furthermore, continuing product development will increase Aliathon’s total market

opportunity. Aliathon’s current market size estimates are based on targeting customers with

our existing product portfolio, which is strongest in the time division multiplexed(TDM)

domain.

Aliathon’s market research indicates that the industry is shifting towards packet-based

technologies such as IP/MPLS with Ethernet as the carrier standard. Aliathon’s expertise will

allow us to develop leading edge products targeting these emergent technologies; research

work on packet classification for high speed internet routing engines had already commenced.

With these additional capabilities in our portfolio, Aliathon can actively target anew set of

potential customers who are offering network processing, IP/MPLS andCarrier Ethernet

equipment.
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Table C.4: Aliathon’s projected revenues by selected quarter

C.8 Supporting Information

C.8.1 Background to the Aliathon Portfolio

Aliathon’s products are used in a wide variety of communications and networking applications.

Historically, these communications networks have been based on voice telephony channels,

running at 64Kbits/second, each capable of faithfully transmitting the information required to

hold a single telephone conversation. These channels could then be grouped or “multiplexed”

together to form higher bandwidth connections between network elements, with each

connection supporting multiple calls.

In the early days, different networks based on this multiplexing idea ran atapproximately

equal speeds, in what became known as the Plesiochronous Digital Hierarchy (PDH). As the

number of users and the complexity of PDH networks grew, the shortfalls and limitations of the

technology became apparent. In particular, it became increasingly difficult and expensive to

extract individual calls from the higher bandwidth connections. A lack ofstandardisation made

interoperation of equipment between different manufacturers a hit and miss affair, and network

management functions were limited.

Enter the Synchronous Digital Hierarchy (SDH) and the Synchronous Optical Network

(SONET). These standards facilitated interoperation of network equipment across the globe,

and provided the management functions required for very reliable communication between

increasingly complex network elements. These elements are now typically connected by

optical fibre at speeds up to 40Gbps; thats 625,000 phone calls down a single fibre connection.
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This migration to high speed fibre connectivity has been consolidated further with the

introduction of the new Optical Transport Network (OTN) standard ITU-T G.709. This

technology is optimised for the management of optical channels, and the correction of

transmission errors. Such standards will provide the backbone infrastructure for ongoing

bandwidth and revenue growth in the communications industry. Aliathon’s Products in Todays

Networks

As networks grow in size and complexity, the ways in which lower speed connections are

combined to form higher capacity links become commensurately more complex. The number of

possible combinations and permutations is enormous. Aliathon IP is designed to cover all these

possibilities; supporting legacy PDH rates, SONET/SDH and the emerging OTNstandards, all

of which co-exist in todays networks.

In parallel with this high level growth trend towards greater bandwidth is an industry

movement towards convergence. Demand for traditional voice telephony has increased

incrementally in recent years, but demand for data services has exploded. Thus, network

equipment manufacturers (NEMs) have sought ways to improve the datacoms capabilities

of their existing telecoms networks. This has led to the so-called Next Generation SONET

(NG-SONET) services , which are already being enabled by Aliathon IP.

This convergence model looks set to continue apace, with the ultimate goal ofvoice, video

and data delivery over a single, unified network the Internet. Aliathon’s product portfolio and

roadmap will track these trends closely, and enable our customers to rapidlygenerate revenue

from the latest available technologies.

C.8.2 IP Taxonomy

C.8.2.1 Telecoms, Functional Blocks

• Mappers: Perform the mapping of lower rate signals into higher capacity links; for

example mapping PDH signals into the SONET/SDH domain. This involves careful

control of network timing and management overhead.

• Framers: Format data according to a standardised frame structure to ensure reliable

interoperability of equipment.

• FEC: Forward Error Correction. A technique for encoding and decoding data using

194



An Outline Business Plan

standardised schemes to improve the reliability of communications over optical fibre.

• VCAT : Virtual Concatenation. A technique for improving the improving the efficiency

of bandwidth utilisation in SONET/SDH systems, for payload data which does not fit

conveniently into traditional data containers.

C.8.2.2 Transmission Rates

• E1: Standard European E-Carrier transmission rate of 2.048Mbps.

• E3: Standard European E-Carrier transmission rate of 34.368Mbps.

• T1: Standard North American T-Carrier transmission rate of 1.544Mbps.

• T3: Standard North American T-Carrier transmission rate of 44.736Mbps.

• STM-1: Standard SDH3 transmission rate of 155.52Mbps.

• STM-4: Standard SDH transmission rate of 622.08Mbps.

• STM-16: Standard SDH transmission rate of 2.488Gbps.

• STM-64: Standard SDH transmission rate of 9.953Gbps.

• STM-256: Standard SDH transmission rate of 39.813Gbps.

C.8.2.3 Datacoms, Network Protocols

• ATM : Asynchronous Transfer Mode. A high speed network protocol with short packet

length to reduce transit delays; optimised for real time voice and video traffic.

• AAL5/2 : ATM Adaptation Layers. Protocols for adapting multi-cell higher layer data

units into ATM.

• POS: Packet over SONET. A technique for mapping packetised traffic such as IP or

Ethernet into the time multiplexed SONET domain.

• HDLC : High Level Data Link Control. An ISO communications protocol used in packet

switched networks.
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• GFP: Generic Framing Procedure. A technique for mapping packetised trafficinto the

time multiplexed domain.

• VC/IP Classification: Techniques for identifying specific packet types in the IP/MPLS4

network for higher speed, lower power routing.

C.8.3 Target Customers

A summary of Aliathon’s potential clients, based on an a review of activity in key

communications market segments is shown in Figures C.13 and C.14.
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Figure C.13: Target Customer Matrix - I
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Figure C.14: Target Customer Matrix - II
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