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Abstract: Supervised deep learning requires labelled data. On medical images, data is often labelled
inconsistently (e.g., too large) with varying accuracies. We aimed to assess the impact of such
label noise on dental calculus detection on bitewing radiographs. On 2584 bitewings calculus was
accurately labeled using bounding boxes (BBs) and artificially increased and decreased stepwise,
resulting in 30 consistently and 9 inconsistently noisy datasets. An object detection network (YOLOv5)
was trained on each dataset and evaluated on noisy and accurate test data. Training on accurately
labeled data yielded an mAP50: 0.77 (SD: 0.01). When trained on consistently too small BBs model
performance significantly decreased on accurate and noisy test data. Model performance trained on
consistently too large BBs decreased immediately on accurate test data (e.g., 200% BBs: mAP50: 0.24;
SD: 0.05; p < 0.05), but only after drastically increasing BBs on noisy test data (e.g., 70,000%: mAP50:
0.75; SD: 0.01; p < 0.05). Models trained on inconsistent BB sizes showed a significant decrease of
performance when deviating 20% or more from the original when tested on noisy data (mAP50: 0.74;
SD: 0.02; p < 0.05), or 30% or more when tested on accurate data (mAP50: 0.76; SD: 0.01; p < 0.05). In
conclusion, accurate predictions need accurate labeled data in the training process. Testing on noisy
data may disguise the effects of noisy training data. Researchers should be aware of the relevance of
accurately annotated data, especially when testing model performances.

Keywords: artificial intelligence; machine learning; deep learning; computer vision; convolutional
neural networks; calculus; digital imaging; radiology

1. Introduction

Object detection is a computer vision technique which seeks to identify and label object
instances within images by means of outlining rectangles, also called bounding boxes (BBs).
Often, object detection models are trained in a supervised manner, with annotators labeling
objects of interest by drawing BBs over them. In natural scenes of images this seems to be
a relatively easy task for annotators as humans process such visual data without actively
thinking about it. However, object detection has long moved beyond natural image scenes
and has become an important component of medical image analysis [1,2].

Providing labels for medical data remains challenging. Besides datasets being smaller
in comparison to open datasets of common objects (like cats or dogs) [3] experts are needed
to label medical data. As labeling medical images is time consuming and as individual
experts may miss certain findings often multiple experts are needed to label a dataset.
These experts—even if not missing a finding—may introduce noise to a dataset during
labeling: They may, if calibrated imperfectly, consistently label certain objects as too small
or too large, for example, or be inconsistent in their labeling, e.g., one expert labels too small,
one too large, and the third one perfectly right. The present study focuses on this type of
label noise (other noise emanates from the discussed variability in accuracy, for instance).
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Noisy labels in supervised learning are challenging researchers and data scientists.
Supervised object detection models are trained by iterating through data. During the
training process the model is being optimized to minimize the difference between the
model predictions and the provided labels. Given noisy labels, the model may learn
incorrect features to recognize an object. Different types of label noise have been described,
e.g., inter-observer variability (inconsistent labels) and class-independent errors (consistent,
e.g., too small or too big labels) [4]. The present study inspects the effects of on both
aforementioned types of label noise.

In recent years first proposals have been developed to reduce the negative impact of
noisy labels in machine learning, e.g., choice of loss function, data weighting or filtering
of noisy labels [4,5]. Even though some approaches led to better model performance the
impact of noisy labels remains not well described. Few studies have been conducted to in-
vestigate the influence of noisy labels on deep learning based object detection. The effect of
additional, missing and shifted BBs was examined using SSD [6,7] and YOLOv3 [8,9] model
architectures for tasks such as drone detection, demonstrating that especially missing BBs
negatively impact model performance [9]. The beneficial effect of relabeling a noisy dataset
with accurate labels was proven for tasks as maritime object detection using YOLOv5 [10,11].
In medicine noisy labels been explored even less often, e.g., for histopathological image
analysis, demonstrating that too large labels negatively affect model performance. Further,
inconsistent label sizes have been shown to be disadvantageous [12].

Demonstrating that noise is detrimental would underpin the relevance of accurate,
consistent labeling. Automated detection of dental calculus on radiographs has so far
not been studied but is relevant in the context of this study as calculus is represented by
small irregular objects with oftentimes blurred boundaries, i.e., objects which are hard to
label accurately. Bitewings are a type of dental radiograph that is used to visualize the
coronal part of the posterior teeth. The main indication for bitewing radiographs is caries
diagnosis. Clinically, the automated detection of calculus on radiographs could warrant
further clinical examination and trigger certain therapies like professional tooth cleaning or
scaling and root planning.

Our objective was to assess the impact of label noise on the performance of a state-of-
the-art deep learning based object detection model for one particular problem: detection
of dental calculus on bitewing radiographs. Our hypothesis was that both consistent and
inconsistent noise significantly affects model performance. We further investigate the object
detection models with explainable artificial intelligence (XAI) methods to visualize the
impact of noisy labels on an exemplary model prediction.

2. Materials and Methods
2.1. Study Design

This study employed a commonly used deep learning based single-shot object detector:
YOLOv5, which demands accurate labels for optimal performance. We employed a dataset
of bitewing radiographs labelled for dental calculus by two calibrated experts using optimal
(accurate) BBs. To simulate noise we first consistently increased or decreased the BBs sizes
to generate consistently too small or too large labels. In a second step we increased and
decreased only parts of the dataset, i.e., generated an inconsistently labeled dataset. We
then explored the performance of YOLOv5 to detect calculus on these datasets and further
employed methods of XAI to assess which image features were particularly relevant for
the model’s decision when trained on differently noisy datasets. The waiver for informed
consent is approved by ethics committee Charité—Universitätsmedizin Berlin. Reporting of
this study follows the checklist for authors for artificial intelligence in dental research [13].

2.2. Dataset

Our dataset contained 4837 bitewings collected during routine care at a public univer-
sity clinic in Berlin, Germany with radiographic machines from Dürr Dental SE (Bietigheim-
Bissingen, Germany) and Sirona Densply Inc. (Bensheim, Germany). The prevalence of
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calculus on image level was 36.1%. Bitewings without calculus were excluded, resulting
in 1746 included images from a German subpopulation with a mean [SD, min, max] age
of 38.5 years [16.0, 4.8, 83.5], 51.0% males and 49.0% females. Two calibrated dentists,
experienced in image analysis performed the labeling process. In the first cycle one expert
labeled dental calculus using BBs with the aim of achieving the most accurate label (as
small as possible but enclosing the whole object). A second expert checked all images in a
second pass and controlled them once more resulting in the “accurate” base-case dataset.
A comprehensive sample of available bitewings was used.

2.3. Simulating Noise
2.3.1. Consistent Noise

To assess the impact of consistent label noise, the area of each BB was stepwise
increased or decreased by a factor α. For this purpose, the center of the BBs was kept and
the height and width were each multiplied by the square root of α. These labels will be
referred to as manipulated labels below:

Original: x, y, h, w

Manipulated : x, y,
√

α× h,
√

α×w

where x and y are the coordinates of the BB center, h the height and w the width of the BB.
The experiments were conducted to the following α values: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 (Figure 1).
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Figure 1. Example of simulated label noise: Correctly placed Bounding Boxes (BBs) outlining dental
calculus were artificially increased and decreased to generate noise by multiplying the BB rectangle
area with a factor α, resulting in consistently too small or too large BBs. Here, from left to right:
α = 0.5, α = 1 (original), α = 5, α = 10.

2.3.2. Inconsistent Noise

A further experiment was performed to assess the impact of inconsistent noise. We
simulated the behavior of three hypothetical experts, each labeling one third of the dataset
(which may be the case for large datasets where it is impossible to have one expert label the
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full dataset). For the first third we kept the original BBs to represent an accurate labeler. For
the second and third parts we increased and decreased the BBs respectively, to simulate too
small and too large labeling. The manipulation of the labels was performed as described
above with different deviations of too large and too small BBs. The deviation δ from the
original annotation of the BB area was systematically increased from 0.1 to 0.9 in 0.1 steps.
A δ of 0.1 means an α of 1.1 for manipulating the third of the too large labeler and an α of
0.9 for manipulating the third of the too small labeler, etc.

Noise was introduced to the overall dataset (including the validation and test dataset),
while for the evaluation (see below) performance testing was performed on both noisy test
data (as it can be expected that the test data would usually be drawn from an overall noisily
labelled dataset as well) and accurate (non-noisy) test data to evaluate the “true” effect of
noise, which may be disguised by testing on noisy data but also to gauge if only paying
specific attention to labeling the test dataset would be an option.

Data preprocessing and manipulation was done with Pythons pandas library version
1.4.1 [14].

2.4. Model

In this study the state-of-the-art object detection model architecture “You Only Look
Once” version 5 (YOLOv5) was employed [10]. YOLOv5 is a one-stage object detector
architecturally similar to the single shot detector (SSD) [7] and RetinaNet [15]. YOLOv5
provides different sub architectures such as YOLOv5x, which is recommended for small
objects. The model was pretrained on the Microsoft Common Objects in Context (COCO)
dataset [3].

Each model was trained for up to 300 epochs, referring to a complete pass through
the entire training dataset. The training process was stopped after 100 epochs without
improvement on validation data (early stopping). Mosaic and right-left-flip data augmen-
tation, techniques to increase the dataset with image modifications to build a more robust
model, were applied. The model was optimized using stochastic gradient descent, an
optimization algorithm to minimize the difference between the model predictions and the
true labels (loss function). The number of images used in each iteration (batch size) was set
to 16, while the step size to updates the model parameters (learning rate) was set to 0.01.
Training was performed with an image resolution of 640 × 640. Five-fold cross validation
was performed. Data was randomly split into separate training, validation and test sets of
60%, 20% and 20% respectively. For each fold the model for evaluation on the test set was
selected based on the epoch with best performance on the validation set. All computations
were performed on Nvidia A100 40 GB GPU.

2.5. Model Evaluation

Performance was evaluated using mean average precision with the intersection over
union (IoU) threshold set to 50% (mAP50). IoU describes the overlap of the predicted BB
(pBB) with the ground truth BB (gBB) in relation to the total area of unified BBs:

IoU =
pBB ∩ gBB
pBB ∪ gBB

With the IoU being higher than the given threshold the object is counted as correctly
detected (true positive—tp) or not (false positive—fp). Average precision (AP) is the
weighted mean of Precision in the Precision-Recall-Curve—calculating Precision and Recall
(sensitivity) with different model confidence thresholds.

Precision (P) describes what proportion of the detected calculus is truly dental calculus:

P =
tp

tp + f p
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Recall (R), in medical domain better known as sensitivity, describes how many of all
existing concretions are detected:

R =
tp

tp + f n

where fn are false negative/not detected BB. Mean average precision (mAP) is the mean of
AP over all classes:

mAP =
1
N

N

∑
i=1

APi

where N is the number of classes. Since in this experiment only one class was considered,
mAP is equivalent to AP. We nevertheless refer to mAP because it is the common metric to
compare object detection models.

All models were examined for significant differences compared to the base-case model
using non-parametric Mann-Whitney-U-test. p-values below 0.05 were considered statisti-
cally significant. The statistical analysis was performed with Pythons SciPy library version
1.9.0 [16].

2.6. Explainability

In order to interpret the model results an XAI method, namely SHapley Additive
exPlanations (SHAP) based on Shapley Values was applied [17]. Shapley values capture
the contribution of each feature to the prediction in comparison to the average prediction.
Within object detection tasks these features are created by grouping pixels in the input
images to form super pixels. The super pixels were subsequently included and excluded,
and it was evaluated how much this affected the output of the model. The results were
represented as heatmaps overlayed on the input image, i.e., the contribution of each super
pixels to the model prediction was represented. Each image was divided into 400 (20 × 20)
super pixels. The evaluation was performed 25 times per detection.

3. Results
3.1. Base-Case Model

The model trained and tested on the base-case (accurate) dataset resulted in a mean
[SD, min, max] mAP50 of 0.77 [0.01, 0.77, 0.78]. The base-case model is used as reference
model and all models trained on noisy labels were compared against it (blue dashed line in
Figures 2 and 3).

3.2. Consistent Noise

Models trained on consistently smaller BBs showed significantly and escalatingly
decreased performance when tested on noisy test data (orange graph in Figure 2; p < 0.05/
Mann-Whitney). In contrast, increasing BB size up to α = 60 did not lead to significant
changes in mAP50 (p = 0.15); moderate increase (e.g., BB size increased by α = 6) even led
to a significant improvement (p = 0.02). However, if tested on accurate test data (green
graph in Figure 2) the effect of consistently smaller BB was considerable once more while
this time also consistently increased BB sizes detrimentally affected the model. Decreased
BB sizes to α = 0.8 and increased to α = 2 already led to significant performance drops
(p = 0.008 for both). Performance of models trained on consistent noisy labels were listed in
Table S1 and Table S2 of the supplementary material.

3.3. Inconsistent Noise

When inconsistently noisy data (to simulate different annotators) was used, increasing
noise had escalating detrimental effects when tested on inconsistently noisy data (orange
graph in Figure 3). A δ of 0.2 or more caused a significant decrease to mean [SD, min,
max] mAP50 0.74 [0.02, 0.71, 0.76] (p = 0.008). When the model was tested on accurate data
(green graph in Figure 3) this effect was slightly attenuated; a δ of 0.3 or more resulted in a
significant deterioration (p = 0.03), mean [SD, min, max] mAP50 of 0.76 [0.01, 0.74, 0.76].
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Performance of models trained on inconsistent noisy labels were listed in Tables S3 and S4
of the supplementary material.
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Figure 2. Performance (mean average precision with an intersection over union threshold of 50%
(mAP50)) of calculus detection using deep learning models trained on consistently too small or
too large BBs (α) when tested on consistently noisy test data (orange graph; mean and range of
cross-validation mAP50 values) or accurate test data (green graph) compared with the model trained
on accurate data (dashed blue line).
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Figure 3. Model performance (mAP50) of models trained on inconsistently noisy data to simulate
different annotators. Data was split into thirds. In one third of the data, the bounding boxes (BB)
area was decreased, in one third kept constant, and in one third increased, respectively. δ specifies
the deviation from the original size in both directions. Graphs show the mean and range values of
models tested on such noisy data (orange graph) and tested on accurate data (green graph) compared
with the model trained on accurate data (dashed blue line).
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3.4. Explainability

Figure 4 shows an evaluation of a detection using SHAP. Red values represent a
positive contribution of the super pixel to the detection and blue values a contribution
against it. Even with an area enlargement by a factor of 100, visible calculus still played an
important role for the detection.
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α = 1, α = 10, α = 100 (from left to right). Second row: SHapley Additive exPlanations (SHAP)
heatmap where red values represent a positive contribution of the super pixel to the detection and
blue values a negative contribution.

4. Discussion

Labeling medical data for deep learning is a complex and understudied aspect. Many
studies published over the last years focus on developing models while basic research into
understanding the impact of the labeling process and how to optimize it is scarce [2,18,19].
The present study assessed if consistent or inconsistent label noise detrimentally affects
the performance of a deep learning model for a specific problem, calculus detection on
bitewings. This exemplary task was chosen as calculus is highly prevalent and detecting it
would be clinically relevant, but more so as labeling images for calculus is a task which
may lead to noise given the discussed challenges. Our hypothesis that both consistent
and inconsistent noise significantly affects the model performance needs to be accepted.
Moreover, we demonstrated that the true performance of models trained on noisy data
may not be reflected if the test data is similarly noisy; only on accurate test data the impact
of label noise was fully reflected.

Our findings need to be discussed in detail. If the model was both trained and tested
on consistently noisy data its performance remained moderately high for most datasets,
indicating that inaccurate labeling and its impact on performance may be disguised if
testing is performed on the resulting noisy data too. This was particularly true for larger
BBs: When tested on noisy data the effect of enlarged BBs during training was absent for
considerable time, even for massively increased sizes (α ≤ 60).
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Evaluating the models with XAI methods as shown in Figure 4 gives us insights
into possible causes: calculus remained most relevant for models prediction even when
trained using large BBs; the super-pixels used to decide where calculus is present were
near identical regardless of the BB size. Additional pixels included in the enlarged BB
(α = 100) played a subordinate role for the prediction, likely as the standardization of
the image (bitewings are similar to each other, which is different in comparison with
natural scene images) allowed the model to learn the background and consequently ignore
it successfully even if BBs were too large. The illustration of the predictions further
show that the object (calculus) remained center of the predicted BBs. This reinforces the
assumption that the model has learned the annotation error (consistently too large BBs).
This phenomenon might be further explained by the learning process of neural networks:
the model is optimized to predict BBs as close to the ground truth as possible. To increase
the performance the objective thus becomes: (1) identification of the object of interest
(calculus); (2) fit BB with dimensions to maximize area overlap with ground truth (e.g.,
consistently too large).

In contrast, if the BB were too small, we observed poor performance regardless of the
chosen test (noisy or accurate). It can be assumed that given that calculus is already a very
small object, models trained on too small BBs simply did not receive enough information
to allow learning the features of calculus. Furthermore, with small objects, a small error
already leads to the required IoU threshold not being reached. When tested on accurate data,
the detrimental effect of noise on training success was demonstrated; researchers should
pay special attention to consistent and accurate labeling of their test set to allow providing
reliable information about the true accuracy of their model. This aspect of the results should
be emphasized, since other studies dealing with noisy data tested their models solely on
accurate data [4,9,12]. Testing on noisy data highlights the risk of performance obfuscation.
It is especially relevant for medical applications where results are difficult to interpret and
to compare due to a lack of standardized testing approaches and benchmarking datasets.
In the medical domain deep learning models trained on noisy data are likely to be tested
on a subset of the same distribution of data and therefore carry the same amount of noise.

In contrast, testing on noisy data may even lead to false conclusions, for example if a
model was trained on accurate data and the (correctly) predicted BBs would not fit to the
provided test data, leading to low performance metrics. A similar effect was demonstrated
when dealing with inconsistent noise: Testing on accurate data showed no significant
performance deterioration while δ ≤ 0.3, indicating that the model was capable of learning
from inconsistent noisy labels. However, testing on noisy labels disguises this capability
and already suggests a decrease in model performance when δ ≥ 0.2.

As discussed, several methods have been proposed to handle label noise through
technical methods: a different loss function, measuring the difference between the model
predictions and the desired output showed promising results when the underlying data set
for a neural network contained noisy labels [4,20,21]. However, technical developments
that aim to reduce the influence of label noise are often tested on clean benchmarking data
sets. These data sets are currently not available in dentistry due to sensitive nature of the
data and the associated data protection making the generation of a particularly clean test
data set indispensable as demonstrated by the discussed results.

This study has a number of limitations. First, our goal was not to develop the best
model for our specific problem; we did not aim to optimize performance by employing,
for example, hyperparameter tuning but to understand the impact of noise in principle.
Secondly, our trained models were not tested for generalizability while being developed
using data from one German subpopulation only. Again, we accept this caveat in the
context of our studys aims. Third, we assessed the impact of noise for one particular task,
detecting calculus on bitewings. The effects on other modeling tasks like segmentation
(where noisy labels are also likely) or other clinical problems (e.g., caries, apical lesion,
periodontal bone loss detection) or images (other radiographs, photographs, histological
data) may differ; we hence cannot claim transferability of our findings. Similarly only one
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model—YOLOv5—was employed; the effect of noise on other models may differ to some
degree, as shown on histopathological images for cell segmentation [12].

5. Conclusions

Accurate predictions need accurate labeled data in the training process. Testing on
noisy data may disguise the effects of noisy training data. Modelers should be aware of the
relevance of accurately annotated data, especially when testing model performance, and
users should scrutinize models accordingly for labeling quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12093058/s1, Table S1: Performance of calculus detection
trained on consistently too large (α > 1) or too small (α < 1) bounding boxes when tested on accurate
data; Table S2: Performance of calculus detection trained on consistently too large (α > 1) or too small
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