12,015 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Clips: a capacity and lead time integrated procedure for scheduling.

    Get PDF
    We propose a general procedure to address real life job shop scheduling problems. The shop typically produces a variety of products, each with its own arrival stream, its own route through the shop and a given customer due date. The procedure first determines the manufacturing lot sizes for each product. The objective is to minimize the expected lead time and therefore we model the production environment as a queueing network. Given these lead times, release dates are set dynamically. This in turn creates a time window for every manufacturing order in which the various operations have to be sequenced. The sequencing logic is based on a Extended Shifting Bottleneck Procedure. These three major decisions are next incorporated into a four phase hierarchical operational implementation scheme. A small numerical example is used to illustrate the methodology. The final objective however is to develop a procedure that is useful for large, real life shops. We therefore report on a real life application.Model; Models; Applications; Product; Scheduling;

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    The Integration of Process Planning and Shop Floor Scheduling in Small Batch Part Manufacturing

    Get PDF
    In this paper we explore possibilities to cut manufacturing leadtimes and to improve delivery performance in a small batch part manufacturing shop by integrating process planning and shop floor scheduling. Using a set of initial process plans (one for each order in the shop), we exploit a resource decomposition procedure to determine schedules to determine schedules which minimize the maximum lateness, given these process plans. If the resulting schedule is still unsatisfactory, a critical path analysis is performed to select jobs as candidates for alternative process plans. In this way, an excellent due date performance can be achieved, with a minimum of process planning and scheduling effort

    A Neighborhood Search for Sequence-dependent Setup Time in Flow Shop Fabrics Making of Textile Industry

    Get PDF
    Abstract This paper proposes a neighborhood search to solve scheduling for fabrics making in a textile industry. The production process consists of three production stages from spinning, weaving, and dyeing. All stages have one processor. Setup time between two consecutive jobs with different color is considered. This paper also proposes attribute’s decomposition of a single job to classify available jobs to be processed and to consider setup time between two consecutive jobs. Neighborhood search (NS) algorithm is proposed in which the permutation of set of jobs with same attribute and the permutation among set of jobs is conducted. Solution obtained from neighborhood search, which might be trapped in local solution, then is compared with other known optimal methods

    The lockmaster's problem.

    Get PDF
    Inland waterways form a natural network that is an existing, congestion free infrastructure with capacity for more traffic.Transportation of goods by ship is widely promoted as it is a reliable, efficient and environmental friendly way of transport. A bottleneck for transportation over water are the locks that manage the water level. The lockmaster's problem concerns the optimal strategy for operating such a lock. In the lockmaster's problem we are given a lock, a set of ships coming from downstream that want to go upstream, and another set of ships coming from upstream that want to go downstream. We are given the arrival times of the ships and a constant lockage time; the goal is to minimize total waiting time of the ships. In this paper a dynamic programming algorithm (DP) is proposed that solves the lockmaster's problem in polynomial time. We extend this DP to different generalizations that consider weights, water usage, capacity, and (a fixed number of) multiple chambers. Finally, we prove that the problem becomes strongly NP-hard when the number of chambers is part of the input.Lock scheduling; Batch scheduling; Dynamic programming; Complexity;
    • …
    corecore