34 research outputs found

    One-Step Abductive Multi-Target Learning with Diverse Noisy Samples: An Application to Tumour Segmentation for Breast Cancer

    Full text link
    One-step abductive multi-target learning (OSAMTL) is an approach proposed to handle complex noisy labels. However, OSAMTL is not suitable for the situation where diverse noisy samples (DNS) are provided for a learning task. In this paper, giving definition of DNS, we propose one-step abductive multi-target learning with DNS (OSAMTL-DNS) to expand the original OSAMTL to a wider range of tasks that handle complex noisy labels. Applying OSAMTL-DNS to tumour segmentation for breast cancer in medical histopathology whole slide image analysis, we show that OSAMTL-DNS is able to enable various state-of-the-art approaches for learning from noisy labels to achieve significantly more rational predictions.Comment: The proofs provide in the supplementary needs further careful consideratio

    Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs

    Get PDF
    Supervised deep learning requires labelled data. On medical images, data is often labelled inconsistently (e.g., too large) with varying accuracies. We aimed to assess the impact of such label noise on dental calculus detection on bitewing radiographs. On 2584 bitewings calculus was accurately labeled using bounding boxes (BBs) and artificially increased and decreased stepwise, resulting in 30 consistently and 9 inconsistently noisy datasets. An object detection network (YOLOv5) was trained on each dataset and evaluated on noisy and accurate test data. Training on accurately labeled data yielded an mAP50: 0.77 (SD: 0.01). When trained on consistently too small BBs model performance significantly decreased on accurate and noisy test data. Model performance trained on consistently too large BBs decreased immediately on accurate test data (e.g., 200% BBs: mAP50: 0.24; SD: 0.05; p < 0.05), but only after drastically increasing BBs on noisy test data (e.g., 70,000%: mAP50: 0.75; SD: 0.01; p < 0.05). Models trained on inconsistent BB sizes showed a significant decrease of performance when deviating 20% or more from the original when tested on noisy data (mAP50: 0.74; SD: 0.02; p < 0.05), or 30% or more when tested on accurate data (mAP50: 0.76; SD: 0.01; p < 0.05). In conclusion, accurate predictions need accurate labeled data in the training process. Testing on noisy data may disguise the effects of noisy training data. Researchers should be aware of the relevance of accurately annotated data, especially when testing model performances

    Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss

    Full text link
    Recent advances in deep learning algorithms have led to significant benefits for solving many medical image analysis problems. Training deep learning models commonly requires large datasets with expert-labeled annotations. However, acquiring expert-labeled annotation is not only expensive but also is subjective, error-prone, and inter-/intra- observer variability introduces noise to labels. This is particularly a problem when using deep learning models for segmenting medical images due to the ambiguous anatomical boundaries. Image-based medical diagnosis tools using deep learning models trained with incorrect segmentation labels can lead to false diagnoses and treatment suggestions. Multi-rater annotations might be better suited to train deep learning models with small training sets compared to single-rater annotations. The aim of this paper was to develop and evaluate a method to generate probabilistic labels based on multi-rater annotations and anatomical knowledge of the lesion features in MRI and a method to train segmentation models using probabilistic labels using normalized active-passive loss as a "noise-tolerant loss" function. The model was evaluated by comparing it to binary ground truth for 17 knees MRI scans for clinical segmentation and detection of bone marrow lesions (BML). The proposed method successfully improved precision 14, recall 22, and Dice score 8 percent compared to a binary cross-entropy loss function. Overall, the results of this work suggest that the proposed normalized active-passive loss using soft labels successfully mitigated the effects of noisy labels

    Detecting Label Noise via Leave-One-Out Cross-Validation

    Full text link
    We present a simple algorithm for identifying and correcting real-valued noisy labels from a mixture of clean and corrupted sample points using Gaussian process regression. A heteroscedastic noise model is employed, in which additive Gaussian noise terms with independent variances are associated with each and all of the observed labels. Optimizing the noise model using maximum likelihood estimation leads to the containment of the GPR model's predictive error by the posterior standard deviation in leave-one-out cross-validation. A multiplicative update scheme is proposed for solving the maximum likelihood estimation problem under non-negative constraints. While we provide proof of convergence for certain special cases, the multiplicative scheme has empirically demonstrated monotonic convergence behavior in virtually all our numerical experiments. We show that the presented method can pinpoint corrupted sample points and lead to better regression models when trained on synthetic and real-world scientific data sets

    Analyze the Robustness of Classifiers under Label Noise

    Full text link
    This study explores the robustness of label noise classifiers, aiming to enhance model resilience against noisy data in complex real-world scenarios. Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance. This research focuses on the increasingly pertinent issue of label noise's impact on practical applications. Addressing the prevalent challenge of inaccurate training data labels, we integrate adversarial machine learning (AML) and importance reweighting techniques. Our approach involves employing convolutional neural networks (CNN) as the foundational model, with an emphasis on parameter adjustment for individual training samples. This strategy is designed to heighten the model's focus on samples critically influencing performance.Comment: 21 pages, 11 figure

    Curriculum Guided Domain Adaptation in the Dark

    Full text link
    Addressing the rising concerns of privacy and security, domain adaptation in the dark aims to adapt a black-box source trained model to an unlabeled target domain without access to any source data or source model parameters. The need for domain adaptation of black-box predictors becomes even more pronounced to protect intellectual property as deep learning based solutions are becoming increasingly commercialized. Current methods distill noisy predictions on the target data obtained from the source model to the target model, and/or separate clean/noisy target samples before adapting using traditional noisy label learning algorithms. However, these methods do not utilize the easy-to-hard learning nature of the clean/noisy data splits. Also, none of the existing methods are end-to-end, and require a separate fine-tuning stage and an initial warmup stage. In this work, we present Curriculum Adaptation for Black-Box (CABB) which provides a curriculum guided adaptation approach to gradually train the target model, first on target data with high confidence (clean) labels, and later on target data with noisy labels. CABB utilizes Jensen-Shannon divergence as a better criterion for clean-noisy sample separation, compared to the traditional criterion of cross entropy loss. Our method utilizes co-training of a dual-branch network to suppress error accumulation resulting from confirmation bias. The proposed approach is end-to-end trainable and does not require any extra finetuning stage, unlike existing methods. Empirical results on standard domain adaptation datasets show that CABB outperforms existing state-of-the-art black-box DA models and is comparable to white-box domain adaptation models
    corecore