644 research outputs found

    Notch filters for port-Hamiltonian systems

    Get PDF

    Notch filters for port-Hamiltonian systems

    Get PDF

    Analog quantum simulator of the multistate Landau-Zener model

    Get PDF
    Superconducting qubits are one of the most promising candidates for near term quantum applications. In this work we established a subtractive method to build Josephson junctions, the centerpiece of almost all superconducting quantum circuits. Using this technique we built a quantum simulator of the multistate Landau-Zener model. In time-resolved measurements we studied the transient dynamics of this system for different initial states

    Spin Detection, Amplification, and Microwave Squeezing with Kinetic Inductance Parametric Amplifiers

    Full text link
    Superconducting parametric amplifiers operating at microwave frequencies have become an essential component in circuit quantum electrodynamics experiments. They are used to amplify signals at the single-photon level, while adding only the minimum amount of noise required by quantum mechanics. To achieve gain, energy is transferred from a pump to the signal through a non-linear interaction. A common strategy to enhance this process is to place the non-linearity inside a high quality factor resonator, but so far, quantum limited amplifiers of this type have only been demonstrated from designs that utilize Josephson junctions. Here we demonstrate the Kinetic Inductance Parametric Amplifier (KIPA), a three-wave mixing resonant parametric amplifier that exploits the kinetic inductance intrinsic to thin films of disordered superconductors. We then utilize the KIPA for measurements of 209Bi spin ensembles in Si. First, we show that a KIPA can serve simultaneously as a high quality factor resonator for pulsed electron spin resonance measurements and as a low-noise parametric amplifier. Using this dual-functionality, we enhance the signal to noise ratio of our measurements by more than a factor of seven and ultimately achieve a measurement sensitivity of 2.4 x 10^3 spins. Then we show that pushed to the high-gain limit, KIPAs can serve as a `click'-detector for microwave wave packets by utilizing a hysteretic transition to a self-oscillating state. We calibrate the detector's sensitivity to be 3.7 zJ and then apply it to measurements of electron spin resonance. Finally, we demonstrate the suitability of the KIPA for generating squeezed vacuum states. Using a cryogenic noise source, we first confirm the KIPAs in our experiment to be quantum limited amplifiers. Then, using two KIPAs arranged in series, we make direct measurements of vacuum noise squeezing, where we generate itinerant squeezed states with minimum uncertainty more than 7 dB below the standard quantum limit. High quality factor resonators have also recently been used to achieve strong coupling between the spins of single electrons in gate-defined quantum dots and microwave photons. We present our efforts to achieve the equivalent goal for the 31P flip-flop qubit. In doing so, we confirm previous predictions that the superconducting material MoRe would produce magnetic field-resilient resonators and demonstrate that it has kinetic inductance equivalent to the popular material NbTiN

    Controlling phonons and photons at the wavelength-scale: silicon photonics meets silicon phononics

    Get PDF
    Radio-frequency communication systems have long used bulk- and surface-acoustic-wave devices supporting ultrasonic mechanical waves to manipulate and sense signals. These devices have greatly improved our ability to process microwaves by interfacing them to orders-of-magnitude slower and lower loss mechanical fields. In parallel, long-distance communications have been dominated by low-loss infrared optical photons. As electrical signal processing and transmission approaches physical limits imposed by energy dissipation, optical links are now being actively considered for mobile and cloud technologies. Thus there is a strong driver for wavelength-scale mechanical wave or "phononic" circuitry fabricated by scalable semiconductor processes. With the advent of these circuits, new micro- and nanostructures that combine electrical, optical and mechanical elements have emerged. In these devices, such as optomechanical waveguides and resonators, optical photons and gigahertz phonons are ideally matched to one another as both have wavelengths on the order of micrometers. The development of phononic circuits has thus emerged as a vibrant field of research pursued for optical signal processing and sensing applications as well as emerging quantum technologies. In this review, we discuss the key physics and figures of merit underpinning this field. We also summarize the state of the art in nanoscale electro- and optomechanical systems with a focus on scalable platforms such as silicon. Finally, we give perspectives on what these new systems may bring and what challenges they face in the coming years. In particular, we believe hybrid electro- and optomechanical devices incorporating highly coherent and compact mechanical elements on a chip have significant untapped potential for electro-optic modulation, quantum microwave-to-optical photon conversion, sensing and microwave signal processing.Comment: 26 pages, 5 figure
    corecore