51 research outputs found

    A Novel Design of a Honeycomb PCF with Flattened Dispersion for Wideband Transmission Systems

    Full text link
    Volume 3 Issue 11 (November 2015

    Low Loss and Low Dispersion Fiber for Transmission Applications in the Terahertz Regime

    Get PDF
    In this letter we present a novel slotted core fiber incorporating a slotted cladding for the terahertz band. The modal properties of the designed fiber are numerically investigated based on an efficient finite element method (FEM). Simulation results of the fiber exhibit both a low material absorption loss of 0.0103–0.0145 cm-1 and low dispersion below 0.5 ps/THz/cm within the 0.5–0.9 THz range. Additionally, a number of other features of the fiber have been evaluated

    Dispersion Compensating Fibres for Fibre Optic Telecommunication Systems

    Get PDF

    Structural tolerances of optical characteristics in various types of photonic lattices

    Get PDF
    A systematic study of various photonic crystal lattices and their optical characteristics is carried out in this paper. Sensitivity of both dispersion and effective mode area characteristics to deviations of particular structural parameters of the lattices are the main studied topics. The presented results can be exploited during the design of fibers and new devices utilizing the studied lattices, when strict requirements on optical characteristics of the fabricated devices are imposed. Performance benefits for the implementation of particular lattices types in photonic designs are shown

    Terahertz Sensor via Ultralow-Loss Dispersion-Flattened Polymer Optical Fiber: Design and Analysis

    Get PDF
    A novel cyclic olefin copolymer (COC)-based polymer optical fiber (POF) with a rectangular porous core is designed for terahertz (THz) sensing by the finite element method. The numerical simulations showed an ultrahigh relative sensitivity of 89.73% of the x-polarization mode at a frequency of 1.2 THz and under optimum design conditions. In addition to this, they showed an ultralow confinement loss of 2.18 × 10−12 cm−1, a high birefringence of 1.91 × 10−3, a numerical aperture of 0.33, and an effective mode area of 1.65 × 105 μm2 was obtained for optimum design conditions. Moreover, the range dispersion variation was within 0.7 ± 0.41 ps/THz/cm, with the frequency range of 1.0–1.4 THz. Compared with the traditional sensor, the late-model sensor will have application value in THz sensing and communication

    Design and optimization of dispersion-flattened microarray-core fiber with ultralow loss for terahertz transmission

    Get PDF
    The paper establishes a late-model of microarray-core based polymer optical fiber with flattened dispersion and ultra-low losses. Its transmission properties are calculated by virtue of the beam propagation approach. From the simulation results, it finds that the modelled fiber has a near-zero dispersion property of 0.29 ± 0.16 ps/THz/cm in a frequency area of 1.05 THz to 1.78 THz, a high birefringence of 1.6 × 10-3, an ultra-low confinement loss of 3.78 × 10-10 dB/m, an effective mode field zone of 4.6 × 105 μm2, and a nonlinear coefficient of 1.2 km-1·W−1. With these good properties, the modelled fiber could be applied for ethanol detection and polarization maintaining THz applications
    • …
    corecore