2,485 research outputs found

    ์ฐจ๋Ÿ‰์šฉ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„์— ๊ด€ํ•œ ์ธ๊ฐ„๊ณตํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2020. 8. ๋ฐ•์šฐ์ง„.Head-up display (HUD) systems were introduced into the automobile industry as a means for improving driving safety. They superimpose safety-critical information on top of the drivers forward field of view and thereby help drivers keep their eyes forward while driving. Since the first introduction about three decades ago, automotive HUDs have been available in various commercial vehicles. Despite the long history and potential benefits of automotive HUDs, however, the design of useful automotive HUDs remains a challenging problem. In an effort to contribute to the design of useful automotive HUDs, this doctoral dissertation research conducted four studies. In Study 1, the functional requirements of automotive HUDs were investigated by reviewing the major automakers' automotive HUD products, academic research studies that proposed various automotive HUD functions, and previous research studies that surveyed drivers HUD information needs. The review results indicated that: 1) the existing commercial HUDs perform largely the same functions as the conventional in-vehicle displays, 2) past research studies proposed various HUD functions for improving driver situation awareness and driving safety, 3) autonomous driving and other new technologies are giving rise to new HUD information, and 4) little research is currently available on HUD users perceived information needs. Based on the review results, this study provides insights into the functional requirements of automotive HUDs and also suggests some future research directions for automotive HUD design. In Study 2, the interface design of automotive HUDs for communicating safety-related information was examined by reviewing the existing commercial HUDs and display concepts proposed by academic research studies. Each display was analyzed in terms of its functions, behaviors and structure. Also, related human factors display design principles, and, empirical findings on the effects of interface design decisions were reviewed when information was available. The results indicated that: 1) information characteristics suitable for the contact-analog and unregistered display formats, respectively, are still largely unknown, 2) new types of displays could be developed by combining or mixing existing displays or display elements at both the information and interface element levels, and 3) the human factors display principles need to be used properly according to the situation and only to the extent that the resulting display respects the limitations of the human information processing, and achieving balance among the principles is important to an effective design. On the basis of the review results, this review suggests design possibilities and future research directions on the interface design of safety-related automotive HUD systems. In Study 3, automotive HUD-based take-over request (TOR) displays were developed and evaluated in terms of drivers take-over performance and visual scanning behavior in a highly automated driving situation. Four different types of TOR displays were comparatively evaluated through a driving simulator study - they were: Baseline (an auditory beeping alert), Mini-map, Arrow, and Mini-map-and-Arrow. Baseline simply alerts an imminent take-over, and was always included when the other three displays were provided. Mini-map provides situational information. Arrow presents the action direction information for the take-over. Mini-map-and-Arrow provides the action direction together with the relevant situational information. This study also investigated the relationship between drivers initial trust in the TOR displays and take-over and visual scanning behavior. The results indicated that providing a combination of machine-made decision and situational information, such as Mini-map-and-Arrow, yielded the best results overall in the take-over scenario. Also, drivers initial trust in the TOR displays was found to have significant associations with the take-over and visual behavior of drivers. The higher trust group primarily relied on the proposed TOR displays, while the lower trust group tended to more check the situational information through the traditional displays, such as side-view or rear-view mirrors. In Study 4, the effect of interactive HUD imagery location on driving and secondary task performance, driver distraction, preference, and workload associated with use of scrolling list while driving were investigated. A total of nine HUD imagery locations of full-windshield were examined through a driving simulator study. The results indicated the HUD imagery location affected all the dependent measures, that is, driving and task performance, drivers visual distraction, preference and workload. Considering both objective and subjective evaluations, interactive HUDs should be placed near the driver's line of sight, especially near the left-bottom on the windshield.์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ์ฐจ๋‚ด ๋””์Šคํ”Œ๋ ˆ์ด ์ค‘ ํ•˜๋‚˜๋กœ ์šด์ „์ž์—๊ฒŒ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ „๋ฐฉ์— ํ‘œ์‹œํ•จ์œผ๋กœ์จ, ์šด์ „์ž๊ฐ€ ์šด์ „์„ ํ•˜๋Š” ๋™์•ˆ ์ „๋ฐฉ์œผ๋กœ ์‹œ์„ ์„ ์œ ์ง€ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋„์™€์ค€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์šด์ „์ž์˜ ์ฃผ์˜ ๋ถ„์‚ฐ์„ ์ค„์ด๊ณ , ์•ˆ์ „์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์€ ์•ฝ 30๋…„ ์ „ ์šด์ „์ž์˜ ์•ˆ์ „์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ˆ˜๋‹จ์œผ๋กœ ์ž๋™์ฐจ ์‚ฐ์—…์— ์ฒ˜์Œ ๋„์ž…๋œ ์ด๋ž˜๋กœ ํ˜„์žฌ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์ƒ์šฉ์ฐจ์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์•ˆ์ „๊ณผ ํŽธ์˜ ์ธก๋ฉด์—์„œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์‚ฌ์šฉ์€ ์ ์  ๋” ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Ÿฌํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ž ์žฌ์  ์ด์ ๊ณผ ๋ฐœ์ „ ๊ฐ€๋Šฅ์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์œ ์šฉํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์„ค๊ณ„ํ•˜๋Š” ๊ฒƒ์€ ์—ฌ์ „ํžˆ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ์œ ์šฉํ•œ ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„์— ๊ธฐ์—ฌํ•˜๊ณ ์ž ์ด 4๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ ์š”๊ตฌ ์‚ฌํ•ญ๊ณผ ๊ด€๋ จ๋œ ๊ฒƒ์œผ๋กœ์„œ, ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์–ด๋–ค ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ์ธ๊ฐ€์— ๋Œ€ํ•œ ๋‹ต์„ ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด์— ์ฃผ์š” ์ž๋™์ฐจ ์ œ์กฐ์—…์ฒด๋“ค์˜ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์ œํ’ˆ๋“ค๊ณผ, ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ๋“ค์„ ์ œ์•ˆํ•œ ํ•™์ˆ  ์—ฐ๊ตฌ, ๊ทธ๋ฆฌ๊ณ  ์šด์ „์ž์˜ ์ •๋ณด ์š”๊ตฌ ์‚ฌํ•ญ๋“ค์„ ์ฒด๊ณ„์  ๋ฌธํ—Œ ๊ณ ์ฐฐ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ํฌ๊ด„์ ์œผ๋กœ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ์  ์š”๊ตฌ ์‚ฌํ•ญ์— ๋Œ€ํ•˜์—ฌ ๊ฐœ๋ฐœ์ž, ์—ฐ๊ตฌ์ž, ์‚ฌ์šฉ์ž ์ธก๋ฉด์„ ๋ชจ๋‘ ๊ณ ๋ คํ•œ ํ†ตํ•ฉ๋œ ์ง€์‹์„ ์ „๋‹ฌํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ ์š”๊ตฌ ์‚ฌํ•ญ์— ๋Œ€ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์™€ ๊ด€๋ จ๋œ ๊ฒƒ์œผ๋กœ, ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์–ด๋–ป๊ฒŒ ์ œ๊ณตํ•  ๊ฒƒ์ธ๊ฐ€์— ๋Œ€ํ•œ ๋‹ต์„ ๊ตฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์‹ค์ œ ์ž๋™์ฐจ๋“ค์˜ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ์‹œ์Šคํ…œ์—์„œ๋Š” ์–ด๋–ค ๋””์Šคํ”Œ๋ ˆ์ด ์ปจ์…‰๋“ค์ด ์‚ฌ์šฉ๋˜์—ˆ๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ํ•™๊ณ„์—์„œ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ์ปจ์…‰๋“ค์—๋Š” ์–ด๋–ค ๊ฒƒ๋“ค์ด ์žˆ๋Š”์ง€ ์ฒด๊ณ„์  ๋ฌธํ—Œ ๊ณ ์ฐฐ ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๊ฒ€ํ† ๋œ ๊ฒฐ๊ณผ๋Š” ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ธฐ๋Šฅ๊ณผ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  ์ž‘๋™ ๋ฐฉ์‹์— ๋”ฐ๋ผ ์ •๋ฆฌ๋˜์—ˆ๊ณ , ๊ด€๋ จ๋œ ์ธ๊ฐ„๊ณตํ•™์  ๋””์Šคํ”Œ๋ ˆ์ด ์„ค๊ณ„ ์›์น™๊ณผ ์‹คํ—˜์  ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์„ ํ•จ๊ป˜ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ๊ฒ€ํ† ๋œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์•ˆ์ „ ๊ด€๋ จ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ๋Œ€ํ•œ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ถŒ ์ „ํ™˜ ๊ด€๋ จ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์™€ ํ‰๊ฐ€์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ œ์–ด๊ถŒ ์ „ํ™˜์ด๋ž€, ์ž์œจ์ฃผํ–‰ ์ƒํƒœ์—์„œ ์šด์ „์ž๊ฐ€ ์ง์ ‘ ์šด์ „์„ ํ•˜๋Š” ์ˆ˜๋™ ์šด์ „ ์ƒํƒœ๋กœ ์ „ํ™˜์ด ๋˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ‘์ž‘์Šค๋Ÿฐ ์ œ์–ด๊ถŒ ์ „ํ™˜ ์š”์ฒญ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ, ์šด์ „์ž๊ฐ€ ์•ˆ์ „ํ•˜๊ฒŒ ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋น ๋ฅธ ์ƒํ™ฉ ํŒŒ์•…๊ณผ ์˜์‚ฌ ๊ฒฐ์ •์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๋„์™€์ฃผ๊ธฐ ์œ„ํ•œ ์ธํ„ฐํŽ˜์ด์Šค ์„ค๊ณ„์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž๋™์ฐจ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ์ด 4๊ฐœ์˜ ์ œ์–ด๊ถŒ ์ „ํ™˜ ๊ด€๋ จ ๋””์Šคํ”Œ๋ ˆ์ด(๊ธฐ์ค€ ๋””์Šคํ”Œ๋ ˆ์ด, ๋ฏธ๋‹ˆ๋งต ๋””์Šคํ”Œ๋ ˆ์ด, ํ™”์‚ดํ‘œ ๋””์Šคํ”Œ๋ ˆ์ด, ๋ฏธ๋‹ˆ๋งต๊ณผ ํ™”์‚ดํ‘œ ๋””์Šคํ”Œ๋ ˆ์ด)๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ๋Œ€์•ˆ๋“ค์€ ์ฃผํ–‰ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊ณผ ์•ˆ๊ตฌ์˜ ์›€์ง์ž„ ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์‚ฌ์šฉ์ž์˜ ์ฃผ๊ด€์  ํ‰๊ฐ€ ์ธก๋ฉด์—์„œ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด ๋Œ€์•ˆ๋“ค์— ๋Œ€ํ•ด ์šด์ „์ž๋“ค์˜ ์ดˆ๊ธฐ ์‹ ๋ขฐ๋„ ๊ฐ’์„ ์ธก์ •ํ•˜์—ฌ ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋”ฐ๋ฅธ ์šด์ „์ž๋“ค์˜ ํ‰๊ท  ์‹ ๋ขฐ๋„ ์ ์ˆ˜์— ๋”ฐ๋ผ ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ๊ณผ ์•ˆ๊ตฌ์˜ ์›€์ง์ž„ ํŒจํ„ด, ๊ทธ๋ฆฌ๊ณ  ์ฃผ๊ด€์  ํ‰๊ฐ€๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ผ์ง€๋Š”์ง€ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ œ์–ด๊ถŒ ์ „ํ™˜ ์ƒํ™ฉ์—์„œ ์ž๋™ํ™”๋œ ์‹œ์Šคํ…œ์ด ์ œ์•ˆํ•˜๋Š” ์ •๋ณด์™€ ๊ทธ์™€ ๊ด€๋ จ๋œ ์ฃผ๋ณ€ ์ƒํ™ฉ ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ์ œ์‹œํ•ด ์ฃผ๋Š” ๋””์Šคํ”Œ๋ ˆ์ด๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ๊ฐ ๋””์Šคํ”Œ๋ ˆ์ด์— ๋Œ€ํ•œ ์šด์ „์ž์˜ ์ดˆ๊ธฐ ์‹ ๋ขฐ๋„ ์ ์ˆ˜๋Š” ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์‹ค์ œ ์‚ฌ์šฉ ํ–‰ํƒœ์™€ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์ด ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹ ๋ขฐ๋„ ์ ์ˆ˜์— ๋”ฐ๋ผ ์‹ ๋ขฐ๋„๊ฐ€ ๋†’์€ ๊ทธ๋ฃน๊ณผ ๋‚ฎ์€ ๊ทธ๋ฃน์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๊ณ , ์‹ ๋ขฐ๋„๊ฐ€ ๋†’์€ ๊ทธ๋ฃน์€ ์ œ์•ˆ๋œ ๋””์Šคํ”Œ๋ ˆ์ด๋“ค์ด ๋ณด์—ฌ์ฃผ๋Š” ์ •๋ณด๋ฅผ ์ฃผ๋กœ ๋ฏฟ๊ณ  ๋”ฐ๋ฅด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๋˜ ๋ฐ˜๋ฉด, ์‹ ๋ขฐ๋„๊ฐ€ ๋‚ฎ์€ ๊ทธ๋ฃน์€ ๋ฃธ ๋ฏธ๋Ÿฌ๋‚˜ ์‚ฌ์ด๋“œ ๋ฏธ๋Ÿฌ๋ฅผ ํ†ตํ•ด ์ฃผ๋ณ€ ์ƒํ™ฉ ์ •๋ณด๋ฅผ ๋” ํ™•์ธ ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๋„ค ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ์˜ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์ตœ์  ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ์„œ ์ฃผํ–‰ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ ์‹คํ—˜์„ ํ†ตํ•ด ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜์— ๋”ฐ๋ผ ์šด์ „์ž์˜ ์ฃผํ–‰ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋””์Šคํ”Œ๋ ˆ์ด ์กฐ์ž‘ ๊ด€๋ จ ๊ณผ์—… ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์‹œ๊ฐ์  ์ฃผ์˜ ๋ถ„์‚ฐ, ์„ ํ˜ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์ž‘์—… ๋ถ€ํ•˜๊ฐ€ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๋Š” ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์ด 9๊ฐœ์˜ ์œ„์น˜๊ฐ€ ๊ณ ๋ ค๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ํ™œ์šฉ๋œ ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ๋””์Šคํ”Œ๋ ˆ์ด๋Š” ์Œ์•… ์„ ํƒ์„ ์œ„ํ•œ ์Šคํฌ๋กค ๋ฐฉ์‹์˜ ๋‹จ์ผ ๋””์Šคํ”Œ๋ ˆ์ด์˜€๊ณ , ์šด์ „๋Œ€์— ์žฅ์ฐฉ๋œ ๋ฒ„ํŠผ์„ ํ†ตํ•ด ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์กฐ์ž‘ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๊ฐ€ ๋ชจ๋“  ํ‰๊ฐ€ ์ฒ™๋„, ์ฆ‰ ์ฃผํ–‰ ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ๋””์Šคํ”Œ๋ ˆ์ด ์กฐ์ž‘ ๊ณผ์—… ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ, ์‹œ๊ฐ์  ์ฃผ์˜ ๋ถ„์‚ฐ, ์„ ํ˜ธ๋„, ๊ทธ๋ฆฌ๊ณ  ์ž‘์—… ๋ถ€ํ•˜์— ์˜ํ–ฅ์„ ๋ฏธ์นจ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ชจ๋“  ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ณ ๋ คํ–ˆ์„ ๋•Œ, ์ธํ„ฐ๋ž™ํ‹ฐ๋ธŒ ํ—ค๋“œ์—… ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์œ„์น˜๋Š” ์šด์ „์ž๊ฐ€ ๋˜‘๋ฐ”๋กœ ์ „๋ฐฉ์„ ๋ฐ”๋ผ๋ณผ ๋•Œ์˜ ์‹œ์•ผ ๊ตฌ๊ฐ„, ์ฆ‰ ์ „๋ฉด ์œ ๋ฆฌ์ฐฝ์—์„œ์˜ ์™ผ์ชฝ ์•„๋ž˜ ๋ถ€๊ทผ์ด ๊ฐ€์žฅ ์ตœ์ ์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.Abstract i Contents v List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives and Questions 8 1.3 Structure of the Thesis 11 Chapter 2 Functional Requirements of Automotive Head-Up Displays: A Systematic Review of Literature from 1994 to Present 13 2.1 Introduction 13 2.2 Method 15 2.3 Results 17 2.3.1 Information Types Displayed by Existing Commercial Automotive HUD Systems 17 2.3.2 Information Types Previously Suggested for Automotive HUDs by Research Studies 28 2.3.3 Information Types Required by Drivers (users) for Automotive HUDs and Their Relative Importance 35 2.4 Discussion 39 2.4.1 Information Types Displayed by Existing Commercial Automotive HUD Systems 39 2.4.2 Information Types Previously Suggested for Automotive HUDs by Research Studies 44 2.4.3 Information Types Required by Drivers (users) for Automotive HUDs and Their Relative Importance 48 Chapter 3 A Literature Review on Interface Design of Automotive Head-Up Displays for Communicating Safety-Related Information 50 3.1 Introduction 50 3.2 Method 52 3.3 Results 55 3.3.1 Commercial Automotive HUDs Presenting Safety-Related Information 55 3.3.2 Safety-Related HUDs Proposed by Academic Research 58 3.4 Discussion 74 Chapter 4 Development and Evaluation of Automotive Head-Up Displays for Take-Over Requests (TORs) in Highly Automated Vehicles 78 4.1 Introduction 78 4.2 Method 82 4.2.1 Participants 82 4.2.2 Apparatus 82 4.2.3 Automotive HUD-based TOR Displays 83 4.2.4 Driving Scenario 86 4.2.5 Experimental Design and Procedure 87 4.2.6 Experiment Variables 88 4.2.7 Statistical Analyses 91 4.3 Results 93 4.3.1 Comparison of the Proposed TOR Displays 93 4.3.2 Characteristics of Drivers Initial Trust in the four TOR Displays 102 4.3.3 Relationship between Drivers Initial Trust and Take-over and Visual Behavior 104 4.4 Discussion 113 4.4.1 Comparison of the Proposed TOR Displays 113 4.4.2 Characteristics of Drivers Initial Trust in the four TOR Displays 116 4.4.3 Relationship between Drivers Initial Trust and Take-over and Visual Behavior 117 4.5 Conclusion 119 Chapter 5 Human Factors Evaluation of Display Locations of an Interactive Scrolling List in a Full-windshield Automotive Head-Up Display System 121 5.1 Introduction 121 5.2 Method 122 5.2.1 Participants 122 5.2.2 Apparatus 123 5.2.3 Experimental Tasks and Driving Scenario 123 5.2.4 Experiment Variables 124 5.2.5 Experimental Design and Procedure 126 5.2.6 Statistical Analyses 126 5.3 Results 127 5.4 Discussion 133 5.5 Conclusion 135 Chapter 6 Conclusion 137 6.1 Summary and Implications 137 6.2 Future Research Directions 139 Bibliography 143 Apeendix A. Display Layouts of Some Commercial HUD Systems Appendix B. Safety-related Displays Provided by the Existing Commercial HUD Systems Appendix C. Safety-related HUD displays Proposed by Academic Research ๊ตญ๋ฌธ์ดˆ๋ก 187Docto

    Waking Effectiveness of Emergency Alerting Devices for the Hearing Able, Hard of Hearing, and Deaf Populations

    Get PDF
    The study presented measures the awakening effectiveness of a number of commercially available emergency alerting devices. Three groups of varying hearing levels were tested: hearing able, hard of hearing, and deaf. The devices evaluated are a typical audible smoke detector, a strobe light, and a bed shaker. The subjects were monitored for sleep stage during the single night tests and the emergency alerting devices were activated in Stage 2, Delta and REM stages of sleep. Results indicate that the audible smoke detector was most effective for the hearing able population and least effective for the deaf population. The recommended alternative to the audible smoke detector, the strobe, was the least effective device when measured against the total United States population. The vibratory tactile devices were most effective across all hearing categories and sleep stage. When the tactile signal of the bed shaker was modified to vibrate intermittently, all persons were effectively aroused. The research shows that the standard audible detector recommended for placement in all American homes is only effective in awakening those without hearing loss. The strobe is recommended by building and fire codes when hearing deficits are present but did not sufficiently awaken any population. Tactile devices can provide a sufficient means for awakening all populations regardless of hearing level, age or rac

    The contribution of behaviour to falls among older people in and around the home

    Get PDF
    This thesis examines the contribution of behaviour to falls among older people in and around the home. Falls are an extensive problem, with the scale of this set to worsen in line with the increasing older population. Risk factors for falls have received much attention during recent years, although little emphasis has been given to the role of behaviour in falls risk. It is argued in the thesis that older people play an active role in their exposure to risk, influenced by their attitudes, beliefs and motivations. This aspect has received only limited consideration. The research consisted of five studies. The first three investigations used a triangulated approach to examine the contribution and role of older people's behaviour, physical ability and home environment design in fall risk. The fourth study considered the role of health practitioners in fall prevention and investigated barriers to successful interventions. The final study examined the contribution of a health psychology framework to understanding fall-related behaviour among older people. [Continues.

    Building Egressibility in an Ageing Society

    Get PDF
    This is the final report of a three-year project called Building Egressibility in an Ageing Society, sponsored by the Swedish research council for sustainable development (FORMAS). While accessibility is an established and widely used concept in building design, the evacuation of people with functional limitations is still at a stage in which several research gaps exist. In this context, this work discusses the concept of Egressibility, intended as the accessibility to means of evacuation. A categorization of populations with functional limitations in light of their egress-related abilities was performed by reviewing egress and accessibility research. The role of functional limitations on evacuation performance was investigated using the International Classification of Functioning, Disability and Health (ICF). A qualitative interview study consisting of 28 semi-structured interviews with people with functional limitations was conducted to further scrutinize Egressibility issues of older people. An Egressibility assessment instrument, the Egress Enabler, has been developed based on the concept of person-environment fit. A Virtual Reality (VR) experiment involving 40 participants was also conducted to demonstrate the use of VR technology to study the impact of people with functional limitations on egress. It also allowed to explore how the presence of people with functional limitations affects exit choice. Overall, Egressibility was investigated with the aim to ensure that egress planning and procedures are designed to equally consider all members of an aging society

    User preferences in the design of advanced driver assistance systems

    Get PDF
    The transport network and mobility aspects are constantly changing, and major changes are expected in the coming years in terms of safety and sustainability purposes. In this paper, we present the main conclusions and analysis of data collected from a survey of drivers in Spain and Portugal regarding user preferences, highlighting the main functionalities and behavior that an advanced driver assistance system must have in order to grant it special importance on the road to prevent accidents and also to enable drivers to have a pleasant journey. Based on the results obtained from the survey, we developed and present a working prototype for an advanced driver assistance system (ADAS), its architecture and rules systems that allowed us to create and test some scenarios in a real environment.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial servicesโ€”as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Smart Assistive Technology for People with Visual Field Loss

    Get PDF
    Visual field loss results in the lack of ability to clearly see objects in the surrounding environment, which affects the ability to determine potential hazards. In visual field loss, parts of the visual field are impaired to varying degrees, while other parts may remain healthy. This defect can be debilitating, making daily life activities very stressful. Unlike blind people, people with visual field loss retain some functional vision. It would be beneficial to intelligently augment this vision by adding computer-generated information to increase the users' awareness of possible hazards by providing early notifications. This thesis introduces a smart hazard attention system to help visual field impaired people with their navigation using smart glasses and a real-time hazard classification system. This takes the form of a novel, customised, machine learning-based hazard classification system that can be integrated into wearable assistive technology such as smart glasses. The proposed solution provides early notifications based on (1) the visual status of the user and (2) the motion status of the detected object. The presented technology can detect multiple objects at the same time and classify them into different hazard types. The system design in this work consists of four modules: (1) a deep learning-based object detector to recognise static and moving objects in real-time, (2) a Kalman Filter-based multi-object tracker to track the detected objects over time to determine their motion model, (3) a Neural Network-based classifier to determine the level of danger for each hazard using its motion features extracted while the object is in the user's field of vision, and (4) a feedback generation module to translate the hazard level into a smart notification to increase user's cognitive perception using the healthy vision within the visual field. For qualitative system testing, normal and personalised defected vision models were implemented. The personalised defected vision model was created to synthesise the visual function for the people with visual field defects. Actual central and full-field test results were used to create a personalised model that is used in the feedback generation stage of this system, where the visual notifications are displayed in the user's healthy visual area. The proposed solution will enhance the quality of life for people suffering from visual field loss conditions. This non-intrusive, wearable hazard detection technology can provide obstacle avoidance solution, and prevent falls and collisions early with minimal information
    • โ€ฆ
    corecore