11 research outputs found

    Normalization Techniques for Statistical Inference from Magnetic Resonance Imaging

    Get PDF
    While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer\u27s Disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers

    Tissue-Based MRI Intensity Standardization: Application to Multicentric Datasets

    Get PDF
    Intensity standardization in MRI aims at correcting scanner-dependent intensity variations. Existing simple and robust techniques aim at matching the input image histogram onto a standard, while we think that standardization should aim at matching spatially corresponding tissue intensities. In this study, we present a novel automatic technique, called STI for STandardization of Intensities, which not only shares the simplicity and robustness of histogram-matching techniques, but also incorporates tissue spatial intensity information. STI uses joint intensity histograms to determine intensity correspondence in each tissue between the input and standard images. We compared STI to an existing histogram-matching technique on two multicentric datasets, Pilot E-ADNI and ADNI, by measuring the intensity error with respect to the standard image after performing nonlinear registration. The Pilot E-ADNI dataset consisted in 3 subjects each scanned in 7 different sites. The ADNI dataset consisted in 795 subjects scanned in more than 50 different sites. STI was superior to the histogram-matching technique, showing significantly better intensity matching for the brain white matter with respect to the standard image

    Transfer learning by feature-space transformation: A method for Hippocampus segmentation across scanners

    Get PDF
    Many successful approaches in MR brain segmentation use supervised voxel classification, which requires manually labeled training images that are representative of the test images to segment. However, the performance of such methods often deteriorates if training and test images are acquired with different scanners or scanning parameters, since this leads to differences in feature representations between training and test data. In this paper we propose a feature-space transformation (FST) to overcome such differences in feature representations. The proposed FST is derived from unlabeled images of a subject that was scanned with both the source and the target scan protocol. After an affine registration, these images give a mapping between source and target voxels in the feature space. This mapping is then used to map all training samples to the feature representation of the test samples. We evaluated the benefit of the proposed FST on hippocampus segmentation. Experiments were performed on two datasets: one with relatively small differences between training and test images and one with large differences. In both cases, the FST significantly improved the performance compared to using only image normalization. Additionally, we showed that our FST can be used to improve the performance of a state-of-the-art patch-based-atlas-fusion technique in case of large differences between scanners

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    Alignment of contrast enhanced medical images

    Get PDF
    The re-alignment of series of medical images in which there are multiple contrast variations is difficult. The reason for this is that the popularmeasures of image similarity used to drive the alignment procedure do not separate the influence of intensity variation due to image feature motion and intensity variation due to feature enhancement. In particular, the appearance of new structure poses problems when it has no representation in the original image. The acquisition of many images over time, such as in dynamic contrast enhanced MRI, requires that many images with different contrast be registered to the same coordinate system, compounding the problem. This thesis addresses these issues, beginning by presenting conditions under which conventional registration fails and proposing a solution in the form of a ’progressive principal component registration’. The algorithm uses a statistical analysis of a series of contrast varying images in order to reduce the influence of contrast-enhancement that would otherwise distort the calculation of the image similarity measures used in image registration. The algorithm is shown to be versatile in that it may be applied to series of images in which contrast variation is due to either temporal contrast enhancement changes, as in dynamic contrast-enhanced MRI or intrinsically in the image selection procedure as in diffusion weighted MRI

    Prior information for brain parcellation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 171-184).To better understand brain disease, many neuroscientists study anatomical differences between normal and diseased subjects. Frequently, they analyze medical images to locate brain structures influenced by disease. Many of these structures have weakly visible boundaries so that standard image analysis algorithms perform poorly. Instead, neuroscientists rely on manual procedures, which are time consuming and increase risks related to inter- and intra-observer reliability [53]. In order to automate this task, we develop an algorithm that robustly segments brain structures. We model the segmentation problem in a Bayesian framework, which is applicable to a variety of problems. This framework employs anatomical prior information in order to simplify the detection process. In this thesis, we experiment with different types of prior information such as spatial priors, shape models, and trees describing hierarchical anatomical relationships. We pose a maximum a posteriori probability estimation problem to find the optimal solution within our framework. From the estimation problem we derive an instance of the Expectation Maximization algorithm, which uses an initial imperfect estimate to converge to a good approximation.(cont.) The resulting implementation is tested on a variety of studies, ranging from the segmentation of the brain into the three major brain tissue classes, to the parcellation of anatomical structures with weakly visible boundaries such as the thalamus or superior temporal gyrus. In general, our new method performs significantly better than other :standard automatic segmentation techniques. The improvement is due primarily to the seamless integration of medical image artifact correction, alignment of the prior information to the subject, detection of the shape of anatomical structures, and representation of the anatomical relationships in a hierarchical tree.by Kilian Maria Pohl.Ph.D
    corecore