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Abstract

Visual field loss results in the lack of ability to clearly see objects in the surround-
ing environment, which affects the ability to determine potential hazards. In visual
field loss, parts of the visual field are impaired to varying degrees, while other parts
may remain healthy. This defect can be debilitating, making daily life activities
very stressful. Unlike blind people, people with visual field loss retain some func-
tional vision. It would be beneficial to intelligently augment this vision by adding
computer-generated information to increase the users’ awareness of possible hazards
by providing early notifications.

This thesis introduces a smart hazard attention system to help visual field im-
paired people with their navigation using smart glasses and a real-time hazard classi-
fication system. This takes the form of a novel, customised, machine learning-based
hazard classification system that can be integrated in a wearable assistive technology
such as smart glasses. The proposed solution provides early notifications based on
(1) the visual status of the user and (2) the motion status of the detected object.
The presented technology can detect multiple objects at the same time and classify
them into different hazard types.

The system design in this work consists of four modules: (1) a deep learning-
based object detector to recognise static and moving objects in real-time, (2) a
Kalman Filter-based multi-object tracker to track the detected objects over time to
determine their motion model, (3) a Neural Network-based classifier to determine the
level of danger for each hazard using its motion features extracted while the object
is in the user’s field of vision, and (4) a feedback generation module to translate the
hazard level into a smart notification to increase user’s cognitive perception using
the healthy vision within the visual field.

For qualitative system testing, normal and personalised defected vision models
were implemented. The personalised defected vision model was created to synthesise
the visual function for the people with visual field defects. Actual central and full
field test results were used to create a personalised model that is used in the feedback
generation stage of this system, where the visual notifications are displayed in the
user’s healthy visual area.

The proposed solution will enhance the quality of life for people suffering from
visual field loss conditions. This non-intrusive, wearable hazard detection technology
can provide obstacle avoidance solution, and prevent falls and collisions early with
minimal information.
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Glossary

Assistive technology: A particular type of technologies developed to aid people.

Augmented reality: A technology that places computer-generated contents on the
top of one’s normal vision creating a mixed (virtual and real) view.

Binocular vision: Vision wherein both eyes work together to deliver a 3D view of
a scene.

Bitemporal hemianopia: A case of hemianopia where vision is impaired in the
outer half of both the right and left visual field.

Central vision: One type of human’s vision that extends less than 30 degrees
around a fixation point.

Context-aware systems: A particular type of systems that can interact with the
surrounding and change its outputs accordingly.

Depth camera: A special type of cameras that can capture depth information.
Ego-motion: The movement of a system (camera) in the three dimensions.

Euclidean distance: The distance of a standard straight line between two points
in Euclidean space.

Foveal vision: Part of human’s vision that extends less than 5 degrees around a
fixation point.

Frame rate (fps): The number of frames a device can process in one second.

Hemianopia: A case of vision impairment where vision is lost in half of the visual
field.

Homography matrix: In computer vision, it is a matrix used to relate two images
in the same planner.

Homonymous hemianopia: A case of hemianopia where the vision is impaired in
the same half of both the right and left visual field.

Macular vision: Part of human’s vision that extends less than 18 degrees around
a fixation point.

xiil
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Monocular vision: Vision wherein each eye works separately to deliver a 2D view
of a scene.

Occupational therapy: A healthcare profession that helps people who suffer from
health problems perform daily activities.

OpenCV: A library of programming methods used mainly to perform computer
vision algorithms.

Parafoveal vision: Part of human’s vision that extends less than 8 degrees around
a fixation point.

Peripheral vision: Part of human’s vision that extends more than 18 degrees
around a fixation point.

Real-time systems: A software system that operates and produce output in actual
time.

Regression analysis: A statistical method used to study the relationship between
two or more variables.

RGB,RGB-D sensors: A camera that captures coloured images (red, green and
blue), or coloured -depth images.

Scotoma: A blind spot inside a healthy vision area.

Smart glasses: Computer-enabled eyeglasses equipped with a camera and display
units.

Tango device: An augmented reality-based device developed by Google.

User requirements elicitation study: A study conducted before the develop-
ment of a system aims to gain an initial understanding of users’ needs.

VGG network: A deep-learning-based convolutional network trained by Oxford’s
visual geometry group for the object recognition task.

Virtual reality: The technology of creating virtual worlds that the user can inter-
act with.

Vision eccentricity: A visual phenomenon represents the reduction of visual acu-
ity concerning visual field extension.

Visual acuity: Vision resolution.

Visual field: Vision extension.
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Chapter 1

Introduction

According to the World Health Organisation (WHO), 1.3 billion people have im-
paired vision worldwide [I]. In the UK, almost two million people are living with
different degrees of sight loss and more than 360,000 are registered as blind or par-

tially sighted [2]. Regrettably, these numbers are expected to increase.

Vision impairment consequences have a direct and negative impact on the indi-
viduals’ quality of life (QoL) [3H5]. It is hard to have a universal definition for QoL
that can be applied in different contexts. However, the WHO [6] defines QoL as: “An
individual’s perception of their position in life in the context of the culture and value
systems in which they live and in relation to their goals, expectations, standards and
concerns. It is a broad-ranging concept affected in a complex way by the person’s
physical health, psychological state, personal beliefs, social relationships and their

relationship to salient features of their environment.”

From this definition, researchers in the field of optometry and ophthalmology
studied and evaluated vision-related quality of life (VRQoL) as a set of patients’
concerns related to their QoL with vision impairment [7H9]. Previous research studies
have shown that vision impairment is associated with a decrease in the employability

rate, driving and self-navigation ability and scene perception. Furthermore, vision
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impairment has been connected with an increase of Motor vehicle collision (MVC),

depression rate, and falling while walking.

It has been reported that only 25% of registered blind and partially sighted people
in the working-age are employed with a notable decrease in this proportion from 2015
to 2017 [I0]. Driving a car and self-navigation difficulties are common in people
with vision impairment. To legally be able to drive a car, a person should meet the
minimum eyesight standards by having a good visual acuity and a sufficient field of
vision (FoV) (in most countries the legal horizontal visual field required for driving
is 120°). People with impaired vision could have lower vision acuity or narrower
FoV, thus making it harder for them to be able to use their car [I1]. Another
increment factor in the QoL for people with visual impairment is their ability for
scene perception and object recognition. This condition is associated more with

visual field defects conditions [12, [13].

Studies show that people with impaired vision (especially visual field defects as
a result of glaucoma) are more likely to be involved in MVC. In their retrospective
cohort study [14], the authors mentioned that it is twice as likely for drivers with
severe visual field defects to have at-fault MVC compared to those with less visual

field impairment.

The prevalence of depression and anxiety disorders is significantly higher in people
with vision impairment (especially in elderly) compared to healthy vision people [I5-
17]. Also, falling while walking occurs more in older people with low vision [1§]. In
their study about the possible causes of falls [19], the authors mentioned that two
of the five factors identified to have a direct association with falls are the impact of
sight impairment. As a result, the mentioned consequences of visual impairments
may cause a further decline in the QoL and could lead to more mental and physical
problems. Figure [1.1] shows the most critical consequences of visual impairment on

the quality of life.
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Driving and Motor
navigation vehicle
ability @ collision
Visual
Employabili . . D i
mployability impairment epression
and QoL
Scene Fall while
perception walking

Figure 1.1: The consequences of visual impairment on the quality of life.

Globally, the main reasons of vision impairment are uncorrected refractive errors,
cataract, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy,

corneal opacity and trachoma [1J.

Visual impairment types could be classified -according to the kind of damage it
causes- into two groups: visual acuity defects and visual field defects [20]. Reflective
errors are the leading cause of low visual acuity, which can lead to several defects,
such as nearsightedness (myopia), farsightedness (hypermetropia), and astigmatism.
On the other hand, visual field loss could be classified according to the location of

the vision loss, and into central and peripheral vision loss.

While most visual acuity problems are correctable using different techniques and
traditional solutions such as eyeglasses, visual field defects are not easily rehabil-

itated. This is because most of these defects happen after brain injuries or eye
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conditions where parts of the visual system become permanently diseased [21].

1.1 Peripheral Vision Loss

Two types of vision areas define a human’s visual field as shown in Figure[I.2} central
and peripheral. These areas are used to see and recognise different levels of details

and information.

Figure 1.2: The healthy visual field extent for both eyes, in accordance with [22].

As shown in Figure [I.3] the retina is the light-sensitive tissue layer in the back
of the eye that has two areas: the macular area which is responsible for the central
vision and the peripheral area that is responsible for the peripheral vision. The

figure also shows the two types of receptors included the retina, rods and cones.
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The central vision contains the highest density of cones [24]; thus, it is capable of
colour vision and is responsible for high spatial acuity (fine details). This proportion
decreases when we move from the centre of the vision towards the peripheral vision,

where we have a high concentration of rods and the lowest spatial resolution [25].

Our brain uses the most central visual field (5°) mostly for reading, focusing,
drawing, crossing the road, and many other daily activities that require a deep un-
derstanding of specific details. On the other hand, the peripheral vision (PV) is used
to detect larger contrasts, colours and motion and extends up to 160° horizontally
and 145° vertically for each eye [26]. While the PV is inferior to the central vision
in terms of detailed view, it is particularly useful to attract the brain’s attention to

the surrounding environment.

One of the critical roles that a human’s PV provides is the ability to detect
and avoid potential hazards in the surroundings. To explore the fine details about a
specific object, humans use head movements to gather more information and increase
their cognitive understanding.

The central vision is shown as a white circle in the middle covering 30° around the

fixation point (assumed to be the centre of the figure), while the grey area represents

the peripheral visual field. Both visions are used with different functionalities for

Peripheral Retina
(Peripheral vision)

Macular Retina
(central vision)

Optic Nerve

Rod  Cone

Figure 1.3: Retinal anatomy [23].
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7
/
1
1
i

Monocular right vision Monocular left vision

\

60° 60°

Figure 1.4: The binocular and monocular visual field of both eyes, in accordance

with [27].

each of them to explore the real-world [28]. Due to retinal eccentricity [29], different
degrees of resolution occur in different parts of the visual field areas. The more

central the area, the more resolution for vision [30].

Figure [1.4] depicts the binocular (3D) and monocular (2D) visual field extension
of both eyes. As shown in the figure, the visual fields of both eyes widely overlap in
the central vision (binocular visual field). This overlap allows us to see fine details
and recognise the 3D shape of objects. Binocular vision extends for both central and

peripheral visual fields.

The leading causes for visual field loss are ocular problems (e.g. glaucoma, AMD,
retinopathy, papilloedema, optic neuropathy) and brain injuries (e.g. stroke, tumour,
trauma, inflammation). These conditions result in several types of defected vision
such as constricted circular (tunnel) vision, scotoma, arcuate vision, altitudinal vi-

sion, hemianopia (bitemporal /homonymous) vision or quadrantanopia vision [31].
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Figure depicts a simple schematic of the leading causes and types of visual field

loss.

Visual field loss

Causes

Ocular
(e.g. Glaucoma, AMD, Retinopathy,
Papilloedema, Optic neuropathy)

Brain
(e.g. Stroke, Tumour, Trauma, Inflammation)

Results

S s

Constriction (tunnel vision)
Scotoma
Arcuate
Altitudinal
Hemianopia
(bitemporal/homonymous)
Quadrantanopia

Figure 1.5: Simple schematic for causes and results of visual field loss.

In the case of peripheral vision loss (PVL), the outer visual field areas are im-
paired to varying degrees, while central vision may remain healthy. This defect can
be debilitating and makes a person’s daily life very stressful. People with PVL find
it hard (or illegal in some cases) to drive and navigate [32H35], recognise their sur-
rounding scene [28] [36] and avoid possible hazards. Understanding these challenges
can help in rehabilitation and making the best use of the remaining vision. In this
case, it is essential for the visually impaired people to continuously shift their focus
around to have a full understanding of the surroundings and possible threats |37, 38].

Table shows five types of visual field defects with a simulated view of each type.
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Table 1.1: Examples of visual field loss

Condition

Description

Illustration example
(left eye, right eye)

Healthy vision

An image captured by a wide-
angle camera illustrating a
healthy vision.

Tunnel vision

This is the extreme case of periph-
eral vision loss. People with tun-
nel vision can see through a tiny
circular area in their central vi-

sion (~10°).

Central Scotoma

Blind area in the middle of the
visual field. The central vision
(e.g. within 30°is damaged due to
AMD or papilloedema.

Left Hemianopia

A homonymous loss to the same
side (left or right) in both halves
of the visual field.

Either the upper (superior) or

Alst.l(;c;lldmal lower (inferior) half of the visual
Vist field is affected.

Quadrantanopia Quadrant of the visual field is af-
vision P fected. Could be homonymous or

bitemporal quadrantanopia.
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1.2 Research Motivation

It was shown in the previous section how visual field loss can affect the patient’s
daily tasks and decrease the overall quality of life. Understanding the surrounding
environment and avoiding possible hazards in the correct time are crucial tasks in
a person’s life. People with visual field loss have good vision in some parts of their
visual field, so it would be beneficial to use this vision smartly by adding computer-
generated information to increase their awareness by providing early notifications
about possible hazards.

This can be achieved by designing a system that implements computer vision
algorithms in real-time, to provide useful information about any possible threats
existing in the user’s blind area. This will enhance functional vision by giving cues
about the affected field without the need for the visually impaired people to shift
their fixation point all the time. The additional signals must provide fast and trustful
notifications that reflects the hazard type, danger degree, and most importantly, the
location of that hazard.

Intelligent assistive technologies and mobile healthcare systems are developing
rapidly. With the massive growth in the hardware and software sectors, wearable
smart devices have become widely affordable. Vision assistance devices have been
developed to be worn on several body parts such as the head, chest, fingers, feet,
and ears.

In this research, the focus is on the design, development, validation, and evalua-
tion of a smart hazard attention to help people with visual field loss. The approach
in this research work is on designing a system that recognises objects in the user’s
visual field and classifies them to determine the possible danger level.

The system design process followed in this research can be depicted as shown in
Figure Starting from user requirements, we aim this process to make efficient

use of the available smart glasses, computer vision algorithms, machine learning and
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Problem
Hazard detection for VFL
User csentnclty I?ata . Algorithms Too!s Personalisation
Involving users Real-time video . . Machine
. . Object detection . . Visual field test
in the design stream captured N . learning + image
tracking . results
process by smart glasses processing
Solution
User centric context-aware
hazard attention system for VFL
Smart Assistive technology to [ Bl W?.:-lrable hazar(-l q
model recognition and prediction
be used on smart glasses Chanter 7 of thi smart glasses for VIP
Chapters 4,5 and 6 of this thesis apter / ob this
thesis Future work

Figure 1.6: Research work organisation.

image processing tools and visual field test results to develop a user-centric, smart
hazard attention system for people with visual field loss. This thesis presents the
assistive technology and the personalised vision model that will be used in the future
for designing wearable hazard recognition and prediction smart glasses for visually

impaired people.

1.3 Research Aims and Objectives

The main aim of this research is to develop a user centric, context-aware hazard
attention system for people with visual field loss. The outcome of this research
will be mainly the development of smart assistive technology to detect, recognise,
track and classify hazards in the user’s peripheral area and produce a smart and

meaningful notification to alert the user in the right location at the right time.

Initially, the target is to use computer-enabled smart glasses equipped with a
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wide-angle camera. Our proposed system augments users’ existing healthy vision
with proper, meaningful and intelligent notifications to attract the user’s attention
to possible obstructions or hazards in their peripheral field of view.

As a summary, this research attempts to fulfil the following objectives:

1. To develop a smart assistive technology with the potential to aid people with

vision loss that provides real-time alerts of possible obstacles or hazards.

2. To provide a wearable, affordable and unobtrusive solution that could be used

on smart glasses for daily activities.

3. To use Artificial Intelligence techniques for detecting and classifying possible
hazards around the visually impaired people and assign different danger level

for each one.

4. To provide personalised alerts based on the user’s particular visual field loss

and preferences.

5. To assist vision specialists and ophthalmologists in their work by developing a
vision system that displays what patients are seeing based on their visual field
test results and share this with others to understand their defects and help

them in their rehabilitation.

1.4 Original Contributions
The original contributions presented in this thesis can be summarised as follows:

1. Different from available obstacle detection solutions; a smart technology is de-
veloped to increase cognitive awareness for people who have vision impairment

using computer vision and machine learning algorithms.
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2. A vital user engagement with visually impaired users; which directed us into the
daily challenges they face. Also, their invaluable suggestions and preferences
for the feedback style and timing helped us to design a wearable, smart assistive
technology for people with different types of visual field loss. We believe that
such information would greatly benefit other researchers developing similar

assistive applications for visually impaired people.

3. A unique egocentric indoor and outdoor hazard recognition dataset is created
using a wearable camera. Detected objects in this data are classified using a

deep learning object detector and tracked using Kalman Filter.

4. A motion model that describes the hazard type in the user’s environment
based on motion features extracted from the detection and tracking phases is

presented. This model is used in the classification stage later.

5. Machine learning-based hazard classification system, using motion features for
multiple hazards is proposed to provide a smart and early warning system to

help people with peripheral vision loss.

6. A personalised vision model is implemented using the visual field test results

to visualise the visual case for people with impaired vision.

1.5 Outline of the Thesis

The rest of this thesis is organised as follows:

e Chapter 2 provides an extensive literature review for the recent research on

assistive technologies for visually impaired people.

e Chapter 3 explores the user’s requirements and the fundamental needs, chal-

lenges and preferences gathered from a patient group.
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e Chapter 4 discusses methods used for object detection and tracking as the
first and second modules of the proposed system. In this work, two different
approaches were used to detect the objects before tracking it. The pros and
cons of each method are discussed and evaluated. The implementation and
evaluation of the object tracking stage in addition to the assignment algorithm

used to handle the multi-object tracking problem are presented.

e Chapter 5 demonstrates the datasets (private and public) used in this work. It
discusses the reasons for creating our private dataset and the way we captured
the photos and the human perception of hazards. It presents the motion fea-
tures that were extracted to be used in the machine-learning phase to determine
the level of danger for each object. Additionally, this chapter demonstrates the
implementation and evaluation of the proposed hazard attention systems us-
ing machine learning algorithms. It compares the performance of the proposed
method using two different approaches to predict the level of danger for each

tracked object.

e Chapter 6 discusses the vision model (normal vision and defected vision). This
part is used to visualise the different visual field loss types based on actual
visual field tests. The feedback generation stage is presented in this chapter

with three different visual field loss examples.

e Chapter 7 discusses the overall and detailed conclusions, in addition to the
main limitations, the originality of the proposed work and suggestions for future

work.



Chapter 2

Literature review

2.1 Introduction

People who have peripheral vision loss constitute about 25% of the total number
of patients with low vision, while 75% have central vision loss [39]. As a result,
the majority of rehabilitation methods and assistive technologies are directed to the

people with central vision loss [40].

When reviewing the literature research work, we found that low vision rehabili-
tation solutions could be broadly classified into two main categories: (1) visual field

loss aids, and (2) vision impairment (partial/total blindness) aids.

For visual field loss problems, scientists and clinicians followed three different
approaches: (1) using prisms established in eyeglasses (2) training patients how
to efficiently use the residual vision to compensate for vision loss, and (3) using
assistive technologies that provide additional information to the users using their
healthy vision. All these solutions aim to compensate the visual field and increase
the individual’s surrounding awareness.

On the other hand, assistive technologies (AT) that help with vision impairment

are widely used and their advantages are well documented [37, 41], 42]. Assistive

14
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technology is a term that could be used with any equipment or technology that en-
hances an individual’s quality of life and increases his/her engagement and inclusion
in society [43].

According to this definition, AT can be classified into two main groups: (1)tra-
ditional AT (e.g. prisms, occupational therapy, white canes, walkers, eyeglasses),
and (2) mobile IT-based AT (e.g. navigation devises, screen readers, object and face
recognition devices). Low vision and total blindness are used interchangeably in the
field of AT to refer to any visual condition that impairs an individual’s ability to

perform daily tasks.

Since visually impaired people have difficulties using visually demanding devices,
scientists started investigating other options for AT development. Non-visual sensory
modalities such as speech recognition [44], text-to-speech [45], haptic feedback [40],
multimodal input [47, 48] and gesture recognition [49] are used to make mobile

devices and AT more accessible and suitable for visually impaired people.

While reviewing the literature, it was hard to find a comprehensive classification
method to cover all previous work in the field of vision impairment rehabilitation so-
lutions. Some reviews categorise the vision impairment aids according to the primary
function they perform into:(1) navigation and wayfinding, (2) obstacle detection and

(3) scene perception methods.

Other researchers divided these aids based on the capturing device into (1) sensor-
based and (2) camera-based solutions. Feedback style could be used to classify visual
assistance technologies into audio or haptic solutions. Further classification could
be applied to these technologies and methods according to their weight, cost and

coverage area.

In this chapter, we present and discuss the previous research work and the state-
of-the-art methods to help with visual field loss in specific, and vision impairment in

general. Figure [2.1] depicts the structure followed in this review.
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Figure 2.1: Literature review structure for low vision rehabilitation solutions

Firstly, substitutive interventions will be discussed covering aids that replace
the lost vision with new information generated by an external source. Aids in this
category are classified according to cues style they provide into: (1) visual-based, (2)
auditory-based and (3) haptic-based solutions.

In auditory and haptic cues subsections, aids will be presented according to the
function they perform as mentioned early in this section. In the second and third

sections, compensation and restitution treatments are discussed, respectively.

2.2 Substitutive Intervention

As mentioned in the first chapter of this thesis, several ocular and brain causes could
lead to visual field loss. Unfortunately, there are no guaranteed solutions, such as
traditional eyeglasses or surgeries, to help with this condition. Consequently, oph-
thalmologists and scientists looked for other solutions to enhance visual perception

by providing additional information about the surrounding environment.
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Substitution interventions include solutions that help in vision loss adaptation
using electronic aids, mechanical devices or any alteration to the visually impaired
environment [50]. This section will study the reported research work that provided
substitutive solutions for visual field loss people. Furthermore, solutions that pro-
posed smart assistive technologies to help this group of low vision people will be

presented.

2.2.1 Assistive Technologies using Visual Feedback

Early attempts for extending individuals FoV have been developed using eyeglasses [51].
The goal is expanding an individual’s FoV to shift the peripheral field of view inward.
This shifting with the users scanning would enhance the overall functional field [39].

Prisms

In 1979, Mehr & Quillman [52] presented the idea of using reversed telescopes
to increase individuals visual field area in patients with retinitis pigmentosa (RP).
Later, in 1998, Zlyk et al. [53] used amorphous lenses to compress images with a wide
field of vision in the central vision to present more peripherally located information.
However, both techniques were reported to be inadequately used by some peripheral
vision loss users [54].

Another approach for expanding the FoV using prisms was presented by re-
searchers several decades ago. Jose et al. [51] introduced this idea in their research
work in 1976. The development prismatic systems applications to expand visual field
has challenged clinicians and researchers for many decades.

The visual field awareness system (Gottlieb lens) [55] is one of the well-known
methods for using prisms with visual field loss people. The commercially available
product that was proposed by Gottlieb et al. in 1992 abandons the traditional equal
prism in both lenses and use a small round one on the side of the visual field. Users

will become aware of their surroundings as displace objects in the blind field over
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the seeing field.

The same idea was adopted by Peli’s research group at Harvard medical school. In
their work [56, 57], Peli et al. developed glasses with high-power prism segments that
are located above and below the user’s fixation point giving him/her a glance about
missing information in the periphery area. By moving gaze between the overlaid

prism shift and healthy vision, users would be able to increase their surrounding

awareness, as shown in Figure 2.2 shows the two prism glasses.

Figure 2.2: Gottlieb prism [55] (a) and Eli Peli prisms [56, [57] (b)glasses

Although the use of prism glasses helped increase visual field expansion to in-
clude ~ 20°, the use of these glasses was poorly adopted by the patients [39, [54].

Smart glasses

In 2001, a group at Harvard developed a device that produced augmented reality
(AR) vision for people with severe peripheral vision loss (tunnel vision) [58]. The
scheme comprises a wide-angle camera and one display unit that projects a processed
image (cartoon style) from the camera on the healthy vision area. The device was
tested on healthy and vision impaired people and results showed improvements of
self-navigation and object finding.

Elango & Murugesan [59] proposed their work of using AR to extend visually

affected patients’ knowledge using the cellular neural network. The study presented
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a model consisting of a monochrome camera, display unit and a portable processor
to perform image processing.

There are two main weaknesses of these two solutions: (1) The displayed images
simply replicate everything the camera can see into the user’s central vision, con-
sequently, producing unnecessary information. (2) The solutions created a double
vision that could cause distraction and reduce the efficiency of the user’s healthy
vision.

More recently, Pundlik et al. [60] proposed their collision warning device for pe-
ripheral vision loss people. The proposed prototype consists of a portable, battery-
powered video camera attached to a processing unit. The device detects obstacles in
the user’s environment and computes the time to collision (TTC) [61] for each object.
Simple audio warning messages are generated only in the event of a possible colli-
sion. The proposed work was evaluated with 25 participants (12 Hemianopia and 13
tunnel vision). All participants walked through a pre-designed obstacle course under
two conditions: with and without the proposed device. Results show a significant
reduction in collisions by approximately 37% with the device.

This device is considered to be a pioneer solution that applies computer vision
algorithms on wearable devices for peripheral vision loss people. However, it’s main
weakness is that it only detects stationary obstacles, where the real world scenarios
are more complex. Obstacles may move around the visually impaired, changing their
level of danger. Moreover, this device does not distinguish between healthy and blind

areas assuming that the user has total blindness.

2.2.2 Assistive Technologies using Auditory Cues

Navigation and wayfinding
Many research studies were reported in the literature discussing navigation and

mapping problems for visually impaired people using audio-based feedback sys-
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tems [62-64].

In 2007, the stereo vision-based electronic travel aid (SVETA) system was pro-
posed to help blind people in their navigation [65]. The authors used a stereo camera
to capture the surrounding environment and determine the location and distance of
the obstacles in the user’s navigation path. The output of the proposed system
is delivered through stereo earphones. The input sensor and the output unite are
all connected to a compact computing device that is placed in a specially designed
pouch. While the system’s tests proved its applicability in helping blind users, out-
door environment challenges and the slow system’s performance could be considered

as critical issues for the presented method.

In 2014, Fiannaca et al. presented Headlock [66]; a wearable device to assist blind
people in traversing open spaces. The system used Google glasses and OpenCV blob
detection algorithm to detect doors and guide the blind person towards them with
minimum veering and the shortest path. Although the presented work provided
quantitative and qualitative results after testing the system’s usability with blind
subjects, limiting the object detection and navigation to doors only make it inefficient

for hazard avoidance or general blind navigation systems.

Positioning and mapping techniques are used to enhance visually impaired mo-
bility. An indoor navigation system for visually impaired and elderly people based
on radio frequency identification (RFID) was proposed by Tsirmpas et al. [67]. The
authors used passive RFID tags by installing them in different locations in the user’s
environment. The proposed model unites a reader and ultra-sonic finder to detect

both tags and obstacles using a wearable prototype.

In their study, the authors suggest cells of 40 x 40 cm to install the RFID tags,
which is considered to be a short range and consequently require adding more tags
in large environments. This weakness of RFID-based systems makes it costly to be

considered as a navigation system for visually impaired people.
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Indoor navigation system based on visual simultaneous localisation and map-
ping (SLAM) algorithm was developed by Jingiang et al. [6§] in 2018. The system
addresses three main problems: (1) user localisation, (2) goal recognition, and (3)

navigation and obstacle avoidance.

The proposed device consists of different sensors such as depth and fisheye cam-
eras, an ultrasonic rangefinder and AR glasses with an embedded processing unit.
The proposed navigation system requires a sighted person to wear it before the

b

visually impaired person can use it. This step is necessary to build the ”virtual-
blind-road”. The needed information for goal navigation and obstacle avoidance
is delivered using both images on the AR glasses and audio feedback through the

earphone.
Obstacle detection and avoidance

An obstacle stereo feedback (OSF) system [69] was implemented using a depth
sensor and computer vision algorithms to guide blind or impaired vision users in
indoor navigation. The hand-free system uses depth information for obstacles in front
of the user and produces acoustic notification when necessary. The developers also
provided Head-Related Transfer Functions (HRTF) to their system to create a more
realistic and 3D stereo sound environment that represents the detected obstacles.
Moving objects were not tracked in this system, limiting the detection stage to
stationary obstacles only. Also, the user’s motion was not considered in this work.

This could affect the of the hazard detection in general.

Kang et al. [T0H72] proposed a new method for detecting obstacles called ”de-
formable grid (DG)”. The authors used this method with their wearable prototype,
which consists of a monocular camera, WIFI module, battery and a Bluetooth ear-
phone — all attached to standard eyeglasses. The camera sends the captured video

to a laptop to perform the obstacle detection and avoidance method.

Auditory feedback regarding the estimated collision risk was implemented and
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tested on blindfolded participants. Experimental results show that the proposed
technique outperforms other conventional methods for obstacle avoidance. However,
with the presented prototype design, it is not suitable to be used by visually impaired

people.

A group of researchers from Munich developed a lightweight device to help visu-
ally impaired people during their everyday activities [73]. This wearable device uses
two depth cameras for data collection and a real-time depth processing algorithm
extracts information from the video stream to produce acoustic outputs. The use
of this low power, low latency sensor is useful to develop a user-friendly device that
performs real-time processing. However, the clinical tests for this system revealed
that real-life scenarios are far more complicated and need more sophisticated systems

and algorithms to deal with dynamic motion and multiple object detection.

A novel navigation assistant system for blind people was implemented in work
proposed by Tapu et al. [74]. The proposed method (denoted DEEP-SEE) detects
both moving and stationary objects using the you only look once (YOLO) object
recognition method [75]. Based on two convolutional networks, their system tracks
the detected objects in real time and solves the occlusion problem. The system then
classifies the object based on its location, type and distance and notifies the user using

acoustic warning message prioritisation based on the object semantic interpretation.

Detecting traversable area and avoiding obstacles for visually impaired people
was proposed by Yang et al. [76]. The authors presented a sensor combination,
multi-thread assistance framework integrating wearable smart glasses, inertial mea-
surement unit (IMU) sensor, and the Intel RealSense RS410 depth camera. Although
the proposed work enhanced the pathfinding task for blind and visually impaired
people, the system did not provide any information about the type of the detected

objects or the motion model of the dynamic objects in the user’s environment.

Many other research studies were reported in the literature discussing obstacle
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detection and avoidance methods for visually impaired people using audio-based

feedback systems [77H80].
Scene perception

Yang et al. [81] developed a novel model for navigation-related scene perception
system to help people with low vision. The proposed work unifies terrain awareness
for best traversable areas, obstacles, sidewalks, stairs, water hazards, pedestrians and
vehicles in one method that operates in a real-time navigational assistance frame-

work.

The proposed wearable device composed of a pair of smart glasses and a portable
processor. The smart glasses consist of an RGB-D sensor, RealSense R200 camera,
and a set of bone-conducting earphones. A deep-learning based network was devel-
oped to provide an efficient semantic understanding regarding the surrounding envi-
ronment. The detection results are then transferred to the visually impaired using

the bone conduction headphones for both terrain awareness and collision avoidance.

Mekhalfi et al. [82] developed a prototype for blind people that combines object
recognition, obstacle detection/avoidance and navigation modules. Their prototype
integrates lightweight components including camera, IMU, and laser sensors. The
proposed system performs different navigation and recognition process, such as object
recognition, path planning, ego-motion computation, and object detection. Distance
information is provided by the laser unit. Users can communicate with the device
through speech recognition unite. Audio feedback is generated and transmitted back

to the user for navigation instructions and obstacle’s warning messages.

A machine learning based ”coarse recognition” method was implemented to de-
tect static and dynamic objects in an open environment rather than focusing on
specific classes of objects. This recognition phase was evaluated on an indoor and

outdoor datasets and results showed good results in recognition rate.

We believe this system is beneficial for blind people in their navigation and scene
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perception problems. However, the incorporation of different sensory modules raises
several issues regarding its wearability criterion. Furthermore, the overwhelming
feedback about different objects in the surrounding environment would disturb the
user with unnecessary information.

Recently, a context-aware indoor mapping system was developed by a group of
researchers [83] based on Tango device, semantic maps editors, and obstacle detection
algorithms. This system (ISANA; intelligent situation awareness and navigation aid)
uses information from the mentioned modules to compute a safe navigation path for
blind people. Other audio-based scene perception solutions were reported in the
literature such as Hands On [84] and the work proposed by Chae et al. [72] and

Yang et al. [81].

2.2.3 Assistive Technologies using Haptic Cues

Visually impaired people depend on their hearing sense to extract information re-
garding their surroundings. Therefore, scientists tried to use other sensory cues to
deliver information without disturbing the user’s hearing. Haptic feedback is the
use of touch to interact with the user and it has two types: kinesthetic (force) and
tactile (touch) feedback.

Navigation and wayfinding

Many research studies were reported in the literature to address the naviga-
tion and wayfinding problem for visually impaired people using haptic/tactile feed-
back [85H8E].

Electro-neural vision system (ENVS) is a prototype developed by Meers & Ward [89]
in 2005 for blind people. The system uses depth information extracted by a stereo
camera to provide 3D perception and GPS navigation using the electro-tactile in-
terface. The head-mounted camera feeds the main algorithm with real-time images,

which then used to a disparity depth map. Transcutaneous electro-neural stimu-
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lation (TENS) unit converses this information into electrical pulses that stimulate

nerves in the hand skin.

Outdoor experiments were performed by a blindfolded user, and results showed
that the proposed system could provide sufficient information for obstacles avoidance

and navigation by interpreting sensory data via the electro-tactile data gloves.

Amemiya & Sugiyama [90, O1] proposed a hand-held force feedback device for
helping visually impaired pedestrians based on the ”pseudo-attraction force tech-
nique”. The goal of their device was to guide individuals in their navigation and

helping them avoid dangerous obstacles.

The proposed device used asymmetric acceleration to guide the user to the right
navigation direction. By accelerating more in the correct direction, the device allows
the user to experience the kinesthetic illusion of being pushed or pulled towards
the right path and avoiding the collision [92]. Experimental testing was applied
to the proposed work for evaluating navigation direction. The device was tested
by 23 visually impaired participants who confirmed the usability of the proposed

solution [92].

Sharma et al. [93] proposed a sensors based, low-cost smart stick to help visually
impaired people in their navigation. The stick can detect static and dynamic obsta-
cles and estimate their distance to provide both audio and vibration feedback. The
developed system consists of a microcontroller, an ultrasonic sensor, and master-
slave Bluetooth modules. The system can only detect obstacles in front of the user,

which is considered to be a significant shortage in its implementation.
Obstacle detection and avoidance

Cardin et al. [94] developed a sonar-based scanning system that senses the sur-
rounding environment looking for obstacles and sending position information of the

closest object to the user using vibrotactile feedback.

The prototype consists of four sonar sensors, a microcontroller, vibrators and
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a personal digital assistant (PDA) attached to a jacket to be worn by the user.
The sensors are located at the shoulders height and placed to cover a large area
(90°) in front of the user. The microcontroller calculates the approximate distance
of the nearest obstacle and then converts the distance to a pulse width modulation
(PWM) signal. This signal is then sent to the vibrators to generate suitable vibration

feedback (different vibration speeds representing the detected distance).

The prototype was tested on five participants in a controlled indoor environment.
The authors reported promising results as users were able to walk through the testing
area, localise themselves and to distinguish obstacles from the left and the right.
However, this solution needs a pre-training session and could be used as a complement
to the traditional white cane [94]. The authors reported other issues in the system’s

wearability such as the interference of hands and their wrong detection as obstacles.

A mobile kinect sensor was used to develop an obstacle detection and warning
system for visually impaired people [95]. The device is composed of two modules:
obstacle detection and obstacle warning. A portable laptop uses RGB and depth
images captured by the Kinect, in addition to accelerometer data to detect obsta-
cles in front of the user. A tactile—visual substitution system was used to deliver
obstacle warning messages to the user. Although experimental results showed that
participants were able to (1) correctly react to navigational cues and, (2) warning
messages provided by the system, these modules are expensive and require consid-

erable processing power.

Other previous research work addressing obstacle detection using haptic/tactile

feedback has been reported with similar methods [89, O6H9§].
Scene perception

Using haptic feedback to help people with vision impairment in their navigation,
as well as dealing with a dynamic environment was reported by several research

studies in the literature [99, [100].
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ARIANNA [101] is a path recognition system used to help in indoor navigation
for people with impaired vision. It is a flexible application that could be used on
smartphones and portable devices with AR capabilities. This system uses computer
vision algorithms to detect tapes deployed in the users’ pathway to easily navigate
them through the use of vibration signals as feedback. The authors also presented a

second version for their system by enhancing the tracking performance [102].

A novel and smart indoor mobile assistive technology for blind people using
Tango devices was introduced by Li et al. [I03]. They delivered a full system from
obstacle detection and tracking phases to the final notification. The system uses the
indoor map editor to extract semantic features from the geometric map for global
path mapping. This step is continuously updated and enhanced in real time with
the obstacle detection and avoidance algorithm they created to correct the path
of the projected obstacle if the user faces any possible threat. Finally, a smart
cane prototype was designed and implemented for human-machine interface and
communication. Limiting the navigation process to indoor environment with only

pre-planned routes restricts the number of users who could benefit from this system.

In 1999, Abowd et al. [I04] introduced the concept of context-awareness in com-
puting. They described it as the ability of computer systems to simulate real human
communication options by gathering data about its surrounding environment at any
given time. Also, these systems should adjust their interactions based on the col-
lected data accordingly. Context-aware approaches use software and hardware for

data collection. They perform real-time data analyses and processing smartly.

From the previously mentioned studies, we can see the shortage of outdoor
context-aware hazard detection systems for impaired vision people. Current systems
do not distinguish between the detected objects in their level of danger, providing
the same feedback style for any object detected. Moreover, most of these proposed

systems assume total blindness of the user’s vision. People with peripheral vision
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loss retain healthy vision with good central acuity. This highlights the need for
smart outdoor hazard detection and classification systems that work in real time
and deliver smart notifications that could alert the user as early as possible about

developing hazards.

2.3 Compensation Interventions (Adaptive Behavioural
Training)

Low vision rehabilitation is a complicated process that requires a multidisciplinary
effort including various professions like ophthalmologists, orthoptists, occupational
therapists, orientation and mobility instructors, social workers, teachers and oth-
ers [105].

Compensatory interventions are a set of treatments that help visually impaired
people to compensate or adapt for their visual impairments, which will -eventually-
help them to perform everyday tasks more easily [50]. Ong et al. [106] 107] re-
ported significant improvements in eye-search and reading-writing activities using
free, online treatments such as Eye-Search [108] and Read-Right [109]. Audio-visual
stimulation of the visual field has been used in the field of compensatory inter-
vention [IT0, IT1]. The research in the literature reported a potential for further
development in this area [50].

The majority of research studies in this field are concerned with two main goals:
(1) increasing saccadic movements [112] 113] and (2) improving eye movements and
scanning into the defected field [II4H117]. On the other hand, some research studies
focus on the specific help that occupational therapists (OT) provide for visual field
loss people in their daily life.

The OT role is multifaceted and includes different tasks such as environmental

assessments in the patient’s environment and providing a personalised training plan
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for enhancing residual vision-related skills [I18], [119]. For people with peripheral vi-
sion loss, O'T’s assist them to compensate for the loss in their side vision by training
them to move their head and eyes into the blind areas in their visual field [105].
Additionally, other interventions administered by OT’s may include strategies to ad-
dress independent mobility and instrumental activities of daily living (IADL) train-

ing [105], 120].

2.4 Restitutive Interventions

As reported in the first chapter, visual field loss has been considered to be non-
restorable. For several decades, researchers used to think that restitution interven-
tions have limited effect in visual rehabilitation [121], 122]. More recently, research
work suggested that with the correct use of specific interventions, it is possible to

expand the visual field after brain or optic nerve injuries [123, 124].

Restitution treatments are a set of interventions where the defected visual field
is trained or stimulated repeatedly [125]. One of the most reported restitution treat-
ments in the literature is vision restoration therapy (VRT). The goal of VRT is to
expand the normal visual field by stimulating the boundaries between the healthy
and damaged areas [50]. It is a non-intrusive (does not require surgery or medica-
tion) and personalised therapy for the individual vision case. NovaVision® [126] is
a commercially available treatment that uses visual stimuli targeting the defected
areas, trying to support the brain to strengthen the visual information processing of

residual vision.

A number of studies reported visual field expansion after VRT treatment (Schmielau
and Wong [127], Marshall et al. [128] and Gall and Sabel [129]), which consequently,

increased the quality of life measurements.

On the other hand, Reinhard et al. [I30], Roth et al. [114] and Pollock et al. [125]
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conclude that VRT is an ineffective procedure when compared to other rehabilitation
procedures such as placebo, control or no treatment taking into account the visual

field outcomes [50].

2.5 Summary and Conclusions

From previous research, it can be shown that assistive technologies can help visually
impaired people in their navigation, obstacle detection and scene perception tasks.
Visual field loss solutions were developed to extend the visual field by adding extra
information in the healthy vision areas. However, these solutions are still primitive
and do not incorporate state-of-the-art techniques in computer vision and machine
intelligence fields. Most of the available assistive technologies to help people with
visual field loss use equipment such as prisms to enhance the healthy vision. Although
this solution can help with the visual field extension, literature studies had reported

serious problems that affect the healthy vision for users using such devices.

On the other hand, massive growth has been reported in the field of assistive
technologies for visually impaired people using different types of sensors, computer
vision and machine learning algorithms. Most of the systems mentioned above fo-
cused on technical aspects and assumed the users to be blind. As people with visual
field loss have good vision in some parts of their visual field, it would be beneficial
to use this vision smartly by adding computer-generated information to increase the
patient’s awareness by providing early notification about possible hazards.

The need for a wearable assistive technology that is unobtrusive with physical
convenience and utilises the healthy vision for the peripheral vision loss is highly
needed. It is also essential to involve the potential users in the design and imple-

mentation phases of the developed solution.

Overall, there have been limited solutions that use computer vision algorithms
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to help people with visual field loss. It is intended that the research work presented
in the chapters to follow in this thesis will tackle these issues by advancing the state

of the art technologies that can be used to provide smart assistive technology that:
1. Differentiates between healthy and defected vision areas;
2. Uses computer vision to understand the surrounding dynamic environment;
3. Considers the human perception of hazards;

4. Supplements the user’s knowledge with the necessary information to avoid

possible risks taking into account the personal visual impairment case;

5. Propose a wearable, friendly, affordable and smart solution that could be used

by visually impaired people in their daily tasks.

The following chapter will discuss the method used to collect users’ requirements
and needs. In specific, patients’ questionnaires and discussion outcomes will be
presented and analysed. In addition, the main components and system design are

discussed.



Chapter 3

User Requirements and System

Design

3.1 Introduction

While working on the design of the assistive technology proposed in this thesis, a user-
centred design (UCD) approach was adopted. Preece et al. [I31] defined UCD as an
iterative methodology where the designers focus on the user’s needs and preferences
in every phase of the project. Understanding the end-user requirements before and
during designing an assistive technology is very crucial for enhancing usability issues

and ensuring that the proposed solution will meet their needs.

By starting with users, their problems, priorities, hopes, challenges, and needs,
we tried to discover what is most desirable and essential for them and built the as-
sumptions and solutions based on this. Interacting with the users is in accordance
with the ethical approval from the Research Ethics Committee at the Faculty of Sci-
ence and Engineering, University of Liverpool, UK (Reference: 1982) [Appendix [A].
Participant information sheet [Appendix [B] and a formal consent form [Appendix

for participating in the study was obtained.

32
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Several research papers explored the visually impaired people requirements for
assistive technologies. In their research paper [132], Jafri and Khan presented their
obstacle detection and avoidance application for visually impaired people based on
the results they obtained from a semi-structured interview. While the human guide
was superior to the white cane as a navigation aid, the participants mentioned that
this method caused them problems as they depend entirely on the guide who may not
provide accurate warnings about obstacles. In the same study, moving and minimal
obstacles were the most difficult to detect and avoid during the indoor navigation.

The lack of information that describes the physical environment is one of the
core challenges for visually impaired people navigation. This was mentioned by
many users [133], [134] as they need a clear description for indoor and outdoor main
landmarks that would help them building a mental map. In their comprehensive
study about computer vision algorithms for assistive technology, Leo et al. [135]
highlighted several open challenges for developing assistive technology for visually
impaired people. Object detection and tracking problems are examples, especially
for egocentric video streams.

Based on this, it was decided to explore the requirements and preferences for
people with visual field defects using our surveys.

In the following sections, explanatory studies used in this project will be discussed
to understand the potential users’ needs. The system design and primary phases,
which were built based on the reviews and feedback gathered from the questionnaires’

participants are presented in the following section.

3.2 User Requirements Elicitation Study

Two questionnaires [Appendices [DHE| were conducted with the potential users who

were recruited via the Institute of Population Health Sciences at the University of
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Liverpool. The VISION group is a representative patients group; where participants
are coming from different places all over the UK representing other local groups. The
participants had different types of visual field defects, including hemianopia, double
vision and tunnel vision.

The questionnaires were designed to understand the daily challenges and needs for
them and to gain some insight into their preferences for wearable assistive technology.
Only eleven participants were able to complete these questionnaires which was one
of the challenges in the recruitment process of participants. The questionnaires were
prepared in accordance with the ethical approval and the project’s design phases.

The project’s idea and potential outcomes were presented to the participants
before completing the questionnaires.

The first questionnaire was conducted during the second year of the project to
gain a fundamental understanding of the participants’ main challenges. Also, it
helped to choose the right system design that best fit their needs. The developed
solution was discussed with participants after the second year. Then the second
questionnaire was conducted to select the best notification (or what is known as
feedback) style and format to be used in the system. The project goals were pre-
sented; then, participants started answering the questionnaire points. In some cases,
extra information was discussed with participants to demonstrate the idea of the
problem or to distinguish between similar alternatives. The answers were examined
manually, and additional comments or opinions were noted. The results of the two
questionnaires were used to enhance and further improve the development of the

project’s phases.

3.2.1 Questionnaire 1

Five participants were able to answer the questionnaire, covering the following topics:

(1) which hazard types are the most essential to be notified about, (2) which object
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types participants would like to have information about, (3) what is the best warning
time for notifications, (4) what are the hazard notifications levels and (5) what are

the preferred notification styles.
(1) Hazard types

The goal of the first question was to determine the hazards types that they think
are the most critical (dangerous). Two options were given to answer this question:
stationary, or moving hazards. The purpose of this question was to select the best
object detection technique to be used in this project. It was found that 80% of
the participants prefer having notifications about moving rather than stationary
hazards. This result guided us to choose the correct object detection technique for
the first phase of the project. Since the majority of the participants preferred having
notifications for moving objects, motion detection method for the object detection
phase was first used.

(2) Object types

The purpose of this question was to define the types of objects the participants
think are essential to have notifications about them. When they were asked to
specify the types of objects they are interested in, cars, people and bicycles were the
most chosen options. Figure[3.1]shows participant’s preferences according to the this

question.

As shown in Figure [3.1] all the participants prefer to have a notification about
cars. People and bicycles are the second preferred categories, as selected by 80% of
participants. These answers guided us to the need of having an object recognition

method in addition to the object detection one.
(3) Notifications timing

The third question was about the warning timing. It was essential for us to
determine how fast the participants preferred to see the system’s output. They were

asked, "how early do you prefer to get a warning notification (in seconds)”? Three
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Figure 3.1: Object types preferences.

participants chose 2-3 seconds, while only one chose a longer (5-10 seconds) option.
One of the participants preferred to have a notification as soon as possible, as shown
in Figure [3.2

(4) Notification levels

This question aimed to investigate levels of notifications the participants prefer to
have. The majority (75%) of the participants opted for a multi-level option compared
to a single option. This preference gave us a clue that the proposed system should

include several types of notifications representing different levels of danger.
(5) Notification format

The last question in this questionnaire was about the notification format with
three possible styles: acoustic, visual or hybrid notification. The purpose of this
question was determining the most practical output design that would suit the visu-

ally impaired person. The answer to this question is critical in our project since it is
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M 2-3 seconds
m5-10 seconds

m as early as possible

Figure 3.2: Notification timing preferences.

essential to deliver the warning notification in a meaningful way that would increase
the participant’s awareness about the surroundings.

Figure depicts the participants’ preferences for the notification’s format. As
shown in the figure, the majority of the participants prefer visual notifications over
the acoustic warnings. This result guided us to the need for distinguishing blind
and healthy vision areas for the people with visual field loss. None requested hybrid

feedback.

M acoustic feedback

1 visual feedback

Figure 3.3: Notification format preferences.

The answers for this questionnaire were the initial starting points for this project.

From this questionnaire, we knew that the project design should start with an object
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detection and recognition phase. Besides, fast outputs (notifications) should appear
visually on a display unit for users to be aware of any possible moving hazards around
them.

In this context, smart glasses would be used for capturing real-time videos and
processing them to detect possible hazards and display a proper visual notification on
the glasses display unit. The processing unit integrated into the smart glasses’ frame
would process the video stream while the participant is moving and should update

its output according to the dynamic changes in the participant’s environment.

3.2.2 Questionnaire 2

Six participants were able to answer the second questionnaire, which was conducted
after the second year of this project. The first goal of this questionnaire was to
discuss the developed assistive technology, its design, main processes and the basic
version of the visual notification output.

The second goal was to gather more information about the participant’s prefer-
ences for the feedback generation phase, which was planned to be the last stage in
this project. The questionnaire was structured around the following topics: (1) ba-
sic visual impairment history of the participants and the assistive technology devices
they use, (2) hazards priorities, and notification format and (3) an open discussion
regarding participants opinions, impression, ideas and feedback about the proposed
technology.

(1) Visual impairment history and assistive technology use

Five of the participants suffer from hemianopia, which is one of the visual field
loss types. One of the participants was a double vision patient. He did not have
any problem with his visual field, but his visual acuity (central vision) was low. The
purpose of this part was to investigate the participants’ familiarity with assistive

technologies in general and wearable vision assistance devices in particular.
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While participants used portable electronic devices, only 16% of them used nav-
igation aids in their daily life. This means that participants do not depend on their
smartphones or other mobile devices to help them in their mobility. The majority
of participants (83%) wore eyeglasses, and some of them were familiar with smart
glasses and happy to use them.

(2) Hazards prioritisation and the notification format

This section of the questionnaire had two parts: hazard prioritisation and notifi-
cation formatting. The first part aimed to discover participants prioritisation about
hazards danger levels. For this question, the participants were asked to rank five
predefined hazard scenarios from low danger to high danger level hazards. Table
shows how the participants rated the defined hazards scenarios.

Table 3.1: Participants’ ratings of the level of danger for different hazard scenarios
Level of danger

v.low low neutral high v.high

Static hazards outside your pathway 4 2 0 0 0

Static hazards in your pathway

Moving objects not in your way

A person moving towards you
Object moving towards you

Hazard scenario

(o] Nev) Nen) Naw]

0
4
1
0

[en) Nanl il \OI G}
N W O~
=N Ol W

Objects that move towards the participant or the participant’s pathway were
selected to have the highest danger level, while static hazards (obstacles) located
outside the participant’s pathway were given the lowest danger level. Other hazard
scenarios vary between low, natural, and high danger levels. This rating helped us
in the machine learning phase (Chapter |5 of this thesis) to train a Neural Network
classifier to classify the detected objects into one of the mentioned five hazard types.

The second part of this section aimed to find the most useful notification style
that would increase the participant’s engagement with the proposed technology. Fig-
ure shows participants’ preferences for the system’s output (in this question, the

answers from both first and second questionnaires were combined). As seen in this
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figure, the majority of the participants preferred visual format for the system’s out-
put compared to other types as audio or touch (vibration) format. Other participants
chose a hybrid format as visual and touch or visual and sound styles. These prefer-
ences prove that people with visual field loss like to overcome their vision impairment

and use their healthy vision in their daily tasks.

VISUAL

TOUCH

| | | |

m Visual+Touch  m Visual+Beebs

Figure 3.4: System’s output preferences.

From these answers, it was concluded that using visual feedback (notification) is
the most recommended choice. The majority of participants chose this type before
developing the proposed system, and again after demonstrating the basic version of
the assistive technology with smart glasses.

Most of the participants (83%) who chose visual notifications preferred to have
one shape with different colours. Regarding the notification timing, 66% of the
participants proffered to see one notification (the highest priority) at a time while
the rest 33% accepted multiple notifications at the same time. To determine the best
information that each notification will deliver for the participant, participants were
asked to choose from three different types: (1) hazard direction only (2) hazard type
and direction and (3) hazard direction and speed. Half of the participants opted for
the second and third options, while no one chose the first one.

Appearance and disappearance styles of the notification were discussed with the

participants to determine the best format. It was found that 83% of the participants
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prefer the notification to appear in regular time intervals for as long as the hazard
is present while only 16% prefer to see it only once. Regarding the automatic or
manual disappearance of the notification, the answers were balanced with 50% for

the first option and 50% for the second one.
(3) Participants open discussion

This part of the questionnaire aimed to gather participants thoughts and opinions
regarding the project in general, and the developed technology and smart glasses
in specific. A basic system demonstration was conducted with the participants to
explain the main functionalities and modules. Participants were able to try the smart
glasses and see two different notifications that were displayed on the see-through
display units of the smart glasses. They wore it and moved within the meeting room
to have an idea about its weight and usability. The meeting room was 4 x 7 meters

space, with tables and chairs placed randomly.

Three participants commented on the user interface with the smart glasses. They
preferred having different levels of commands between the participant and the smart
glasses. Starting from simple options at the beginning to more complicated options,

once the participant learnt how to adopt the system.

Regarding the project idea and design, all participants were delighted with the
solution provided. They were very excited to try the final product and see the
results in real-time while navigating indoor and outdoor. Some of the participants

commented on the smart glasses by saying it is light-weight with an accepted design.

One participant stated “ It is a fantastic idea and great use of technology. Could
the system be simple at first then give more information once the user adapted.”

Another participant mentioned that “Would need more information and under-
standing about the device/idea. However, the concept is excellent and looks forward

to seeing the final development of the system.”

According to Mr.Smith, “It is a great and very useful idea. The device is light-
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weight and could be used with a personal iPhone.”

3.3 Augmented Reality and Smart Glasses

Augmented reality (AR) is relatively a new technology in the information visualisa-
tion field. The main idea of AR is superimposing computer-generated information,
images or animations over real-world images or videos [1306, 137]. Most AR imple-
mentations are used by mobile applications and smart devices such as Sony® smart
eyeglass and the Microsoft® Hololens.

Although AR and virtual reality (VR) are similar in the general idea of having
an alternative (computer-generated) vision, they follow entirely different approaches.
AR systems use the individuals’ normal vision and add more helpful information to
extend their knowledge, whereas VR creates an artificial environment where users

have a synthesised vision [137].

Wearable computers and head-mounted display devices and technologies are
steadily gaining publicity. Smart glasses in particular are more popular due to their
entertainment functions and techniques [136]. Al-Ataby et al. and Younis et al. sug-
gested the use of augmented reality concepts to help people with visual field defects
using smart glasses [I38, [139]. Starting with the announcement of Google® glasses
in 2012, several smart glasses were developed to use both artificial and augmented
reality concepts. The first scientific review for the clinical and surgical applications
of smart glasses in healthcare systems was presented by Stefan et al. [140].

OrCam® MyEye 2.0 [141] is a smart technology that uses computer vision algo-
rithms with the addition of wearable platforms to help people with vision problems.
Their main goals are to improve individuals independence navigation and help visu-
ally impaired people to read by themselves.

The design is straightforward, lightweight, efficient and could be clipped onto a
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Figure 3.5: Orcam MyEye 2.0 wearable camera [141].
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Figure 3.6: Daqri smart glasses [143].

pair of glasses. Utilising any surface, the attached camera can read text instantly
using the person’s gesture and generates a loud voice using a small speaker for the
user. The system also can recognise faces, products, and money notes in real time.
Figure [3.5| shows the design for Orcam.

Much like Microsoft® HoloLens [142], Daqri® smart glasses [143] implement
augmented reality concepts in manufacturing, medical remote experts, field services,
maintenance, and repair sectors.

Their design is robust and consists of a wearable head bond that contains a video
camera, a display unit and mini portable computer including Intel core m7 processor

as shown in Figure [3.6]
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Figure 3.7: EyeTrek Insight EI-10 glasses attachment [144].

The EyeTrek Insight EI-10 [144] is the latest generation of Olympus® optical
solutions for smart glasses. Inspired by Google glasses [145] design, the small dis-
play unit superimposes the user’s FoV by computer-generated information without
blocking the normal vision.

The difference between this design and the Google glasses design is that EI-10
can easily be connected to any pair of regular eyeglasses. Its lightweight, powerful
operating system, and efficient display unit make it an excellent choice for business
applications as shown in Figure 3.7]

Hicks et al. [146] from Oxford University used AR and the Epson Moverio smart
glasses to aid visually impaired people. OXSIGHT [147] glasses help people with
different types of vision loss to regain control of their vision. The glasses provide two
options to help with different vision loss types: OXSIGHT crystal and OXSIGHT
prism. Both OXSIGHT crystal and OXSIGHT prism expand users’ horizontal vi-
sual field up to 68°, resulting in a real difference in the daily life of peripheral vision
loss people. OXSIGHT crystal comes with extra features for Unrestricted periph-
eral awareness. The glasses provide a more unobstructed view of the surrounding
environment using different computer vision algorithms to make the edges of objects
sharper and help in safe and secure navigation.

In this project, Epson® Moverio BT-200 [148] smart glasses were used to capture

the video stream and display the final visual notifications. The Moverio has been
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Figure 3.8: The OXSIGHT [147] smart glasses. (a) OXSIGHT crystal, (b) OXSIGHT

prisms

chosen for many reasons. (1) It has AR products and supports new application
development, (2) it is lightweight and stylish, (3) it has a reasonable price (around
£600), and (4) it contains two see-through display units. These features and many
others encouraged us to use this product in our project. Figure[3.9]shows the Moverio
BT-200 product features and specifications. Although the Moverio has a narrow
field of view (a49° horizontally), it is still an excellent option to be used for the
data collection stage. In future work, this could be replaced by another wide-angle

camera.
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Binocular see-through display
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Textured touchpad
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Figure 3.9: The Epson Moverio BT-200 smart glasses product features [148].

3.4 System Design

Based on the mentioned requirements, preferences and challenges, our design was
developed in a smart way that would provide early, meaningful and straightforward
notifications to extend the user’s mental map[]

Possible hazards were defined as any moving or stationary object that visually
impaired people are not able to see or recognise and could collide with while walking.
The system starts scanning the real-time video stream to search for objects and then
tracks their movement. Motion features such as object speed, direction and location
in addition to the object type and other features were used to determine the level of
danger for each detected object.

As shown in Figure the goal of the system was to generate notifications for
the user to become aware of potential hazards. In this case, the system prioritises the
detected objects to produce useful notifications without overloading the user with
too much information. Visual field test results were used to delineate both healthy

and defected vision areas.

1A mental map is a personal representation of the surrounding world that helps in navigation
and object localisation [149].
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Figure 3.10: The conceptual representation of our system.

Figure |3.11| shows three examples of visual field test results for peripheral vision
loss. The left column shows the central field test (left/right eye results), while the

right column shows the full field test (both eyes together, covering about 160°.).

The Humphrey visual field analyser (HVFA) is a measurement tool used by eye
specialists to test the human central visual field. It delineates both healthy and de-
fected vision areas. The grayscale map of HVFA test shown in Figure [3.12] presents
the visual sensitivity across the user’s central visual field. Dark regions reflect lower
visual sensitivity and light regions indicate a higher visual sensitivity. The compar-

ison plots and map keys can be used to interpret the result.

The first row shows severe glaucoma (tunnel vision), the second row shows left
hemianopia (blind to the left side, healthy in the right side) and the third row is
an example of central scotoma (blind area). More details about these tests will be

discussed in Chapter [g] of this thesis.

The system uses the visual field test results to search for possible threats in the
user’s blind area and classifies these threats based on their danger level. The smart
glasses is used to display essential notifications outputs in the user’s healthy vision
area. Figure [3.13| shows an overview of the proposed system and the main modules

used in this project.

Object detection and recognition is the first stage, where objects are detected
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Figure 3.11: Visual field test result examples.

using a deep learning object classifier to determine the type and location. Motion
features are extracted using the moving objects’ tracking module to determine the
age (the appearance duration over frames), speed and direction for each detected
object. This information is processed and used to determine the level of danger for

each identified object using a neural network classifier.

Objects in the peripheral vision of visually impaired people manifest themselves
in different ways such as hazards, obstructions, surprises or immediate dangers. For
example, someone walking in the street may not be aware of a cyclist/pedestrian
walking on the other side of the road or of dangers such as a car crossing their
walking route, street bollard, overhanging cables, trees or bushes to the side of the

road.
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Figure 3.12: Humphrey test printout.
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Figure 3.13: System overview including the project’s main components.

Not all activities in the periphery are equally crucial to the visually impaired
people. Therefore, a system that prioritises all these activities is needed to alert
the users to turn their heads to the most immediate threat to see it through their
healthy vision.

Based on the mentioned user’s preferences and needs, five hazard classes were
defined as follows (the class number represents the danger level, one is the lowest,

five is the highest):

e Class 1: static object not in the user’s pathway,

Class 2: moving objects not related to the user (any type),

Class 3: static object in the user’s pathway,

Class 4: person moving towards the user (or user’s pathway),

Class 5: object moving towards the user (or user’s pathway).

The visual field has different levels of visual sensitivity depending on where the
image lies relative to the fovea or fixation point [2I]. This inspired us to define the
user’s navigation route as the depth extent of the central vision and a small part of
the macular vision (/~ 10°) around the fixation point. While the fixation point will

vary, images are treated as centred around the fixation point.
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3.5 Discussion and Conclusion

The results of the users’ questionnaires highlighted the need for using a wearable
smart device, that is capable of detecting different types of hazards and produce a
proper visual notification.

The results showed that the device needs to distinguish between detected hazards
based on the level of danger for each one, and reflect this on the notification format.

From the first questionnaire, it was concluded that to be able to classify the
hazards around the user, an object tracker should be implemented to track moving
and stationary objects. Tracking should be done while the user is moving or in a
motionless state. While the object or/and the user are moving, the level of danger
for each hazard could change. Therefore, the system should keep checking the level
of danger for each object during the time it is in the user’s environment. To achieve
this, objects need to be detected and recognised before being tracked.

Both questionnaires showed that participants prefer visual notifications over other
formats for displaying the output. The reason behind this preference is that visual
field loss people have both healthy and blind areas. Therefore, they tend to use their
healthy area to see what they are missing in the blind area.

This choice guided us to the need for using smart glasses showing computer-
generated information (notification) to alert the user’s attention to possible threats,
but without blocking the healthy vision field.

The second questionnaire focused on participants predilections regarding the feed-
back generation phase, where the final output of the proposed system is developed.
In addition to these preferences, the participants provided us with valuable opinions
and discussion about the technology, design, idea and device specifications that were
used in this project.

Based on visual field loss studies, it was found that each type has different

healthy /defected areas. Visual field tests can clearly distinguish between these parts.
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Consequently, it was decided to use these tests to determine the best location for
displaying the visual notification for the user to see and avoid possible hazards.

The results are compatible with the findings of the previous study conducted by
Zhao et al. [150]. The proposed work studied low vision people’s visual perception
on augmented reality glasses. To determine the ability of visually impaired people
to recognise and response for visual notifications on see-through glasses, the authors
conducted a study with 20 low vision participants and 18 controls with healthy
vision.

These results of the previous study proved that low vision participants were able
to use commercial smart glasses (Moverio BT-200) to identify basic shapes (such
as triangle, circle and square) while sitting and moving. The study also reported a
similar negative effect on the participant’s walking speed for both sighted and low
vision participants.

All these findings yielded to three main guidelines for designing virtual notifi-
cations for low vision people: (1) Basic shapes are more natural to be identified
and interpreted, (2) white and yellow colours are more readable compared to other
colours, and (3) the size of the displayed elements should be large enough (they
mentioned it should be larger than 100 pixels) to be recognised.

The following chapter will discuss the methods used in this work to detect objects
in the user’s environment. Different approaches were adopted to detect and track
multiple objects at the same time. The pros and cons of each method used are

presented and discussed the following chapter.



Chapter 4

Multiple-Object Detection and

Tracking

4.1 Introduction

As mentioned in the previous chapter, object detection and tracking are the first
two steps in the proposed technology. The output of these steps will be used to
extract motion features that will be used in the hazard classification phase. Detecting
and tracking a moving objects requires distinguishing them from the surrounding
background and constantly tracking them in all video frames to determine their

trajectories and other motion features.

All object tracking methods necessitate an object detection mechanism, which
could be activated in each frame or in the first appearance of the target object.
Although several methods have been used for moving object detection, six main

approaches are widely used by most applications [I51], as shown in Figure .

Generally, one can consider the first three methods (background subtraction,
frame differencing and optical flow estimation) as traditional motion detection ap-

proaches, and the next three methods (soft computing based) as non-traditional

23
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Moving object detection approaches
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Figure 4.1: Moving object detection approaches
methods.

Background subtraction [152] is a widely used technique for generating a fore-
ground mask using a static camera. Its procedure includes two main steps, back-
ground initialisation, and background update. Moving objects are segmented by sub-
tracting each frame from the background model. Changes in lights, illumination, or

background can affect the performance of this method and reduce its efficiency [I51].

Frame differencing [153] is similar to the background subtraction method in terms
of computing the frame difference, but it does not require building a background

model. Simply, subtracting the current frame from the previous one, and the result
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will be the moving objects. It is easy to implement and gives high accuracy with a
static background. Pixel-wise subtraction version of this method is called temporal

differencing [154].

Optical flow estimation [I55] is a powerful technique that has been applied to
numerous applications. Flow vectors are used to detect moving objects by segmenting
regions with different optical flow estimation [156]. Different techniques (differential
methods, region-based matching, energy-based and phase-based) were implemented
using optical flow in motion detection applications. The main goal of the traditional
motion detection methods is to estimate the 2D motion vectors from spatiotemporal
patterns of the image [I57]. Although this method is considered to gain complete
knowledge about moving objects, its high computation cost and noise sensitivity

make it inefficient for real-time and resource-constrained applications [I51].

With the massive growth in hardware facilities and software capabilities, the
number of object detection and tracking applications rapidly increased. In addition
to this increment, new challenges arose such as moving camera, dynamic background,

rapid light changes and shadow detection.

The complexity of these challenges can not be solved using traditional object
detection and tracking techniques. Soft computing-based methods are used nowadays
to handle these issues and produce more reliable results. Kaushala et al. proposed
a comprehensive review [I58] of techniques that use soft computing for detecting,

recognising and tracking multiple objects in real-time applications.

Each approach has its pros and cons that make it suitable for a specific application
than other methods. Despite the technical differences between these approaches, they

all share the same general procedure for segmenting the object from its background.

In this project, different methods of object detection and recognition were used.
This chapter will discuss these methods and explain the pros and cons of each one.

In the first phase of this project, moving objects were detected using frame dif-
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ferencing method. Motion compensation was integrated into the motion detection
phase to recover image distortion caused by camera movement. This method was
used in the early stage of the project development and was changed later for two
reasons. First, after applying this method on video streams captured by a wearable
camera, it was found that the false motion detection error rate was high and unac-
ceptable, especially when the camera was moving. The second reason for changing
the object detection method was the need for identifying the object type to be used
in the hazard classification phase. This need arose after conducting our user ex-
planatory study with visually impaired subjects. Therefore, a deep learning-based
object recognition method was then applied to overcome these issues. The second
section will describe the datasets used in this chapter. The third section will dis-
cuss the motion detection and compensation techniques used at the beginning of
this project. Deep learning-based object recognition phase is presented in the fourth
section of this chapter. Finally, the Kalman filter (KF) and the Hungarian algorithm

for multi-object tracking are discussed in the fifth and sixth sections respectively.

4.2 Datasets

This section describes the details of the different datasets that have been used in

this chapter for multi-object detection and tracking stages.

e Camera motion detection: An in-house dataset has been used to evaluate
the camera motion classification method. 6300 images (640 x 480) captured by
the Epson Moverio BT-200 smart glasses have been used for this experiment.
The images contained six motion classes: forward, backward, left, right, up
and down. A private expert]] labelled the ground truth for the classification

phase. Data were split into 70% training, 10% validation and 20% testing.

L' A postdoc from the computer vision group in the computer science department, University of
Liverpool
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e Motion compensation and object detection using frame differencing:
A high-quality (900 x 640) publicly available video captured in street using
a wearable camera was used in this evaluation with a total of 3650 frames
(30 frames/second). Also, sequence ContinuousPan under PTZ category from
ChangeDetection [I59] dataset has been used for evaluating the object detec-
tion using frame differencing method. 1700 images (704 x 480) containing
five classes (static, hard shadow, outside region of interest, unknown motion
and motion) were used. The publicly available ground truth from the dataset

website was used to evaluate the motion detection method.

e Multi-object detection/tracking using SSD and Kalman filter: Two
datasets were used to evaluate the deep learning-based object detection and
Kalman filter based object tracking methods. The first dataset was SeqO6R0
from CamVid [160} 161]. A total of 2311 images (960 x 720) were used to train
a neural network classifier for hazard classification. The detector classifies the
detected object into one of 21 classes. The second dataset used in this step
was an in-house data captured by the Epson Moverio BT-200 smart glasses. A
total of 6832 images (640 x 480) containing the same 21 classes. More details

about these two datasets will be discussed in Chapter 5.

4.3 Object Detection Using Frame Differencing
and Motion Compensation

According to the work proposed by Panchal et al. [162], frame differencing approach
has a high accuracy rate and performs well when the background is static. It also
requires low to moderate computational time and resources, making it suitable for
augmented reality applications on smart glasses.

Since we have a wearable camera in this system, camera motion is often synony-
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mous with head motion. This movement affects the whole processing phase directly
from the object detection stage to the notification generation stage.

When the camera (head) moves, motion compensation should be applied before
the frame differencing method to reduce false detections due to camera movement.
To determine the camera status (stationary or moving), a motion detection technique
was developed to define the head motion type (static, moving or rotating). If the
head is static (stationary camera), a frame differencing method is applied directly.
Otherwise, camera motion is compensated, and then the result is used in the frame

differencing step as shown in Figure [4.2]
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! 1
i ALl Motion H
Video | extraction Moving compen- !
stream | Ea— Head - !
i I Motion Moving '
i =il detection Tl ! Object
| Usin Step Il R ! Tracking
i ng mentation !
i Frame Optical !
1
1 I flow Stationary Frame :
| 1
! differencing !
\ ;
;

Figure 4.2: Moving objects detection and tracking procedure.

4.3.1 Camera Motion Detection using Optical Flow

The camera motion status can be used to determine if the person - wearing smart
glasses - is moving or not, and to define the type of this motion. In the case of a
wearable camera, six degrees of freedom are expected based on head movements as
shown in Figure [4.3]

The head can move in a forward/backward, left /right and up/down translation.
In terms of rotation, pitch motion represents the rotation around the x-axis, yaw

rotation is a movement around the y-axis, and finally, a roll is a rotation around
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Figure 4.3: The six-degrees of freedom for a wearable camera.

the z-axis. In this work, all translation motion types (left/right, up/down and for-
ward /backwards) were covered. The mentioned motion types can be summarised as

follows:

1. Stationary camera (S): static background, moving objects.

2. Translation/rotation right (TRR), moving translation/rotation left (TRL): back-

ground change in horizontal direction.

3. Translation/rotation up (TRU), moving translation/rotation down (TRD):

background change in vertical direction.

4. Moving forward (MF) or moving backward (MB): fast changes in the back-

ground and foreground.
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Optical flow is defined as the apparent motion of image pixels, which is computed
over two consecutive frames. It often serves as a reasonable estimation for determin-
ing objects or camera movement. By calculating pixel displacement, motion vectors
(velocity and direction) can be computed.

Barron et al. [I57] presented a comprehensive study discussing technical per-
formance issues of optical flow estimation techniques. According to the proposed
work and as shown in Figure [£.4], optical flow methods can be classified into four

categories:

e Differential techniques [163-169],
e Region-based techniques [I70HI72],
e Energy-based techniques [173],

e Phase-based techniques [174] [175].

' »  Horn & Schunk
— Differential techniques » i ¢ Lucas & Canade
i+ Nagel
Uras, Girosi, Verri, and Torre

— Region based » + Anandan

o
CoTTTTTITT T (T
— Energy based » { *  Heeger N -

Optical flow techniques

Phise bascd » E : Waxman, Wu, and Bergholm

Fleet and Jepson

Figure 4.4: Optical flow techniques

Optical flow estimation works under two main assumptions: (1) the same object

remains constant pixel intensities over consecutive frames, (2) motion is consistent
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over neighbouring pixels [157]. In this work, Lucas - Kanade’s [164] method was used
to estimate the camera motion by calculating the optical flow for a set of predefined
points. The first step is to define a set of key-points in each frame I; and look for

their corresponding location in the next frame I;;.

The Lucas-Kanade with pyramid method [164] was used to repeatedly calculate
the optical flow for sparse feature points over a time window 7" where T' = FR/2
(half the video frame rate). The speed (|V,]) and direction (6,,) for the key-points
were calculated for each frame then averaged per frame to find (|V|) and (#). Then

(V') values were averaged over T' to determine the current camera motion type.

Given:

N N

|V|:% and 0 ="=

(4.1)

If the velocity exceeds a pre-defined threshold V;;, the camera is considered to be
moving, and a motion type is calculated. It was assumed that translation/rotation
happens when the direction of motion 6 of the detected points falls along the hori-

zontal axis between —45° to 45° for TRL or between —135° to 135° for TRR.

For TRU case, It was assumed that the direction of motion (6) of the detected
points falls along the vertical axis between —45° to —135°. Finally, it was assumed
that TRD case happens when the direction of motion of the detected points falls

along the vertical axis between 45° and 135°.

A neural network (NN) classifier was used for camera motion classification using
the calculated average speed and direction. Each frame was divided into nine sub-
regions as shown in Figure[4.5 The main goals of dividing frames into nine subregions
are (1) to simplify the motion flow calculations, (2) to reduce the effect of moving
objects, (3) and to provide a better representation for the camera motion using more

key-points that are widely spanning over all sub-regions.

An in-street , 15 frame per second (FPS) video of about 7 minutes duration
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was captured using the Epson Moverio BT-200 smart glasses. The NN model uses
eighteen inputs (9-speed - direction pairs for the corresponding sub-regions) and
six targets (static, left, right, up, down and forward). Several experiments were
carried out to find the optimum NN configuration, and the camera motion cases

were detected with 95% average accuracy.

SR1 SR4 SR7

SR2 SRS SR8

SR3 SR6 SR9

h

Figure 4.5: Frame sub-regions for camera motion classification.

In this work, classification result is considered to be true positive (TP) if the
camera motion prediction matches with the ground truth value. The number of
hidden neurons was varied from 1 to 20 to optimise the training process. Many
training/testing experiments were carried out and the simulation outputs were in
the range from 0 to 1 for each target. A decision threshold was used such that all
outputs greater than the threshold are considered as 1 (positive) and all outputs
smaller than the threshold are considered as 0 (negative). The threshold value was
varied from 0.3 to 0.7 for each number of the hidden neuron. The used metrics are:
true positive rate (TPR), specificity (SPC), positive predictive value (PPV), negative
predictive value (NPV), false negative rate (FNR) and accuracy (ACC) as following:

TP

TPR = ——F— 4.2
R TP+ FN’ (42)

SPC =1- FPR, (4.3)
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where,
FP
FPR= ———— 4.4
k FP+TN’ (44)
TP
PPV = ——— 4.
v TP+ FP’ (45)
TN
NPV_—TN—i—FN’ (4.6)
FN
FNE= oy 7w o
TP+TN
A = 4.
ce TP+TN+ FP+ FN (48)

All NN configurations were compared via the ROC curve analysis and it was

found the best performance (highest TPR and lowest FPR) was achieved with the

0.4 threshold value using a NN of 14 hidden neurons as shown in Table [1.1]

Table 4.1: Performance of the camera motion classification

Class TPR SPC PPV NPV FPR FNR ACC
Forward 091 097 0.83 099 0.03 0.09 0.97
Static 094 094 088 097 0.06 0.06 094
Left 090 096 0.81 098 0.04 010 095
Right 096 099 098 098 001 0.04 0.98
Up 095 099 097 099 0.001 0.05 0.99
Down 093 099 093 099 0.002 0.07 0.99

4.3.2 Motion Detection using Stationary Camera

Object detection phase is where all critical objects are defined by their location

to be tracked and classified later. This step needs the output from the previous

stage (camera motion detection) to determine the best technique for moving object

detection. Background subtraction method was used in the case of a stationary
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camera to model the static background and segment the foreground.

The Gaussian mixture-based background /foreground segmentation algorithm [176]
was used to model the background and detect moving objects. After applying the
foreground mask on each input frame, moving objects were displayed as white blobs
in the foreground image. Useful features (centre, size, location) were extracted after
contouring the detected objects to be used in the tracking process. Figure 4.6/shows

the mentioned steps.

Background / Thresholding

L

i foreground
. segmentation

and contouring

_________________

Figure 4.6: Foreground detection using Mixture of Gaussian Segmentation.

4.3.3 Motion Compensation for Moving Camera

In the moving camera rotation scenario, a motion compensation step was performed
before detecting moving objects. The motion caused by the camera was compensated
using a homography matrix (H) that aligns the previous frame with the current one.
Moving objects detection using motion compensation pipeline is shown in Figure [4.7]

The first step is to define key-points in the current frame (1;) to track their cor-
responding location in the previous frame (7;_;). Shi-Tomasi corner [177] detection
algorithm was used to find the most prominent points in each frame. The corre-
sponding location for the detected points was computed using Lucas-Kanade optical
flow in pyramids method [164].

After defining the new location for each point in the frame (I;_1), a perspective
transformation between the two frames was calculated to determine the homography

matrix (H). Random sample consensus (RANSAC) [178] was used to compute the



Chapter 4. Multiple-Object Detection and Tracking

65

T ' h X
: - 1 colour |

! P P H

' frr:r::;:us || conversion | Feature

: Lo | detection
oy I

i L ' l

E It AE_E_.. i

: furre"t Lo Camera

i frame | ! § i
o | calibration

Moving object
detection

!

Geometric Image
Transformations

Figure 4.7: Motion compensation and detection pipeline.

homography matrix (H). The planar homography relates the transformation between

two planes (up to a scale factor) as follows:

slyi| =H |y
1 1

(4.9)

with maximum allowed re-projection error to treat a point pair as an inlier as :

||dstPoints; — (H* srcPoints;)|| > RANSACReprojThreshold (4.10)

This matrix (H) is used to compensate the camera motion by aligning the previous

frame to the current frame using the flowing equation:

ILy=HI_,

(4.11)

Figure .8 shows an example output of the motion compensation method. Image
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(a) shows frame (/;_), and image (b) shows frame (I;). Image (c) shows the warped
frame using the homography matrix H calculated based on the optical flow from
the two consecutive frames. Image (d) depicts the thresholding result for frame
subtraction (c—b), and image (e) shows the final output where a moving object with
maximum area is detected. Red arrows show the optical flow results for the detected
points. Black sides (right and top) represent the translation that occurred due to
camera movement. The new images were almost identical, and the frame subtraction

method detected the moving object clearly, as shown in Figure [£.8}(e).

Figure 4.8: Moving object detection example after motion compensation.

It is worth mentioning that multiple noise results were expected because of the
accuracy of the homography matrix used for translation. This accuracy has a strong
correlation with the number of the key points used to compute the optical flow, which

is a trade-off between accuracy and computation load. An additional threshold based
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on blob’s area was applied to extract the significant objects only.

4.3.4 Motion Compensation and Object Detection Evalua-

tion

Since the purpose of this system is to detect moving objects for people with vision
impairment using smart glasses, the performance of the proposed work should be

tested on moving camera videos.

To test the effectiveness of the motion compensation method, it was applied it
on a video [I79] containing scenes from a continually moving camera that rotates
horizontally and vertically on the side of a street. Different types of moving objects
appeared in this video such as cars, pedestrians, bikes and others. Detection after
post-processing (performing some morphological transformations to filter out small
noises) was considered to optimise the detection process. Moving object detection
with a rotating camera using the motion compensation method provided good results.
Around 48% of the detected objects have been filtered out without affecting the

detection accuracy.

A publicly available dataset from Changedetection.net [159]- sequence (continu-
ousPan) was used under the category PTZ was used to evaluate the object detection
method after motion compensation. A detection rate of 93% was achieved on this

sequence that contains 1700 frames (480 x 704).

This sequence was chosen because it contains scenes from a continuously moving
camera. The camera pans horizontally at slow speed. Moving objects (such as cars

and trucks) were seen moving fast.
Object detection methods (e.g. St-Charles et al. [I80], Maddalena et al. [I81],
Allebosch et al. [182], Sajid et al. [I83] and others) use intersection over union (IoU)

metric to evaluate the precision and recall rates of their methods using the following
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equation:

A
Toll — reao foverlap (4.12)

Areao funion

This value represents how much the predicted boundary box of the method overlaps
with the ground truth boundary box. Most of the object detection methods predefine
an IoU threshold=0.5 in classifying whether the prediction is a true positive or a false
positive. In this work, no IoU threshold was defined and prediction was classified as
true positive if the moving object was detected, regardless the bounding box. It is
important to detect an approximate location which is as close as possible to the real
moving object. This explains the high recall rate for this test comparing to other
work. Our method achieved 93% recall, 98%specificity, 2% false positive, 7% false

negative and 63% F score rates.

4.4 Deep Learning Object Recognition

As mentioned in the introduction of this chapter, traditional object detection ap-
proaches failed to handle moving camera challenges. The need for identifying the
types of detected objects necessitated the use of object recognition method instead
of the traditional moving object detection techniques.

The main goals of this stage were to obtain (1) the types of the detected objects
and (2) current locations of these objects. In the related literature, researchers used
you-only-look-once (YOLO) [75], faster- recurrent convolutional neural networks (R-
CNNs) [184], and single-shot detectors (SSD) [185] for object detection using deep
convolutional neural networks. In our work, it was found that YOLO method needs
a powerful graphics processing unit to perform the classification process, which is not
available in smart glasses. On the other hand, the Faster R-CNNs method is quite
slow (on the order of seven frames per second), and this affects the whole process of

hazard classification.
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A research group originally developed SSD at Google®. The method can de-
tect multiple objects at the same time in an image using a single deep neural net-
work [I85]. It outperforms other object recognition approaches such as YOLO and
R-CNNs in terms of processing speed and accurate accuracy.

Using small convolutional filters, SSD predicts not only the class scores but also
the offsets for a fixed set of small bounding boxes. Its unique architecture allows for
high detection accuracy by producing predictions of different scales and separating
them by aspect ration [I85]. Figure4.9/depicts the original SSD network architecture

showing its feature layers.
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Figure 4.9: Single Shot Detector (SSD) architecture [185].

As seen in Figure , SSD method uses the VGG network [186] as a feature ex-
tractor. This architecture can be substantial in the order of 200-500MB, which makes
it unsuitable for real-time applications. Therefore, a lightweight network architec-
ture called MobileNets [187] was used because it is designed for resource-constrained
devices. The main difference between this architecture and other traditional CNNs is
the usage of depthwise separable convolution, as shown in Figure [4.10, The left side
depicts a standard convolutional layer with batch normalisation (BN) and rectified
linear unit (ReLU). The right side shows MobileNets architecture with depthwise
and pointwise layers followed by batch normalisation and ReLU [187].

A combined version of SSD and MobileNets, which is called MobileNets SSD was
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Figure 4.10: A standard convolutional layer (left) and MobileNets depthwise sepa-
rable convolution (right) [187].

used. The module was trained on common objects in context (COCO) dataset [I8§]
and then fine-tuned on a pascal visual object classes (VOC) [I89] dataset to achieve
better accuracy rates.

This framework was implemented using the OpenCV 3.3 deep neural network
(DNN) module to create the real-time object detector that is capable of detecting 21
classes including airplanes, bicycles, birds, boats, bottles, buses, cars, cats, chairs,
cows, dining tables, dogs, horses, motorbikes, people, potted plants, sheep, sofas,
trains, and TV monitors. This framework was found to be the best choice to cover
the object types mentioned in the user’s requirements chapter.

Huang et al. [I90] compared modern object detectors (R-CNN, R-FCN [191] and
SSD) using a unified implementation to draw an analogy between them in terms of
speed /memory/accuracy balance for a given application and platform. According
to Huang’s findings, SSD has lower sensitivity rate to the quality of feature extrac-
tor compared to other detectors. This finding makes SSD a competitive choice for
resource-constrained mobile devices.

Figure shows the trade-offs between detection accuracy (overall mAP) and

GPU time. SSD models with MobileNet feature extractor achieved the highest ac-
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Figure 4.11: Accuracy vs time, with shapes represent object detector and colours
represent feature extractor [190].

curacy among the fastest models.

SSD models are reported to have the lowest memory usage compared to other
object detectors using all feature extractors, as seen in Figure [4.12] Furthermore,
SSD+MobileNet configuration has the lowest computation time (GPU and CPU)
compared to other configurations, as illustrated in Figure 4.13]

All these results made the usage of SSD and MobileNet the best choice for our
application, which requires good object detection accuracy, fast computation speed
and low memory usage.

The detection stage starts by processing each frame to extract objects’ blobs.
These blobs are then sent to the deep learning module to recognise the type of each
detected blob. The final check is to filter out the objects with low confidence to

reduce the number of false detections.

The detection performance on the datasets used in this work was lower than the
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Figure 4.13: Memory usage in megabyte vs. time [190].

one reported by the developers of SSD [186]. This reduction is due to the use of lower
resolution images captured by a wearable camera. Appeared objects in the data used
in this work exposed to different types of deformation and light changes. Table [4.14]
shows the detection performance details on the used data, where detection rate

(DR) represents the ration between number of actual objects (Actual) and number

of detected objects (Detected) as follows:

B Detected

DR = Atual (4.13)
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As shown in the table, the lowest detection rate reported in dataset Eps9, which
was captured indoor. Images in this dataset include scenes from a shopping mall
where people and clothes are seen the most. The lightening was low in a crowded
place, with fast camera and objects movement.

Table 4.2: Detection performance of SSD on different in-house datasets used in this
work

. Actual Detected .
Dataset Resolution Objects Objects DR Description

In-street im-
ages  captured
by a wearable
camera.

Outdoor images
captured by the
Moverio  smart
glasses.

Indoor  images
captured by the
Moverio  smart
glasses.

Outdoor images
captured by the
Moverio  smart
glasses.

CamVid | 960 x 720 14930 8955 60%

Eps4 640 x 480 1950 975 50%

Eps9 640 x 480 1668 256 30%

Epsl5 640 x 480 2106 1053 50%

Figure summarises the detection performance of SSD on the dataset used in

this work.

4.5 Kalman Filter Object Tracking

Since the system had detected and recognised moving objects in the previous stage,
the approximate location for each object was known. For each detected object, the
location information was used to initialise a Kalman filter (KF) to predict its motion
over time. KF is a recursive estimator [192] that predicts the state of the system

X, at time t based on information from the previous state X;_; using the following
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Figure 4.14: Detection performance for SSD+MobileNet on datasets used in this
work.

equation:

Xt = Ftthl + th,l, (414)

where F; refers to the state transition model that describes the change which happens
to the state between time ¢t —1 and t. w, is the process noise for the process transition
model which is assumed to be Gaussian white noise with covariance Q,6(t — j) =
Elwaw]].

Then, the measurements’ vector Z; is computed using the following equation:
Zt = HtXt -+ ‘/t, (415)

where H is the observation model and V; is the observation noise at time ¢ which is

assumed to be Gaussian white noise with covariance Ri0(t — j) = E [vtva].

The KF estimation process has two phases: the prediction and the update. In
the prediction phase, the filter uses the initial estimate state Xy and its associated

variance of uncertainty (covariance) matrix Qo to create an estimate of the current
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state. For a better and more accurate estimation, the update phase computes the
KF gain and uses the measurements vector from the current state to enhance the

prediction result in the next state X;.

The KF is used in this work to estimate the detected object’s location and speed.

Thus, the state of each object is represented as:

(4.16)

where px, py are the centre of mass coordinates for each object and &, y are the

velocity components.

In the prediction phase, the system predicts both the state vector X; and the

covariance state P, using the following equations:

X1 = F Xy 11, (4.17)

pt‘t—l - Ept—l‘t—lFT + GQtGT. (418)

where the transition model F' is:

1 0 At O
01 0 At
F = (4.19)
00 1 0
00 0 1
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and _ -
LAt 0
0 LA
G = (4.20)
At 0
0 At

follows logically from the Newtonian equations of motion.
To update the predicted state and covariance, three values should be computed:
(1) the error innovation (the difference between actual and predicted measure-

ments) as:

,@t = Zt — Hi‘t (421)

(2) the measurement innovation covariance (the sum of predicted and measure-

ment covariance) as:

Sp=HPy H" + R (4.22)

(3) Kalman gain (the ration between the predicted and actual covariance) as:

Kt - pt‘t_lHTS;1 (423)

Finally, the system corrects the state vector X and the covariance matrix P using

the following KF update equations:

Xt|t = Xt\tfl + Ky, (4.24)
pt\t = Xtﬁ)ﬂt—lxz + K:RK] (4.25)

where y; = I — K,H.

These two phases are applied for all detected objects over time to update the
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motion model of each detected object.

4.6 Assignment Algorithms (The Hungarian)

One of the well-known challenges for tracking multiple objects at the same time is the
assignment problem (deciding which detection refers to which tracked object). The
presented system uses the Hungarian algorithm [193] for best assignments between
detected and estimated measurements.

Figure depicts the main idea of the Hungarian algorithm. As shown in (a), if
we have a bipartite graph G = i, v, E, with n number of vertices in each partition of
the graph, and k£ number of Edges (F) where each edge has a non-negative weight as
shown in (b), then the Hungarian algorithm will solve this problem with minimum
cost ci,v for all vertices. Missing edges will have zero weight and infinity cost as
shown in (c) [194].

In object tracking problems, the goal of the Hungarian algorithm is to find the
best assignment that has the lowest cost between detections and tracks. The cost,
in this case, represents the Euclidean distance between these two sets of variables.
Initially, the system defines a tracker instance for each detected object. The tracker
object includes a KF and other motion features history for each object. Each time,
the system detects new objects, and the multi-object tracking algorithm updates its
state to include the new/old objects using Algorithm .

At this stage, all the detected objects have been tracked and our system can now
determine the type, position and speed for each one of them. Objects with low type

confidence were filtered out to reduce false alarms.
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Figure 4.15: A bipartite graph (a) with its weight matrix (b) and cost matrix (c).



Chapter 4. Multiple-Object Detection and Tracking

79

Algorithm 1: Multi-object tracking update procedure.

Input:

D: the detected objects’ positions.
T the previous tracks.

for d in D do

end

if T.size()=0 then

for d in D do
trackyg+ newTrack(d)

append tracky in T
end

Ise

N < len(T)
M <« len(D)
cost<— newcost[N, M|
for tin T do
for d in D do
| cost[d,t]«+ distance(t,d)
end
end
Assignments < new Assignments/,]
for ¢t in T do

for d in D do
assign t to the correct d

append correct assignment to Assignments
end
end

for a in Assignments do
identify num of assignment tracks

if (cost[current assignment] is high)
unsigned current assignment
end
for t in T do
if (¢ is not tracked for long time)
delete ()
nd
or din D do
if (¢ not in Assignments)
trackg+ newTrack(d)
append tracky in T
end

for i in Assignments do
Update i. KF

Update i. Motion Features
Update i. previous tracking

=0

end

end




80 Ola A. Younis

4.7 Discussion and Conclusion

This chapter discusses the methods used in this work for object detection and track-
ing steps. Several approaches are reported in the literature to detect moving objects

in real-time applications and recognise their types.

In the early stages of this project, a motion detection using frame differencing
method was used. A camera motion detection method was developed using optical
flow and machine learning algorithms to detect if the camera is stationary or moving.
In case of a moving camera, a motion compensation technique was applied before
applying a frame differencing method to identify the independently moving objects.
Despite that this method showed high motion detection accuracy, it was found that
it is inefficient in the situations where the camera is moving due to the high error

rates.

After discussing the project idea with participants who have different types of
visual field defects, they highly recommended to include the object’s type in the
hazard classification phase. According to them, the object’s type has a high cor-
relation with the level of danger for each detected object. Based on this, a deep
learning-based real-time object detection module was used and replaced the orig-
inal motion detection methods. MobileNet SSD module that was pre-trained and
tested to include 21 different classes that could exist in the user’s environment was
used. This method was chosen based on literature reviews, which recommended it

for resource-constrained devices.

Moving objects can not be treated all in the same way. We can say that one of
the apparent indicators of the extent of object hazard is its movement speed and
direction. The object is tracked while it exists in the user’s environment to extract

this information.

Kalman Filter multi-object tracker was used to track each detected object. The
purpose of this phase was to analyse the motion model for each object, which will
be used later in the hazard classification phase. As Kalman filtering is all about

matrices and vectors’ operations, from the simple addition of two vectors to the
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inversion of a matrix, it is believed that it would run in real-time applications.
However, the performance of KF is highly correlated with the used processing unit.
In the proposed work, the technology that would work on a wearable device to track
the moving objects was presented. Since the object tracker is used to determine the
motion model for each detected object, it is possible to skip some frames for detecting
and tracking the object if the process would slow down the hazard detection phase.

In the following chapter, motion feature extraction and the hazard classification
phases will be discussed. Also, the datasets used in this work and labelling mecha-

nism will be explored and analysed.



Chapter 5

Dataset Creation and Hazard

Classification

5.1 Introduction

In this work, it is assumed that the user will wear smart glasses while walking indoors
and outdoors during the day. Therefore, it was important to use videos captured by
a moving camera with variable weather and light conditions.

First, a publicly available dataset from the Cambridge-driving labelled video
database (CamVid) [160, 161] was used. This dataset was chosen for two reasons:
(1) it was captured using a fixed camera on a moving vehicle to show the drivers
view and (2) it contains a set of different objects that our object recognition system
is trained to detect. Unfortunately, the field of view information for the used camera
in this video was not found. Thus, a standard dash camera field of view of 120° was
assumed.

The proposed system was tested on the sequence SeqO6R0 that contains high-
quality 30 FPS footage captured in street view. It shows a video taken while the
vehicle is moving amongst other vehicles (moving and stationary). Some of these
vehicles were moving towards the camera, and others were moving away. Also, some
pedestrians were seen crossing the road and walking aside the moving vehicle.

Figure [5.1] shows different examples from the used CamVid dataset. In this

82
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example, several outdoor object types (moving and stationary) were seen, such as

cars, pedestrians, bicycles and trees.

Figure 5.1: Examples from the CamVid dataset [160, 161].

For more realistic evaluation covering all possible hazard classes, a private dataset
was created. The proposed system was trained and evaluated using the new dataset,
which uses videos captured by a wearable camera with different conditions (light

changes, object deformation, and object occlusion).

Moverio BT-200 smart glasses was used to capture in-street videos with the help
of a sighted participantﬂ Figure demonstrates the main specifications for the
Epson Moverio BT-200 smart glasses. For this purpose, two indoor videos with
a total of 23 seconds (644 frames) and seven outdoor videos with a total of 221
seconds (6188 frames) were captured. Figure shows some examples of indoor
and outdoor videos with the detection results (each detected object is labelled above
the surrounding box). In these examples, the blurriness and the deformation of
the detected objects can be seen. These issues are due to camera movement and
shakiness while the user is moving. For each detected object, its hazard class was

marked by an expertﬂ to be used in the training and testing stages.

1Video capture is in accordance with the ethical approval from the research ethics committee at
the Faculty of Science and Engineering, University of Liverpool, UK (Reference: 1982).

2 A postdoc from the computer vision group in the computer science department, University of
Liverpool
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Figure 5.2: Epson Moverio BT-200 smart glasses.
5.2 Hazard Labelling

Unfortunately, no public or private datasets classifying the possible hazards in the
visually impaired people’s everyday life were found. Therefore, a new private dataset
was created to be used in this work. The five hazard classes mentioned in chapter
which were ranked by the participants according to their level of danger, were used
to label the detected objects into one of five categories.

Motion features extracted from both the detection and tracking phases were
used to assign a class type for each object. The purpose of this step was to collect
information about how each object is behaving while it is in the user’s environment.

From the detection stage, the system recognises the type of the detected object
and the confidence of that recognition and saves this information into a global feature
array. The tracking method will access the same information to add the following

object’s features:

1. Age: a feature that represents the appearance duration (number of frames) for

the tracked object;

2. Current and estimated next location. This information is important to distin-
guish between moving objects and static obstacles. It was extracted from the

tracking record for each object;
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(b)

Figure 5.3: Examples captured by the Moverio BT-200 smart glasses with detection
results. (a) indoor video frames; (b) outdoor frames.

3. Speed (pixels/second);

4. Motion direction.

The movement of one point P in a video scene can be described using two motion

vectors as shown in Figure 5.4, To compute the speed of each object, the total
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Focal length

Speed field

Figure 5.4: Motion projection of a moving point example. Image courtesy [195].

displacement dr was calculated as:

dr = \/(v:)? + (v,)? (5-1)

where v, and v, are the displacement in both axes. Then, the speed equation was

used as:

dr

V=

(5.2)

The frame rate (fs) was used to calculate the time information where the speed was
measured as the object displacement over two consecutive frames. So, the speed

becomes:

dr
1/,
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The direction of movement () of each detected object was computed as:

6 = atan2(vy, v,) (5.4)

Object’s speed and direction information were extracted from the object detection
phase. If the detector fails to locate the object, this information was estimated using
the Kalman Filter prediction phase mentioned in chapter (equations 4.17 and 4.18).

Figure [5.5] shows a sample motion feature for one of our testing videos, where
these features were extracted over two consecutive frames. The moving object (type
15: person) was moving towards the camera. As seen, the detector recognised the
object type as a person, and the tracker estimated the speed and direction for that

person.

Type confidence

Estimated next location son directs
Frame# ObjID Objage Objtype T Current location Obj speed Motion direction
S S S\ —— [ _1 A i
2 1 2 15

98.8393| 450 172 495 173 |152.90758| -11.315669

3 1 3 15 199338 495 173 496 172 |42.408932| 45.022825

Figure 5.5: An example of the extracted features from one of our testing videos.

Figure |5.6| shows an example of the CamVid dataset. In this example, three cars
were detected and tracked (red arrows), and their motion features were extracted.
The fourth record in this frame refers to an object that was tracked by Kalman Filter
but not detected due to the occlusion problem.

To label the data into the predefined hazard classes, a region of interest (Rol)
area was defined as 10° around the camera fixation point (centre of the horizontal

field of view, with accordance to the description in . If the object was located
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103 1 21 7199932 84 249 81 251 | 108.058 | -146.384143
103 | 2 17 7 |99.921| 520 252 512 245 | 318.585 | 138.884483

— 103 | 3 6 7 |93.902| 181 230 178 230 89.91 | -180.091299
103 | 4 5 0 0 542 227 543 227 29.97 0

Figure 5.6: Motion features example extracted from the detection and tracking
phases.

inside this area, it was considered to be in the user’s pathway. Figure shows the

procedure for defining Rol based on the camera’s field of view.

After extracting the requisite features, data was labelled by an expert accord-
ing to the hazard classes mentioned in section [3.4] Table [5.1] summarises the used

specifications for the labelling process.

Table 5.1: Hazard classes specifications

Class Number of samples Kinematic state Type Location
cl 1022 static any outside Rol
c2 1103 moving any outside Rol
c3 258 static any inside Rol
cd 475 moving person inside Rol
co 716 moving not person inside Rol
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Figure 5.7: Hazard labelling according to region of interest.
5.3 Machine Learning-based Hazard Classification

The purpose of this stage was to classify the detected objects into one of the five
hazard classes. As mentioned in the users’ requirements section, visually impaired
peoples’ needs and challenges differ in terms of the object type, motion type and
other physical features. Generating feedback for each detected object will annoy the
users and disturb their healthy vision with unnecessary information. In contrast,
displaying notifications with different priorities will enhance users hazard perception.

For these reasons, participants’ choices were grouped into five hazard classes that
were described in Section [3.4] Figure 5.8 shows a visual example of these classes.
(a) The seat represents class 1; (b) The approaching bus and the pedestrian are
examples of class 2; (¢) The street polar is an example of class 3; (d) The crossing
pedestrian is an example of class 4; (e) The approaching bus is an example of class 5.

In this work, the neural network (NN) algorithm was used to classify the detected
object into one of the five hazards types mentioned before. The number of input
features in the NN determines the number of input nodes, while the number of
different output classes defines the number of output nodes.

The training dataset was used with the aid of the back-propagation learning
algorithm to establish direct input-output connections. The network starts with no
hidden nodes, then adds them gradually. Every new node was connected to every
input node and to every pre-existing hidden node. Training was carried out using

the training vectors, and after each pass, the weights of the new hidden nodes are
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Figure 5.8: A visual example of hazard classes.

adjusted [196].

5.3.1 Performance Indicators

The most common way of measuring the performance of a classifier is the confu-
sion matrix as depicted in Figure [5.9. This matrix helps the reader to understand
indicators definitions while showing the classification results.

For this purpose, the following indicators were used to evaluate the classification
performance: True Positive Rate (TPR), False Positive Rate (FPR), True Negative
Rate (TNR), False Negative Rate (FNR), accuracy (ACC), specificity (SPC), sensi-
tivity, and the Mean Square Error (MSE). Since the system design aims to determine
if a given set of motion vector M;(t) for object j at time ¢ belongs to a particular
hazard class HC,, (positive) or not (negative), for each hazard class, these indicators

are defined as follows:
TP,

TPR, = ———F—F—
TP, + FN,

(5.5)

where T'P,, (True Positives) is the total number of cases for which the system correctly

classifies M;(t) to HC,, FN, (False Negatives) is the number of cases where the
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Figure 5.9: The confusion matrix for classification results.

o

system incorrectly classifies M;(t) not to belong to HC,,, and n = 1,2,...,5. This

ratio indicates the system’s ability to correctly identify positives (Sensitivity).

FPR, = — " (5.6)

where F'P, (False Positives) is the total number of cases for which the system in-
correctly classifies M;(t) to HC,,, and T'N,, (True Negatives) is the total number of

cases for which the system correctly classifies M;(t) not to belong to HC,,.

TP+TN
TP+ FP+TN+ FN

Accuracy = (5.7)

where the summation (T"P+ FP+T N+ F N) represents the total number of samples.
Specificity is an indicator of the system’s ability to correctly identify negatives
and defined as 1 — FPR =TNR.
False Negative Rate (FNR) (or miss rate) is an indicator that shows the number
of cases for which the system incorrectly classifies M;(¢) not to belong to HC,,
compared to the total instances in M;(t) is truly not belongs to HC,,. F'NR can be

calculated as:
FN

FNR = ———
FN+TN

(5.8)
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The Mean Square Error (MSE) is an estimator that calculates the average squared
difference between the estimated values (predicted by the system) and the observed
values (stated in the ground truth).

MSE can be computed using the following equation:

1 i — 0;\ 2
MSE = —zyzl(p 0 > (5.9)
n

0;
where:
e p: is the predicted value;
e 0 : is the observed value;

e o : is total number of values.

5.3.2 Training and Testing Experiments

The presented experiments (training and testing) in this work were performed on a
MacBook® laptop (2.7 GHz Intel® Core i5 processor, 8 GB RAM) which was able
to process the high resolution CamVid videos (30 FPS) with an average of 0.2160s
per frame and an average of 0.1932s for videos captured by the Moverio BT-200

smart glasses.

Experiment 1: Hazard classification based on spatial motion features

A three-layers NN model was created with seven inputs to the input layer represent-
ing the detection and motion features: object type, detection confidence, object age,
object location (p,,p,), object speed, and motion direction). The output layer has
five nodes representing the five hazard classes, as described in Figure [5.10}

For each detected object, the classifier classifies its hazard class based on its
motion features. Some of these objects may change class over time, depending on
the way it is moving around the user. For each object, its class was determined
for every frame in which the system can detect it. It is important to mention here

that these classes do not reflect the actual degree of danger but only determines
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Hidden Layer Output Layer

Input

Figure 5.10: Neural network structure (Expl).

the hazard type. The degree of danger will be determined later in the notification

module of the system.

NN map non-linear inputs to the input layer through adjustable weights among
the hidden layer into the desired targets at the output layer. Figure [5.10| shows an
example of a three-layer NN model of seven inputs, ten hidden neurons, and five

outputs.

All training and testing experiments were carried out using the MATLAB NN
toolbox with the aid of the back-propagation learning algorithm [197]. To optimise
the model performance, the number of hidden neurons was incremented from 1 to
20, and at each value of hidden neurons, ten experiments were carried out using
a different set of randomly mixed samples consisting of 80% of the samples for
training; 5% for validation, and 15% for testing. The average MSE for each of
the ten experiments was calculated to evaluate the performance per specific number

of hidden neurons.

The datasets described earlier in this chapter were used to evaluate the classifi-
cation model. A total of 3536 samples were used, and the best NN configurations
were found to provide the lowest FPR and the highest TPR for all the hazard classes
using 19 hidden layers and a 0.3 decision threshold. The best NN configuration was
found to provide the highest TPR of 90% with the lowest FPR of 7%. An average
of 13% FNR was achieved. This value represents the average values for all classes

together.

The average MSE value for the five classes was 8.7655%. Figure [5.11| shows the
receiver operating characteristics (ROC) space for the configuration optimisation,

where (a) shows results for class 1, (b) results for class 2, (c) results for class 3, (d)
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results for class 4, and (e) results for class 5.
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Figure 5.11: ROC spaces for the NN optimisation (Expl).

A regression analysis was applied to the classification results to understand the
relationship between the predicted hazard class (dependent variable) and the ex-

tracted features (independent variables).

In statistics, the coefficient of determination denoted R?, is a statistical mea-
sure representing the relationship between the regression predictions and real data
points [198]. Tts value extends from 0 to 1, with R? = 1 indicating that the regression

prediction model fits the data correctly.

The best coefficient of determination for all phases (training, validation and test-
ing) was R = 0.72, meaning that the regression model can reasonably predict the
hazard class correctly. The regression performance for training, validation, and test-

ing are presented in Figure [5.12]
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Figure 5.12: Correlation coefficients calculations results (Expl).

Experiment 2: Hazard classification based on temporal motion features

The second experiment for hazard classification used temporal motion features for
each object to determine its class type. This method was inspired by the human’s
visual perception of moving objects in the peripheral environments.

Our brain detects objects in the peripheral field and evaluates if and how they
are moving around us to determine any possible immediate or imminent threats.
To mimic this process, temporal motion information for each detected object was
tracked over a time frame (t) for further hazard classification.

Figure depicts the conceptual diagram of the second experiment of hazard
classification. As shown in the figure, the same procedure of object detection and
tracking as in the first experiment was applied. The difference is in the motion

features extraction and classification phases, where these features are saved and
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processed temporally (over a time period (t)) instead of a single case each time.
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Figure 5.13: Experiment 2 conceptual diagram.

A history of five frames was used in the classification phase to create the motion

vector M;(t) for object j at frame ¢ as:

M;(t) = [T}, Conj, Curz;, Cury;, Ex;, Ey;, Sj, D] (5.10)

where Tj is the object type, C'on; is the confidence, Curz; and Cury; are the x and
y components of the current position, Fz; and Ey; are the z and y components of
the estimated position, S; is the speed and D; is the motion direction with respect
to the camera. The temporal motion vector T'M;(t) for object j at frame ¢ has been

formed using five frames as:

TM; (1) = [My(t — 1), My(t — 2), My(t — 3), My(t — 4) (5.11)

Figure [5.14] shows an example of data representation for the second experiment.

As seen in the figure, the temporal data for object two was processed every five
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frames. Therefore, the input layer contains 36 variables instead of 7 as in the first

experiment.

frame 1D |age | type | conf | prev x| prevy |cur x| cur y | speed | direction 1223rd eve!

pyipry -23.21 1

42.38 -45.02 |l

CYMOEE  -153.51 [l
LS -135.07 A

CYpOB -153.51 [k

7 99.1]99.7[99.6]99.5[ 99.3 [PEAE L L UE L e E Lt : o PN A S 23] -45]-154]-135] -154 |}

Figure 5.14: Data representation example for Exp2.

A NN model was created to classify the temporal models with 36 input variables
and a target function of five nodes (hazard classes) as seen in Figure [5.15]

Hidden Layer Output Layer

Input

36

Figure 5.15: Neural network structure (Exp2).

The model optimisation for the five classes 1, 2, 3, 4 and 5 are shown in Fig-
ures [5.16|(a)-(e), respectively. The best NN configuration was found to provide the
highest TPR of 97.15% with the lowest FPR of 7.9% for the hazard outputs using
18 hidden neurons and a 0.3 threshold for each output class.

As shown in Figure the best validation MSE was 5.68%, and the average
testing MSE was 6.415%. Regression performance results for training, validation,

and testing for the second experiment are presented in Figure [5.18

5.4 Discussion and Conclusion

This work is part of a larger project for developing a user-centred, wearable assistive

device for people with visual field defects. In this work, an assistive technology
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Figure 5.16: ROC spaces for the NN optimisation (Exp2).
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Figure 5.17: Neural network training performance (Exp2).

for people with peripheral vision loss was presented. Therefore, the performance of

hazard detection and classification subsystems was analysed and evaluated based on

users’ recommendations.



Chapter 5. Dataset Creation and Hazard Classification 99

Training: R=0.83082 Validation: R=0.80298

2 2 )
= o © Data
o = Fit
Iy 3 gl |yt
] o o
g g
] ]
e =
o =]
w o
= =]
I I
1 1
5 5
g a2
S S
O - O -

0.5 0 0.5 1 0.5 0 0.5 1

Target Target
Test: R=0.76236 All: R=0.8196 _

) . 0
M~ o
o (=]
o o
+ +
@ T
2 2
@ ]
i =
« o]
© ©
=] =
M I
i 1
5 5
g g
F F]
O - O -

05 0 05 1 056 0 05 ]
Target Target

Figure 5.18: Correlation coefficients results (Exp2).

The proposed system was implemented on the Moverio BT-200 smart glasses,
which captures videos at 15 FPS. The average processing time of a single frame
at the glasses was 0.49 seconds. Based on this, the glasses can process at least two
FPS, which means input frame rate could be reduced to guarantee real-time feedback
generation. Thus, the glasses , process one frame per seven captured frames without
affecting the overall detection accuracy and is considered sufficient.

Findings in this chapter show that the second experiment configuration outper-
forms the first one. The TPR for most of the hazard classes increased, and the FNR
decreased. Tables [5.2] and show the average TPR, SPC, FPR, FNR and ACC
values for the best configuration for each experiment.

The overall system performance was improved using the temporal model. FPR
(wrong alarms) and FNR (missed hazards) values decreased for most of the hazard
classes. It was noted that class 3 has lower TPR compared to other hazard classes.

This was because the number of samples for this class was the lowest compared to
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Table 5.2: Experiment 1 classification results
Class TPR SPC FPR FNR ACC
cl 092 0.88 0.12 0.08 0.89
c2 0.89 0.83 0.17 0.11 0.85
c3 0.64 097 0.03 036 0.94
c4 097 090 0.10 0.03 0.91
cH 092 0.85 0.15 0.08 0.86

Table 5.3: Experiment 2 classification results
Class TPR SPC FPR FNR ACC

cl 097 092 0.08 0.03 0.93
c2 095 079 021 0.06 0.85
c3 0.68 099 0.01 0.32 0.99
cd 095 094 0.06 0.05 094
cd 093 0.82 0.18 0.07 0.85

other types (see Table [5.1)).

The definition of this class is a static object in the user’s pathway. Since the
data used in this project was collected using wearable smart glasses and the person
usually avoids obstacles while walking, it was hard to include a large number of
samples from this class. Although the FPR for this class was the highest between
all other classes, we believe it is still acceptable since users will be able to see it
easily by moving their gaze. This problem can be solved using obstacle detection
and avoidance algorithms such as the solutions presented by Pundlik et al. [61] and
Balakrishnan et al. [65].

As the idea of hazard classification using wearable cameras is considerably new,
we can argue that this is a good result in this field. These results are promising and
could be used to determine hazard classes in real-time applications to help people

with impaired vision in their daily activities.



Chapter 6

Vision Modelling

6.1 Introduction

Foveated rendering is an image processing technique to create images with full res-
olution in the eye fixation point and progressively fewer details outside [199]. This
technique has been used recently in the virtual reality products to lower computa-
tion cost and speed up the processing time. Researchers applied this technique to
imitate a human’s healthy vision, showing full resolution in the user’s central vision
and lower resolution in the peripheral vision.

The main aim of this chapter is to model healthy and defected vision using image
processing techniques. These models will be used to understand visually impaired
people’s vision and to test the visual feedback phase proposed by our work.

As shown in Figure[6.1] the spatial accuracy of the normal vision decreases as a
function of vision eccentricity. Researchers explain this degrade by reducing contrast
sensitivity, which is described as a progressively less detailed, texture and contours
[200]. The horizontal axis represents the visual field extent for the left eye and the
vertical axis represents the visual acuity associated with the visual field area. As
shown in the figure, the visual acuteness decreases from 100% in the foveal visual
field (less than 10°) to a deficient degree (less than 1%) in the peripheral visual field
(more than 50°).

In this work, the standard vision is synthesised using different Gaussian levels

101
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to reflect the spatial accuracy of the normal vision, as shown in Figure In Sec-
tion the personalised defected vision model is presented using three different
examples: tunnel vision, left hemianopia and central scotoma (AMD). Videos cap-
tured by the Moverio BT-200 smart glasses were used in these examples to reflect

real-world scenarios.

60° 40° 20°10° 0°10°20° 40°

Figure 6.1: Human’s visual field extension with its corresponding visual acuity (left

eye) [201].

6.2 Healthy Vision Model

To demonstrate the healthy vision model, a Gaussian blurring filter was used with
the standard deviation corresponding to the distance away from the fixation point
(the centre of the image).

Inspired by Figure , the visual field was divided into four areas, foveal (5°
o = 0, full resolution), parafoveal (8°, o = 2), macular (18°, ¢ = 3) and peripheral
vision (more than 18°, lowest resolution, o = 4).

Figure[6.2] shows contour graphs of the resolution maps covering angles of 49 x 42
and the transformed image on a 640 x 480 image size captured using the Epson
Moverio BT-200. Part a is the resolution map according to Figure 6.1} and part b is

the original image. The four different resolution levels applied to the original image
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Figure 6.2: Resolution maps of the human visual field and the result of the transfor-
mation method on an example image.
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are shown in part c. The rendered full image after applying the four resolution levels

is displayed in part d showing how a normal (healthy) vision person sees the world.

6.3 Personalised Vision Model

To model the defected vision for visually impaired people, both central and full
visual field test results were used. The grayscale map of HVFA test as (shown
in Figure was used to extract information for the central visual field, while
Goldmann test was used to extract information for full visual field.

In contrast to HVFA, Goldmann visual field (GVF) perimetry is not popular and
few skilled perimetrists can perform it. It requires manual mapping for the visual
field without the help of a computer tool. An isopter is drawn around the points
that have been tested to show the visual field extension. Different isopters could be
seen representing the size of the stimulus and the attenuation of the light. scotomata
(decreased sensitivity) areas are shown as a shaded isopter with a solid colour [202].

The personalised vision model uses the grayscale map to create a real-time syn-
thesised view for users with defected vision. The purpose of this model is to (1)
show the actual visual sensitivity for each user according to their real visual field
test results, and (2) to be used by the hazard detection system to produce the early

visual notification in the correct place.

6.3.1 Image Pre-processing

Figure presents the three inputs used in this work to create a personalised vision
model. The top image shows central and full visual field tests results. Both of these
tests were collected from our patient group subjects and validated by Professor Fiona
Rowe. The bottom image shows the input frame that will be used in all the following
examples. The model was applied on an outdoor video captured by the Moverio BT-
200 smart glasses.

For the central visual field, the test checks the visual sensitivity for each eye’s

visual field (30° around the fixation point) and displays different grey levels for
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Central field test (left/right eye results)

Full field test (both eyes together)

Blind area

Healthy area

Y

Blind area

Figure 6.3: The personalised vision model inputs.
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each location representing different visual sensitivity. A full field test result cov-
ers ~160° and shows binocular vision test results.

Figure presents the main steps to create the personalised vision model ac-
cording to the user’s visual field test results. The result of each step is shown in the
figure. The first step is to load the visual field tests printout file with a predefined
test mask according to the eye used in the test. Hence the HVFA tests 30° around
a fixation point for each eye, a zero-padding around the test result is needed to fill
the untested areas in the image in the case of peripheral vision loss.

To extract the grayscale map, the initial test is cropped before starting a series

of general image transformations. Transformations include:

1. Removing the vertical and horizontal axes. This step is performed manually

to produce a homogeneous shape for the grayscale plot.

2. Removing small noises by convolving the image with a normalised box filter. It
takes the average of all the pixels under a kernel area and replaces all elements

with the average value. A kernel size of 3 x 3 was used in this step.

3. Smoothing the resulted image using a low-pass filter to remove large noises

such as big edges. A 5 x 5 averaging filter kernel was used in this step.
4. Combining the result in the zero-padding image.

5. Resizing the combined image to the same final image size and sampling the
resulting image according to the given grayscale map key (see Figure[3.12). The
pixel values were adjusted according to the blue chart in step 5 of Figure [6.4]

6. Applying the result of step 5 on the final image/video frame (after splitting it

into R,G,B channels) using pixel multiplication method.
7. Combining the three channels (RGB) into one final image and display it.

Tunnel vision example
Figure depicts a tunnel vision model example. The left side part (A) shows
both central and full-field tests results. The printouts show that the patient suffers
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Figure 6.4: The personalised vision model image processing.

from severe glaucoma, with total blindness in the right eye. His left eye has a small
healthy vision in the centre of his visual field. Image A-bottom shows the full field

result.

The second step is to apply image processing methods described earlier in this
section to extract the final visual field case from these tests results. Image B-1 shows
the output after removing the vertical and horizontal axes. Images B-2 and B-3 show
the output after applying average and smooth filters, respectively. Finally, image B-4
depicts the same image after sampling its values according to the given key.

The output of all these methods is applied to each video frame, as shown in
Figure [6.5-C. The black areas in this image represent the total blindness, were the

healthy vision area is shown in the centre of the visual field.
Left hemianopia example

Figure depicts a left hemianopia vision model example. The left side image
(A) shows both central and full-field tests results. The printouts show that the
participant has total blindness in the left side of both eyes. Half of the right side
field of the left eye is defected too. His right eye has a healthy right side visual field,
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Figure 6.5: Tunnel vision model example.

leading to left hemianopia case, as shown in image A-bottom.

Image B-1 shows the output after removing the vertical and horizontal axes.
Images B-2 and B-3 show the output after applying average and smooth filters,
respectively. Finally, image B-4 depicts the same image after sampling its values
according to the given key.

The output of all these methods is applied to each video frame, as shown in
Figure [6.6}C. The black areas in this image represent the total blindness, where the
healthy vision area is shown on the right side of the visual field.

Central scotoma (AMD) example

Figure depicts an AMD vision model example. Left side image (A) shows
both central and full-field tests results. The printouts show that the participant
suffers from a central scotoma, with total blindness in the central vision for both
eyes. These images represent the results for 10°only. Image A-bottom shows the full
field result.

Image B-1 shows the output after removing the vertical and horizontal axes.
Images B-2 and B-3 show the output after applying average and smooth filters,

respectively. Finally, image B-4 depicts the same image after sampling its values
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Central field test result

Full field test result

Figure 6.6: Left hemianopia vision model example.

according to the given key. The output of all these methods is applied to each video
frame, as shown in Figure [6.7+C. The black areas in this image represent the total

blindness, where the healthy vision area is shown in the peripheral visual field.

6.3.2 Visual Feedback Design to Enhance Visual Perception

Using visual feedback to enhance the user’s visual perception is used in many research
fields, such as 3D video games [203], endoscopic surgery [204], sports [205], care
driving [206], and low vision rehabilitation [I50].

With the recent growth in AR research and applications, researchers developed
different visualisation schemes to help users to accomplish daily tasks with the help

of computer-generated information. This includes but is not limited to:

e Navigation and wayfinding, such as the work proposed by Virtual Ca-
ble [207], Charissis and Naef [208] and Sato et al. [209).

e Hazard perception, such as visual longitudinal and lateral driving assistance
system proposed by Tonnis et al. [210] and the work developed by Sauerbrey
and Jens [211].
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Central field test result

Full field test result

Figure 6.7: Left central scotoma (AMD) vision model example.

e Task localisation, such as the work proposed by Henderson et al. [212], Hen-
derson and Feiner [213] and Lee and Akin [214].

Figure shows examples from the mentioned studies. The first row depicts
visual feedback schemes used for navigation and wayfinding. Different virtual cues
to help to identify the navigation pathway in addition to other road objects are
shown. The second row presents three examples of visualisation techniques used to
alert /warn users about hazards. For this purpose, different styles of visual notifica-
tions are displayed on the top of the users’ view to point their direction to possible
threats. The last row shows examples of AR visualisation methods used in main-
tenance and repair tasks. Different types of visual schemes were used to add extra
information or to highlight a specific area in the user’s FoV.

Selecting the best style of this feedback is a challenging task. Users requirements
vary depending on the goal of the feedback and according to their visual conditions.
Across low vision people, one user’s needs may differ to another user’s needs. More-
over, it is pervasive for one person’s needs to be different from day-to-day or even

throughout one day!
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Navigation and wayfinding

Hazard perception

Task localisation

Figure 6.8: Visualisation scheme examples.

Using AR to develop visual feedback for low vision people is a very challenging
task. Zhao et al. [150] used commercially available smart glasses to evaluate different
visual notification styles. The goal of their work was to test what the low vision

people could see and study their response.

The authors conducted an experimental study with 20 low vision participants
and 18 sighted controls. They asked them to identify and respond to two different

types of visual notifications; basic shapes (triangle, square, circle) and texts.

Figure depicts these schemes. Image (a) shows an example of a triangle on
black and white backgrounds with different thickness levels. Image (b) shows text

examples with varying colours on black and white backgrounds.

According to their findings, basic shapes were more easily identified by low vision
people [150]. Using bright colours such as white and yellow is recommended more
than other colours such as red and blue. These findings agree with our questionnaire

results mentioned in chapter 3 of this thesis.
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Turn Left

(a) (b)

Figure 6.9: Zhao et al. [I50] visual feedback schemes.

Consequently, the feedback generation phase was developed to reflect these rec-

ommendations and results using an arrow with three features:
1. Width: the wider the arrow, the higher the danger level it represents;
2. Speed: the faster the arrow moves, the higher the danger level it represents;

3. Colour: all notifications have yellow colour, except hazard level five, which has

yellow and white colours.

Figure[6.10] shows the hierarchical representation of the different notification rep-
resentations for each hazard class and Table depicts a full description about the

visual notifications used in this project.

6.3.3 Visual Notification Examples

In this section, three examples (tunnel vision, left hemianopia, and AMD) will be
discussed to demonstrate the output of the proposed defected vision model.

For the examples used in this section, an illustration image will be shown at
the beginning to describe the starting status. The original and defected images will
follow, showing the captured frame and the modelled frame, respectively. Original

frame images, including detection (bounding boxes) and tracking (coloured circles)
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Hazard level representation

Wide Narrow
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Figure 6.10: Hazard levels representation.

outputs, in addition to the region of interest (Rol) mentioned in Section [5.2] Fig-

ure (illustrated as a yellow trapezium) are demonstrated.

Figure shows an output example using a tunnel vision personalised model.
The first image shows an illustration of the examples. In the first row (frame 152)
example, the original image shows that the system detected a walking pedestrian
at the left side, walking towards the user. According to the hazard representation
mentioned in Table this is class 4 hazard, and the output will be wide yellow
arrows. The arrow’s orientation points to the left side to nudge the user to move
his/her head to that direction to see the hazard. After 129 frames, the position and
type of the detected hazard were changed. The pedestrian is moving away from
the user. This means it is now a class 2 hazard presented as narrow yellow arrows

pointing to the right side.

Figure [6.12| shows the second example of a tunnel vision model. In this example,
the system detected two objects in frame 302; a person on a bicycle in the user’s

pathway (class 3), and a stationary object (bus) outside the user’s path (class 1).
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Table 6.1: Visual notification format
Class Representation Description

White and yellow, wide and
fast arrows represent hazard class
with the highest danger level
(moving, inside/towards Rol, not
a person)

Yellow, wide and fast arrows
represent hazard class with a
high danger level (moving, in-
side/towards Rol, person)

Wide slow arrows represent haz-
ard class with a middle danger
level (static, inside Rol)

Narrow fast arrows represent haz-
ard class with a low danger level
(moving, outside Rol)

Narrow slow arrows represent
hazard class with the lowest dan-
ger level (static, outside Rol)

Class 5

Class 4

Class 3

Class 2

Class 1

Although class 3 has a higher priority than class 1, the system neglected its output
and presented only a narrow yellow arrows pointing to the right side.The reason for
this is that this hazard (c3) exists in the seeing area, which means that the user can
see the cyclist.

In frame 388, the system was unable to detect the bus to the right side. At the
same time, the cyclist moved and his position became outside the user’s seeing area.
As the cyclist is partially recognised by the user and his location is still so close to
the user’s path, a class 3 notification was produced (narrow yellow arrows pointing
to the left side).

Figure [6.13| shows an output example using a left hemianopia vision personalised
model. As shown in illustration 1, the system detected a moving bus to the left side
of the yellow trapezium. Using the hazard types representation in Figure the
system generated a narrow fast arrows pointing to the left side. As the object kept
moving towards the user, its hazard type changed from level 2 to 5. Consequently, a
wide yellow and white arrows are presented in frame 370, nudging the user to turn

to the left side to recognise the detected hazard.
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Figure 6.11: A system output example using tunnel vision model (1).

Figure [6.14] shows different example using the same vision model. As illustrated
by illustration 2, the system detected two pedestrians to the left side and moving
vehicles to the right side (frame 6). Since the right visual field is healthy, the user
can see the buses but can not recognise the pedestrians. In this case, a class 4 hazard

notification was generated as a wide moving arrows pointing to the left side.

After 40 frames, the pedestrians started moving away from the user. Therefore,
the generated notification was downgraded from level 4 to level 2. Accordingly, the

notification style changed to be narrow arrows pointing to the left side.

Figure [6.15] shows output example using AMD vision personalised model. This
case is different compared to the two previous cases. The modelled vision is mostly
healthy, with a central scotoma within the middle of the visual field. Therefore, the

interpretation of the produced notification is changed.

In frame 244, the system detected a moving pedestrian in the centre of the user’s
path, as shown in illustration 1. The pedestrian at this point is not visible. A
wide fast arrows were generated to present a level 4 hazard. After 27 frames, the

pedestrian continued crossing the blind area, but he is moving away for the user’s
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Figure 6.12: A system output example using tunnel vision model (2).

path. Therefore, the hazard level changed from class 4 to class 2 (narrow fast arrows).

In Figure [6.16] the illustration shows that a pedestrian was detected moving
towards the user (frame 740). The central scotoma prevents the user from seeing
that person. Therefore, the system generated a wide fast arrows pointing to the right
side of the central scotoma, telling the user to expect a person coming from that side.
After a few frames, a black cover was placed in front of the camera, blocking most
of the scene. The tracker was able to estimate the position of the detected object
even when the detector failed to detect it. A notification showing level 4 hazard is

presented in frame 745 at the right side of the central scotoma.

6.4 Discussion and Conclusion

The main aim of the work presented in this chapter was the development of a person-
alised vision model using visual field tests. Three different models were introduced,
tunnel vision, left hemianopia and central scotoma (AMD) models.

In the second section, the standard vision model was proposed to synthesise a
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Figure 6.13: A system output example using left hemianopia model (1).

human’s healthy vision. The central vision was presented using full resolution, while
the peripheral vision was rendered using different levels of Gaussian filters.

In the personalised vision model section, both central and full visual field test
results were used to produce defected vision videos. Several image processing meth-
ods were used to extract the needed information from the test printouts and apply
it on video frames in real-time. It is believe that by using this model, eye special-
ists can apply the visual field tests results on real-time videos to see what visually
impaired people see. This will better help to understand visual problems and daily

difficultied]

In Section [6.3.2, visual feedback designs used to enhance visual perception in
different research fields, especially in AR applications was discussed. This step is
crucial in this work for selecting the most useful notification for visually impaired
people. It was found by Zhao et al. [I50] that basic shapes with bright colours are
more appropriate to enhance visual perception for visually impaired people using AR

applications. This supports the findings found in the second questionnaire, which

More video examples could be found at my website: https://pcwww.liv.ac.uk/ younis/
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Figure 6.14: A system output example using left hemianopia model (2).

was conducted with our patients group.
According to this information, the visual feedback designs used in our system

was presented. For the first time in visual rehabilitation solutions, a system that can

detect and classify potential hazards around a visually impaired person, and provide

visual cues personalised to the user’s vision condition is presented.

Five different representations were used to reflect hazard levels, and an arrow

shape was chosen to show the hazard direction. Various examples were given to

demonstrate the system output using the three defected vision models.
These designs and colours could be customised according to the user’s preferences.

It is also possible for users to choose the type of information they want to be informed

about. Currently, the system generates one notification at a time, showing a hazard

with the highest danger level.
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Figure 6.15: A system output example using AMD model (1).
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Frame 740

Illustrations 2

Frame 745

Figure 6.16: A system output example using AMD model (2).



Chapter 7

Conclusions and Future Work

7.1 Overall Conclusion

The main achievement of the research presented in this thesis can be described as
the design and development of smart assistive technology to help visual field loss
people, that can enhance hazard perception and provide early personalised visual
feedback.

Visually impaired participants were involved from the early stages to help in
the system design process, and to give their opinions and feedback throughout the
development process. The presented work includes hazard detection and recognition,
hazard tracking and hazards classification modules, which assigns a hazard level for
each detected object according to its motion features. The same object could change
its hazard level over time according to the way it is moving around the user.

The main goal of this system is to increase the user’s awareness of the surrounding
environment without interfering with the healthy vision. It is believed that this work
is important because unlike other obstacle avoidance and navigation systems, the
proposed technology is directed to the people who have partially healthy vision. The
proposed work uses this vision and augments it with new, meaningful and smart
notifications that appear only if necessary.

Also, by using visual field test results, it is believed that the proposed work can

be personalised according to the visual case of each user.

120
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This system has been tested on both publicly available and private datasets. The
classification method showed promising results, proving that the system could gen-
uinely classify any detected hazard into one of five predefined hazard classes. The
proposed solution will enhance the quality of life for people suffering from visual field
loss conditions. This non-intrusive, wearable hazard detection technology can pro-
vide obstacle avoidance solution, and prevent falls and collisions early with minimal

information.

7.2 Detailed Conclusions

Concluding remarks on this research are listed as follows:

e People with visual field loss suffer from many daily challenges that decrease
their quality of life. Because this group retains healthy vision in some parts
of their visual field, it is possible to use this vision and superimpose it with
computer-generated information to increase the overall visual perception. One
of the main difficulties for visually impaired people is their low hazard per-
ception, which increases their falls and collisions rates. Designing a smart
assistive technology using computer vision algorithms in real-time to provide
useful information about any possible threats existing in the user’s blind area

will enhance functional vision.

e Two questionnaires were conducted with visual field loss participants to study
their challenges and preferences for smart assistive technology toward helping
them to enhance their hazard perception. It was concluded that participants
are highly interested in moving objects and consider them to have higher dan-
ger levels. It was also found that participants prefer having visual feedback
integrated into their healthy vision to help them recognise possible hazards.
Five different hazard classes were defined and ranked according to their danger
level by the participants, who also helped in designing the best visual feedback
format. The mentioned questionnaires are included in the appendices of this

thesis.
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e A deep learning-based object recognition module was used to detect the objects

reported in the participants’ questionnaire. Each detected object was tracked
while it is in the camera’s FoV to extract its motion features. These features
are used in the hazard classification stage to assign the detected object into
one of five pre-defined classes. The Hungarian algorithm was used to map the

tracked objects with the new detections.

Through our research collaboration with the Department of Health Services
Research, we created our dataset for hazard detection and classification. Using
Epson’s Moverio BT-200 smart glasses, we captured indoor and outdoor videos.
An expert labelled the data to one of five hazard classes. These classes were

discussed with the visual field loss patient group.

A Neural Network-based classifier was trained and tested on the private and
public datasets. It was concluded that it is possible to classify the detected
object into one of the five hazards classes using its motion features such as type,
current position, estimated position, speed, the direction of motion and age. It
was also found that if we add the previous hazard classification results into the

current features, it would noticeably enhance the classification performance.

For example, the average accuracy for the five hazard classes when we used
temporal information (previous classification results) was 91% compared with
89% using conventional classification. The false Negative Rate average for
standard classification technique was 0.132%. This value decreased when the

temporal information was used at 0.1%.

Chapter 6 discussed the model used for personalising defected vision using vi-
sual field test results. After developing three different vision models, it was
concluded that the visual feedback style, location, colour, speed and interpre-

tation should be customised based on the user’s visual condition.

Selecting the best style for this feedback is a challenging task. Users require-
ments vary depending on the goal of the feedback and according to their visual

condition. Across low vision people, one user’s needs may differ to other users
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needs. Moreover, it is pervasive for one person’s needs to be different from
day-to-day or even throughout one day! Therefore, it is crucial to give the
end-user the ability to control all these settings and train her/him how to use

the proposed technology.

e A participant study was conducted with a group of patients with different vi-
sual field defects to explore their preferences, suggestions and opinions about
the notification style, frequency and other presentation features. After describ-
ing the project’s idea and design, basic demography information and the visual
impairment history of the participants were collected. The participants tried
the Moverio BT-200 smart glasses with basic notifications in an indoor envi-
ronment. Due to the ethical approval constraints, we were unable to perform
outdoor experiments for the proposed system. Therefore, we presented the
basic system concepts (a single notification for the highest hazard level) to the

participants and collected their feedback through a questionnaire.

Regarding the project idea and design, all participants were delighted with
the solution provided. They were very excited to try the final product and
see the results in real-time while navigating indoor and outdoor. Some of the
participants commented on the smart glasses by saying it was light-weight with

an accepted design.

7.3 Limitations and Strengths of the Proposed Tech-

nology

There are limitations to the approaches adopted by our research work. We used a
monocular camera to capture the videos used in all of our experiments, but this may
falsely reflect the user’s binocular vision. To have a realist view, either a binocular
or a wide-angle camera should be used to cover the full FoV vision for a healthy
person.

The presented evaluation in this work was performed on a MacBook laptop (2.7
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GHz Intel Core i5 processor, 8 GB RAM) which was able to process high-resolution
CamVid videos (30 FPS) with an average of 0.2160s per frame and an average of
0.1932s for videos captured by the Moverio BT-200 smart glasses.

To test the usability of the proposed work, it should be run on wearable smart
glasses. Both sighted, and visually impaired subjects should evaluate a system that
capture videos, perform the detection, tracking and classification process and provide
visual notifications in real-time.

Although the presented evaluation proved that the proposed technology is capable
of classifying hazards truly, an end-to-end system evaluation is needed to confirm
the usefulness of the system.

The personalised defected vision model assumes the patient to have a similar
visual condition in both eyes. However, each eye may have a different visual field
case, resulting in two different visual models for each eye. With the current system,
the result is an approximation for the full field test result using only one eye from
the central visual field test.

There were also some strengths to our study design. Most of the systems men-
tioned in the literature focused on technical aspects to solve navigation and obstacle
avoidance problems. The systems were designed without prior consultation with the
potential users to understand their challenges and preferences. In our research, we
adopted a user-centred design approach from the early product development stages
to the end discussions after demonstrating a primary system output with visually
impaired participants.

This involvement helped to define and rank five different hazard classes. Using
machine learning algorithms, and for the first time, we were able to classify the
detected objects according to their motion features. The classification helped in
distinguishing between significant, important and good-to-know hazards, and pre-
senting customised visual feedback.

One of the strengths of this work is the dataset captured by the smart glasses,
which enabled us to train and test the hazard classification method. The dataset

could be used by other research work to detect and recognise potential hazards for
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video footage captured by a wearable camera.

Each visually impaired person has a different visual field case. By including
his/her visual field test results in the proposed assistive technology, we are person-
alising our solution to each patient’s condition.

Furthermore, the feedback style could be customised based on the user’s prefer-
ences. For example, the user may prefer audio over visual feedback. Other options,
such as feedback timing, input/output styles, and frequency could be tailored based
on the user’s needs. Since this work presents the hazard classification as assistive
technology, we can say that it can be integrated with other wearable devices to help

visually impaired people.

7.4 Suggestions for the Future Work

Some of the challenges that still need to be overcome, with suggested solutions and

some ideas for further research are included in the following list:

e As concluded by chapter 4, it is essential to include an object recognition
module to detect pre-defined objects. If we give the user the possibility to
select the objects he/she would like to have notifications for, this will increase

the system’s usability and would reduce training time needed for new users.

In chapter 3, we mentioned the participants’ discussion feedback. They prefer
having different levels of commands between the user and the smart glasses.
This Started from simple at the beginning, to more complicated options once
the user learnt how to adopt the system. These preferences could be imple-
mented through a user-friendly interface as a mobile application that can be

used on different portable platforms.

e Hazard classification results mentioned in chapter 5 reported reasonable clas-
sification rates for the five hazard classes. However, the features used in this

phase depend only on videos captured by a wearable camera. Data fusion using
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different input sensors such as gyroscope, accelerator and depth camera could

be used in future to enhance feature extraction step.

Furthermore, Visual Odometry (VO) methods can be used to add the cam-
era motion information to the extracted features, which will increase hazard

classification performance.

In this work, three vision models were used to visualise the defected model.
In future work, this model will be generalised to include different visual field
loss cases using central and peripheral vision test results. The work will be

evaluated by patients and eye specialists to ensure its accuracy.

Soon, it is planned to perform an experimental evaluation for the proposed
system. For this purpose, navigation time and collision rates will be tested
with and without the use of the presented smart technology. Different types
and levels of visual hazard notifications will be used to determine the best

format and location to be used with visually impaired people.

Hazard perception tests will be used to evaluate participants’ results with the
help of the proposed work compared to their normal perception (baseline).
These tests can be performed by sighted people using different types of defected
vision models, or by partially sighted people with different visual field defect
cases. Multi-Luminance Mobility Test (MLMT) will be used for this purpose.

As this work is a part of a larger project, the main target is to provide a
wearable assistive technology to help partially sighted people in their navigation
by increasing hazard perception. For this purpose, the proposed work will be
implemented on smart glasses that include a powerful processing unit and a
see-through display unit. The user would be able to wear the glasses and move
freely while it is operating. Real-time notifications will be generated to nudge
the users to turn their head to the correct direction in order to be able to see

potential hazards.

Figure [7.1] summarises the points mentioned about the future work. The time
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frame for the future work is shown in Figure

User interface

The proposed work Smart glasses

Object detection
i Hazard

classification
. . A
Object tracking

Other input data

Visual
Odometry
information

Depth
Information

Figure 7.1: Future work integrating the user interface and smart glasses.
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Figure 7.2: Time frame of future work.
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Praject Title Smart Assistive Technology for Peripheral Vision Loss Rehabilitation
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Department: Electrical Engineering and Electronics

Approval Date: 22/08/2017
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The application was APPROVED subject to the following conditions:

Conditions

All serious adverse events must be reported via the Research Integrity and Ethics Team (ethics@liverpool.ac.uk)

within 24 hours of their occurrence.
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UNIVERSITY OF

LIVERPOO

Committee on Research Ethics

Participant Information Sheet

Smart Assistive Technology for Peripheral Vision Loss
Rehabilitation

Researcher(s): Qla Younis, Waleed Al-Nuaimy, Fiona Rowe

You are being invited to participate in a research study. Before you decide
whether to participate, it is important for you to understand why the research is
being done and what it will involve. Please take time to read the following
information carefully and feel free to ask us if you would like more information
or if there is anything that you do not understand. Please also feel free to
discuss this with your friends, relatives and GP if you wish. We would like to
stress that you do not have to accept this invitation and should only agree to
take part if you want to.

Thank you for reading this.
1. What is the purpose of the study?

This experiment is to have your feedback about a proposed assistive technology that
will be implemented on smart glasses to help in peripheral vision loss rehabilitation.

2. Why have | been chosen to take part?

You are chosen for this study because you have visual field problems that affect your
vision, or because you have a healthy vision but like to give your feedback about the
proposed system and its performance.

3. Do | have to take part?

This is voluntary task and you are free to withdraw at anytime without explanation and
without incurring a disadvantage.

4. What will happen if | take part?

1. You will be asked to fill in a questionnaire with two sections:

A. General questions about your vision health.

B. Questions about your opinion in our proposed assistive technology that will be
implemented on smart glasses as a wearable technology to help you in your daily
activities.

2. Your feedback and results will be recorded and saved in e-files for future analysis. No
personal information will be recorded.

3. Data will be anonymized and used in scientific research only.

4. This experiment will take between 10-15 minutes only.

5. Are there any risks in taking part?
There is no risk for the participant to involve in this study.

6. Are there any benefits in taking part?

Information Sheet Guidelines 1.0 1
July 2017
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There are no benefits of involving with this experiment. However you may find
benefits from helping with research through potential benefits in the future.

7. What if | am unhappy or if there is a problem?

“If you are unhappy, or if there is a problem, please feel free to let us know by
contacting [Dr Waleed Al-Nuaimy] and we will try to help. If you remain unhappy or
have a complaint which you feel you cannot come to us with then you should contact
the Research Governance Officer at ethics@liv.ac.uk. When contacting the Research
Governance Officer, please provide details of the name or description of the study (so
that it can be identified), the researcher(s) involved, and the details of the complaint
you wish to make.”

8. Will my participation be kept confidential?

Yes, no personal information that may identify you (name, address, post code...) will
be recorded.

Data collected before and after performing the experience will be saved in manual
(paper) and electronic files with the guarantee of data anonymisation.

Anonymized data may be stored in laptop computers with password protected folders
and files.

9. What will happen to the results of the study?

The results will be used to guide our research project. Your answers will help us to
clearly identify which objects are harmful for you and what is the suitable type of
information for your case.

Your preferences and answers may be used in research papers in future. Participant
will not be identified from published material because data is anonymised

10. What will happen if | want to stop taking part?

Participants can withdraw at any time, without explanation. Results up to the period of
withdrawal may be used, if you are happy for this to be done. Otherwise you may
request that they are destroyed and no further use is made of them. If results are
anonymised you should make clear that results may only be withdrawn prior to
anonymisation.

11. Who can | contact if | have further questions?

Ola Younis,

younis@liv.ac.uk

DEPARTMENT OF ELECTRICAL ENGINEERING & ELECTRONICS
UNIVERSITY OF LIVERPOOL

Liverpool L69 3GJ, United Kingdom

Dr Waleed Al-Nuaimy,

wax@liverpool.ac.uk

DEPARTMENT OF ELECTRICAL ENGINEERING & ELECTRONICS
UNIVERSITY OF LIVERPOOL

Liverpool L69 3GJ, United Kingdom

Dr Fiona Rowe,

rowef@liverpool.ac.uk

Department of Health Service Research/ Psychology Health and Society,
UNIVERSITY OF LIVERPOOL

Liverpool L69 3GJ, United Kingdom

Information Sheet Guidelines 1.0 2
July 2017
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X4 UNIVERSITY OF

&/ LIVERPOOL

Committee on Research Ethics
PARTICIPANT CONSENT FORM

Smart Assistive Technology for Peripheral Vision Loss
Rehabilitation

Researcher(s): Ola Younis, Waleed Al-Nuaimy, Fiona Rowe

Please
initial box
1. lconfirm that | have read and have understood the information sheet dated July 2017
for the above study. | have had the opportunity to consider the information, ask
questions and have had these answered satisfactorily.

2. lunderstand that my participation is voluntary and that | am free to withdraw at any
time without giving any reason, without my rights being affected. In addition,
should I not wish to answer any particular question or questions, | am free to
decline.

3. lunderstand that, under the Data Protection Act, | can at any time ask for access to
the information | provide and | can also request the destruction of that information
if | wish.

000

4. |agree to take part in the above study.

Participant Name Date Signature
Principal Investigator: Student Researcher:
Name: Waleed Al-Nuaimy Name: Ola Younis
Work Address: University of Liverpool, EEE department. Work Address: University of Liverpool,
Work Telephone: (0)151 794 4512 EEE department
Work Email: wax@liv.ac.uk Work Email: Younis@liv.ac.uk

Version 1.0
July 2017
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Please take as much time as you need to answer each question. All your answers are
confidential.

INSTRUCTIONS:

L.

In general we would like to have people try to complete these forms on their own. If
you find that you need assistance, please feel free to ask the project staff and they will
assist you.

Please answer every question (unless you are asked to skip questions because they
don’t apply to you).

Answer the questions by circling the appropriate number.

If you are unsure of how to answer a question, please give the best answer you can and
make a comment in the left margin.

Please complete the questionnaire before leaving the centre and give it to a member of
the project staff. Do not take it home.

If you have any questions, please feel free to ask a member of the project staff, and they
will be glad to help you.

STATEMENT OF CONFIDENTIALITY:

All information that would permit identification of any person who completed this
questionnaire will be regarded as strictly confidential. Such information will be used only for
the purposes of this study and will not be disclosed or released for any other purposes without
prior consent, except as required by law.

Research Group Members:

1.
2.
3.

Ola Younis, PhD student.
Waleed Al-Nuaimy, main supervisor, senior lecturer.
Fiona Rowe, second supervisor, Professor.
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Smart glasses for people with visual field defects

In this project, smart glasses will be used to help people with visual field defects in their
navigation and daily activities such as crossing the road and detecting motion around them.
The user will be able to wear the smart glasses which contain a video camera and two
display units (transparent) and connected to a small computer (could be wired or wireless)
to perform some processing.

The goal is to notify the users about any possible threats in their blind area by displaying
notifications on the display units at their healthy vision area. This will help the users to (1)
avoid obstacles, (2) detect motion (3) detect certain types of objects based on personal
preferences.

The system will be customizable based on the visual field test results for each user in order
to determine the blind/healthy vision areas before running the smart glasses.

Q1. Using these smart glasses, what type of objects do you think are the most important to
be notified about?

|:|Stationar\,r objects (obstacles) in your pathway (e.g. chair, couch, car)
|:| Moving objects that could cross your path or you may pump into them.

Q2. Using the smart glasses, what type of objects do you prefer to have information about?
List the most important ones.

I:l Cars I:l Street bollards
|:] People I:I Bicycles
I:l Chairs |:| Walls

I:I Tables |:| Stairs

Q3. If the smart glasses detected a possible hazard (expected collision), how early do you
prefer to get a warning notification (in seconds)?

Q4. Do you prefer a single level of hazard notification or multiple levels based on the degree
of dangerous?

I:lOne level.
I:l Multiple levels.

Q5. How do you prefer to get the notifications?

|:|Audio notifications.

|:|Visual notification displayed without blocking the normal vision.
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Portable computer

Batteries

Weight: 5.50z

HD camera

Trackpad and Dual see-thru
control buttons display units
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Please take as much time as you need to answer each question. All your answers are confidential.
INSTRUCTIONS:

1. Ingeneral, we would like to have people try to complete these forms on their own. If you find
that you need assistance, please feel free to ask the project staff and they will assist you.

2. Please answer every question (unless you skip questions because they don’t apply to you).

3. If you are unsure of how to answer a question, please give the best answer you can and

comment on the left margin.

4. Please complete the questionnaire before leaving the centre and give it to a member of the
project staff.

5. If you have any questions, please feel free to ask a member of the project staff, and they will be
glad to help you.

STATEMENT OF CONFIDENTIALITY:

All information that would permit identification of any person who completed this questionnaire will
be regarded as strictly confidential. Such information will be used only for this study and will not be
disclosed or released for any other purposes without prior consent.

Research Group Members:

1. Ola Younis, PhD student.
2. Waleed Al-Nuaimy, principal supervisor, Senior lecturer.
3. Fiona Rowe, second supervisor, Professor.
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In this project, smart glasses will be used to help people with visual field defects in their
navigation and daily activities such as crossing the road and detecting motion around them.

The user will be able to wear the smart glasses which contain a video camera and two
display units (transparent) and connected to a small computer (could be wired or wireless)
to perform some processing.

The goal is to notify the person about any possible threats (termed as hazards in this
project) in their blind area by displaying notifications on the display units within their
healthy vision area. This will help the users to (1) avoid obstacles, (2) detect motion (3)
identify specific types of objects based on personal preferences.

The system will be customizable based on the visual field test results for each person to
determine the blind/healthy vision areas before running the smart glasses.

In this questionnaire, we are investigating people’s preferences for developing a smart,
wearable assistive technology.

Section 1:

1. Do you use portable electronic devices (e.g. kindle, ipad)?

|:| Yes:H(SPetily) e e
[

2. Do you use any navigation aid in your daily life (e.g. white cane)?

I:l YOS (SPECITY) wxovevsren soer s oo e A S S e
L

3. Do you wear eye glasses?

|:| Yes
D No

4. What type of vision loss do you suffer?
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Section 2

1. In your navigation, which of the following do you find the most dangerous to
detect and avoid? Please rate each from 1 to 5: (1) Least danger, (5) most
danger

Static hazards outside your pathway, (i.e. notin your way)
Static hazards in your pathway

A person moving towards you (or your pathway)

]
]
[ ] Moving objects not in your way (any type)
[ ]
(]

Object moving towards you (or your pathway)

2. How would you prefer your input to the system to be, (i.e. how you add a
response to the system?

|:’ Speech (specific predefined words)

\:l Touch

I:I Hybrid (touch and speech)

3. How do you prefer the feedback of the system to be?
Audio (speech, beeps)

Touch (vibration)

Visual

Hybnd (SPeeily Yo e s o T e

s
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For the visual feedback only:

4. How do you prefer the feedback style to be?
I:l One shape, different colour (e.g. ) )

\j Different shapes, one colour (e.g. A 4 . )

5. How many notifications would you prefer to have at one time?

I:l One at a time (highest priority only)

I:l Multiple at a time (specify the number)..................cceeieiivinennnn..

6. If you chose multiple notifications at a time, how do you prefer them to
appear?

‘:l In a sequential way, one after the other
\: All at the same time

7. What information do you prefer to have about the detected hazard?
‘:l Hazard direction only
|:| Hazard type and direction
I:’ Hazard direction and speed

I:l Exira information (explain)wsevasmamannninamnmmnnsiss

8. When do you prefer the feedback to appear?
|:’ In regular time intervals for as long as the hazard is present
I:l In an incremental way if the hazard persists

D Only once when the hazard is detected

9. How do you prefer the feedback to disappear?
|:| Automatic after a time interval

\:’ Manual based on your response (input) to the system
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Section 3

Please, give us your opinion, impression, ideas and feedback about the proposed
system.

We are more than happy to hear from you regarding the design, idea, weight, cost,
and any other suggestions for further improvements.
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