2,187 research outputs found

    Progress in Redundant Electromechanical Actuators for Aerospace Applications

    Get PDF
    The power to move aircraft control surfaces has advanced from being manually generated (by the pilot and transmitted via rods and links) to electrically transmitted (via wires) to operate control surface actuators. Various hydraulic, electromagnetic, and electromechanical architectures have been developed to provide the necessary power and to maintain the expected redundancy. Numerous aircraft actuator system designs have been proposed in the past decades, but a comprehensive review has yet to be undertaken. This review paper aims to fill this gap by providing a critical review of the actuation system designs developed for a variety of aircraft. The review focuses on aircraft actuator system designs, namely: electrohydraulic actuator systems, electromechanical actuator systems, and the force-fighting effect in redundant actuation systems. The significance and operational principle of each actuator system are critically analysed and discussed in the review. The paper also evaluates the solution proposed to address force-fight equalization (or force-fight cancelation) in force or torqued-summed architectures. Future trends in redundant actuation system development with reduced force-fighting effect in aircraft actuator systems are also addressed

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Field Oriented Sliding Mode Control of Surface-Mounted Permanent Magnet AC Motors: Theory and Applications to Electrified Vehicles

    Get PDF
    Permanent magnet ac motors have been extensively utilized for adjustable-speed traction motor drives, due to their inherent advantages including higher power density, superior efficiency and reliability, more precise and rapid torque control, larger power factor, longer bearing, and insulation life-time. Without any proportional-and-integral (PI) controllers, this paper introduces novel first- and higher-order field-oriented sliding mode control schemes. Compared with the traditional PI-based vector control techniques, it is shown that the proposed field oriented sliding mode control methods improve the dynamic torque and speed response, and enhance the robustness to parameter variations, modeling uncertainties, and external load perturbations. While both first- and higher-order controllers display excellent performance, computer simulations show that the higher-order field-oriented sliding mode scheme offers better performance by reducing the chattering phenomenon, which is presented in the first-order scheme. The higher-order field-oriented sliding mode controller, based on the hierarchical use of supertwisting algorithm, is then implemented with a Texas Instruments TMS320F28335 DSP hardware platform to prototype the surface-mounted permanent magnet ac motor drive. Last, computer simulation studies demonstrate that the proposed field-oriented sliding mode control approach is able to effectively meet the speed and torque requirements of a heavy-duty electrified vehicle during the EPA urban driving schedule

    Improving Energy Efficiency and Motion Control in Load-Carrying Applications using Self-Contained Cylinders

    Get PDF
    Because of an increasing focus on environmental impact, including CO2 emissions and fluid spill pollution, inefficient hydraulic systems are being replaced by more environmentally friendly alternatives in several industries. For instance, in some offshore applications that have multiple diesel generators continuously running to produce electricity, all hydraulic rotating actuators supplied from a central hydraulic power unit have been replaced with AC induction motors containing a variable frequency drive and gearbox. However, hydraulic linear actuators are still needed in most load-carrying applications mainly because of their high reliability associated with external impact shocks. Moreover, their force capacity is higher than that of their linear electromechanical counterparts. Valve-controlled linear actuators (cylinders) supplied from a centralized hydraulic power unit are standard in offshore load-carrying applications. In addition to the advantages mentioned above of hydraulic linear actuators, they have, nevertheless, a number of important drawbacks, which include: 1) a high level of energy consumption due to significant power losses caused by flow throttling in both the pipelines and valves, 2) reduced motion performance due to the influence of load-holding valves, 3) high CO2 emissions and fuel costs related to the diesel generator that supplies electricity to the hydraulic power unit, 4) significant potential for hydraulic fluid leakage because of many leakage points, 5) demanding efforts with respect to installation and maintenance, as well as 6) costly piping due to the centralized hydraulic power supply. The work presented in this dissertation and the appended papers are devoted to replacing inefficient hydraulic linear actuation systems traditionally used in offshore load-carrying applications with more environmentally friendly solutions. Two alternative technologies are identified, namely electro-mechanical and electro-hydraulic self-contained cylinders. The feasibility of replacing conventional valve-controlled cylinders with self-contained cylinder concepts is investigated in two relevant case studies.publishedVersio

    Volume 3 – Conference: Thursday, March 10

    Get PDF
    10. Internationales Fluidtechnisches Kolloquiu

    Windings fault detection and prognosis in electro-mechanical flight control actuators operating in active-active configuration

    Get PDF
    One of the most significant research trends in the last decades of the aeronautic industry is the effort to move towards the design and the production of “more electric aircraft”. Within this framework, the application of the electrical technology to flight control systems has seen a progressive, although slow, increase: starting with the introduction of fly-by-wire and proceeding with the partial replacement of the traditional hydraulic/electro-hydraulic actuators with purely electro-mechanical ones. This evolution allowed to obtain more flexible solutions, reduced installation issues and enhanced aircraft control capability.Electro-Mechanical Actuators (EMAs) are however far from being a mature technology and still suffer from several safety issues, which can be partially limited by increasing the complexity of their design and hence their production costs. The development of a robust Prognostics and Health Management (PHM) system could provide a way to prevent the occurrence of a critical failure without resorting to complex device design. This paper deals with the first part of the study of a comprehensive PHM system for EMAs employed as primary flight control actuators; the peculiarities of the application are presented and discussed, while a novel approach, based on short pre-flight/post-flight health monitoring tests, is proposed. Turn-to-turn short in the electric motor windings is identified as the most common electrical degradation and a particle filtering framework for anomaly detection and prognosis featuring a self-tuning non-linear model is proposed. Features, anomaly detection and a prognostic algorithm are hence evaluated through state-of-the art performance metrics and their results discussed

    Integrated braking control for electric vehicles with in-wheel propulsion and fully decoupled brake-by-wire system

    Get PDF
    This paper introduces a case study on the potential of new mechatronic chassis systems for battery electric vehicles, in this case a brake-by-wire (BBW) system and in-wheel propulsion on the rear axle combined with an integrated chassis control providing common safety features like anti-lock braking system (ABS), and enhanced functionalities, like torque blending. The presented controller was intended to also show the potential of continuous control strategies with regard to active safety, vehicle stability and driving comfort. Therefore, an integral sliding mode (ISM) and proportional integral (PI) control were used for wheel slip control (WSC) and benchmarked against each other and against classical used rule-based approach. The controller was realized in MatLab/Simulink and tested under real-time conditions in IPG CarMaker simulation environment for experimentally validated models of the target vehicle and its systems. The controller also contains robust observers for estimation of non-measurable vehicle states and parameters e.g., vehicle mass or road grade, which can have a significant influence on control performance and vehicle safety

    Computational framework for real-time diagnostics and prognostics of aircraft actuation systems

    Get PDF
    Prognostics and Health Management (PHM) are emerging approaches to product life cycle that will maintain system safety and improve reliability, while reducing operating and maintenance costs. This is particularly relevant for aerospace systems, where high levels of integrity and high performances are required at the same time. We propose a novel strategy for the nearly real-time Fault Detection and Identification (FDI) of a dynamical assembly, and for the estimation of Remaining Useful Life (RUL) of the system. The availability of a timely estimate of the health status of the system will allow for an informed adaptive planning of maintenance and a dynamical reconfiguration of the mission profile, reducing operating costs and improving reliability. This work addresses the three phases of the prognostic flow - namely (1) signal acquisition, (2) Fault Detection and Identification, and (3) Remaining Useful Life estimation - and introduces a computationally efficient procedure suitable for real-time, on-board execution. To achieve this goal, we propose to combine information from physical models of different fidelity with machine learning techniques to obtain efficient representations (surrogate models) suitable for nearly real-time applications. Additionally, we propose an importance sampling strategy and a novel approach to model damage propagation for dynamical systems. The methodology is assessed for the FDI and RUL estimation of an aircraft electromechanical actuator (EMA) for secondary flight controls. The results show that the proposed method allows for a high precision in the evaluation of the system RUL, while outperforming common model-based techniques in terms of computational time.Comment: 57 page

    Volume 2 – Conference: Wednesday, March 9

    Get PDF
    10. Internationales Fluidtechnisches Kolloquium:Group 1 | 2: Novel System Structures Group 3 | 5: Pumps Group 4: Thermal Behaviour Group 6: Industrial Hydraulic
    • …
    corecore