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Abstract— The main drawback of magnetic resonance imag-
ing (MRI) represents the lack of a standard intensity scale.
All observed numerical values are relative and can only be
interpreted together with their context. Before feeding MRI
data volumes to supervised learning segmentation procedures,
their histograms need to be registered to each other, or in
other words, they need a so-called normalization. The most
popular histogram normalization technique used to assist brain
MRI segmentation is the algorithm proposed by Nyúl et al in
2000, which aligns the histograms of a batch of MRI volumes
without paying attention to possible focal lesions that might
distort the histogram. Alternately, some recent works applied
histogram normalization based on a simple linear transform,
and reported achieving slightly better accuracy with them.
This paper proposes to investigate, which is the most suitable
method and parameter settings for histogram normalization to
be performed before the segmentation of brain MRI images,
separately in the cases of absence and presence of focal lesions.

Index Terms— magnetic resonance imaging, tumor segmen-
tation, brain tissue segmentation, histogram normalization.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a very popular
technique in current medical diagnosis, due to its relatively
high contrast and fine resolution, and despite its drawback
consisting in the fact that recorded numeric values do not
directly reflect the observed tissues. The correct interpre-
tation of observed images requires the adaptation of pixel
intensities to their context, which is achieved via histogram
normalization. The comparison of two intensity values from
two different MRI records without having the histograms
previously normalized, would be like comparing the value
of two jewels by their weight and ignoring to check the
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precious metal they are made of. Figure 1 presents some
brain MRI slices from different records before and after
histogram normalization, demonstrating the necessity and the
effect of this processing step.

Literature contains several attempts to standardize the
intensity distributions of MRI records (e.g. [1], [2], [3], [4],
[5]), but none of them were designed to specially handle
cases with focal lesions, where the relative intensity of some
relevant part of the pixels may seriously differ from the
normal. Brain tumors may grow to up to 25% of the brain
volume, causing strong distortions in pixel intensity distribu-
tions. The most popular histogram normalization technique
used by current brain tumor segmentation solutions was
proposed by Nyúl et al. [1]. This algorithm (referred to as
Algorithm A2 in this paper) works in batch mode: it adjusts
the intensity distributions of all available records according to
the averaged position of some milestones defined as certain
percentiles of each input distribution. The more milestones
are used, the stronger constraints are applied to the output
distributions. However, applying very strong constraints to
intensity distributions and expecting them to be similar
no matter whether they contain focal lesions or not, may
influence the segmentation quality.

The most part of current brain tumor segmentation works
(e.g. [6], [7], [8], [9], [10], [11], [12], [13], [14], [15])
only mention that they use the histogram normalization
technique of Nyúl et al. [1], without giving details of the
number of milestones or other parameters. There are few
exceptions, where the number of landmark points is revealed:
Soltaninejad et al. [16] proposed using 12 landmarks, while
Pinto et al. [17] seem to be using the M12 setting of
Algorithm A2, see details in Table I. Alternately, Tustison
et al. [18] noted that in their study, a simple linear trans-
formation based histogram normalization method provided
slightly better accuracy than Algorithm A2, but they did not
make their linear transform method public. Other works that
employed such linear techniques (e.g. [19], [20], [21]) did not
compare their histogram normalization to any other method.

This paper proposes to investigate, which of the above
mentioned histogram normalization techniques are most
suitable to assist machine learning techniques in achieving
best segmentation quality, and what settings are optimal in
this process. Two brain MRI segmentation problems are
considered separately, one without and the other with focal
lesions. In a previous paper [22] we have already compared
the effect of various histogram normalization techniques in
a brain tumor segmentation problem. This paper can be
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Fig. 1. Eight T1-weighted slices from different records of from the BraTS
2019 LGG data, before (top row) and after histogram normalization (bottom
row).

considered an extension of the previous study in the follow-
ing directions: (1) MRI data with and without focal lesions
are considered separately; (2) the arsenal of segmentation
techniques involved in the evaluation process is widened;
(3) more thorough evaluation is applied; (4) more specific
recommendations are formulated in the current study.

II. MATERIALS AND METHODS

A. Data

This study attempts to deal with volumetric MRI image
data, both with and without focal lesions. In this order, two
data sets are involved in the experiments:

• All ten infant brains from the training data set of the
iSeg-2017 challenge [23]. These volumes have two data
channels T1 and T2, and the ground truth determined
by human experts. The segmentation job requires to
distinguish the three main brain tissue types: white
matter (WM), grey matter (GM), and cerebro-spinal
fluid (CSF).

• Fifty selected low-grade tumor records taken from the
Brain Tumor Segmentation (BraTS) challenge training
dataset [24], [25], from year 2019. These volumes have
four data channels (T1, T2, T1c and FLAIR), and the
ground truth determined by human experts. Out of the
76 available records, those 50 were selected for this
study, which had missing data only at single pixels.
These values were filled with intensity values averaged
from intensity values encountered in the 3 × 3 × 3
neighborhood. The considered segmentation job is to
separate the whole tumor from normal tissues.

B. Procedure

Both datasets consist of MRI records, so it is not surprising
that they are fed to very similar procedures. However, due to
the nature of the imaged organs, there are some differences
as well. The processing steps are briefly presented in the
following:

1) Preprocessing: has the main goal to fill the missing
data with averaged values taken from the neighborhood of the
pixel in question; histogram normalization, whose techniques
are presented in detail in Section III; and feature generation
that extends the set of features from 2 to 21 in case of infant
brain records, and from 4 to 36 in case of the BraTS records.
In both cases, averages from planar neighborhoods of sizes
ranging from 3×3 to 11×11, and minimum, maximum and
averaged values from spatial 3 × 3 × 3. The feature vector

of pixels of the infant brain records are also extended with
relative coordinates in the three main directions.

2) Segmentation: via supervised machine learning tech-
niques, which have the goal of distinguishing pixels that
belong to different tissue types (WM, GM and CSF in
case if infant brain records, lesions and normal tissues
in case of BraTS records). Three classification algorithms
were included in this study, approaches that functionally
strongly differ from each other: random forest (RF), K-
nearest neighbors (KNN), and ensembles of support vector
machines (SVM). In case of both datasets and all classifica-
tion approaches, the available data was divided to training
and testing data in proportion of 90% vs. 10%. This is
explained by the fact that only 10 infant brain records were
available that determined us to deploy the “leave-one-out”
scheme. We kept the same ratio for the BraTS data as well:
the 50 records were randomly divided into ten groups of five,
and each group took its turn to serve as testing data while
using the other nine groups for training. The classification
algorithms were deployed with various settings listed below:

1) RF1: RF using 2000 randomly chosen pixels from each
training volume of infant brains, or 1000 pixels from
training volumes of BraTS, allowing maximum tree
depth of 18 in both cases.

2) RF2: RF using 20,000 pixels from each training vol-
ume of infant brains, or 10,000 pixels from training
volumes of BraTS, maximum tree depth of 22.

3) RF3: RF using 100,000 pixels from each training
volume of infant brains, or 50,000 pixels from training
volumes of BraTS, maximum tree depth of 26.

4) KNN1: KNN using 500 randomly chosen pixels from
each training volume of infant brains, or 200 pixels
from training volumes of BraTS.

5) KNN2: KNN using 2000 pixels from each training
volume of infant brains, or 1000 pixels from training
volumes of BraTS.

6) KNN3: KNN using 10,000 pixels from each training
volume of infant brains, or 5000 pixels from training
volumes of BraTS.

7) SVM1: Ensemble of 15 SVM units, each trained with
30 randomly chosen pixels from each training volume
of infant brains or BraTS.

All RF approaches were set to maximum tree count of 45,
while all KNN approaches made decisions based on the votes
of k = 11 neighbors.

3) Postprocessing: is only applied to BraTS records.
The outcome of the classification is only considered as
intermediary result, which is fed to a morphological post-
processing phase. The 11 × 11 × 11 sized neighborhood of
each pixel is evaluated: the number of pixels called positive
in the intermediate result, and the total number of brain pixels
is first extracted from the neighborhood. Those pixels are
finally labeled positive, which have a ratio of positives above
1/3. This post-processing step usually improves the relevant
accuracy indicators by 2-3% [20].

4) Statistical evaluation: is employed to find the best
performing histogram equalization scheme and settings. In
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case of infant brain volumes, the main accuracy indicator
is the rate of correct decisions ACC, defined as the ratio of
pixels whose label match the ground truth. ACC is extracted
separately for each volume, and the average of these values
is used to characterize the global accuracy of the evaluated
methods. In case of whole tumor segmentation, the true
positives (TPi), true negatives (TNi), false positives (FPi)
and false negatives (FNi) are first identified for each volume
i, i = 1 . . . 50. The Dice Score of volume i is defined as
DSCi = 2 × TPi/(2 × TPi + FNi + FPi). The average
Dice Score is then ADS = 1

50

∑50
i=1 DSCi, while the overall

Dice Score is ODS = 2 ×
∑50

i=1 TPi/(2 ×
∑50

i=1 TPi +∑50
i=1 FNi +

∑50
i=1 FPi).

III. METHODS OF HISTOGRAM NORMALIZATION

Two approaches are compared in this study, both hav-
ing several applications in current MRI data segmentation
methods. The goal is to establish, which approach and what
settings are needed to achieve best segmentation accuracy.
Both approaches are formulated in such a way that the target
set of normalized intensities is the continuous interval [0, 1],
which can later be resampled to any desired discrete spectral
resolution. Our numerical evaluations use 8-bit coding, using
values of 1 to 255 for valid brain pixel intensities and 0 for
outer (non-brain) regions of the volume.

A. Method A1: linear transform with one parameter

The linear transform approach works on each volume
separately, and treats data channels independently of each
other. It transforms any intensity value y to min{max{ay+
b, 0}, 1}, where coefficients a and b are identified in such a
way, that the 25-percentile intensity value p25 is transformed
to λ25 ∈ (1/4, 1/2), while the 75-percentile p75 to 1− λ25.
The coefficients of the linear transform are:

a =
1− 2λ25
p75 − p25

and b =
λ25p75 − (1− λ25)p25

p75 − p25
.

All input intensity values below [p25(1−λ25)−p75λ25]/(1−
2λ25) are transformed to 0, while input intensities above
[p75(1 − λ25) − p25λ25]/(1 − 2λ25) are transformed to 1.
So both tails of the input histogram are subject to cutting,
but the thresholds are defined dynamically, they depend on
the input parameter λ25 and the data through percentiles p25
and p75. In our previous works [19], [20], [21], this approach
was used with parameter setting λ25 = 0.4.

B. Method A2 by Nyúl et al. [1]

The histogram normalization introduced by Nyúl et al. [1]
treats data channels independently of each other, but uses the
chosen data channel of all available volumes to establish the
normalized histogram for each volume. It cuts a fixed amount
of both tails of input histograms, defined by the percentiles
pLo and pHi = p100−Lo, where pLo is a parameter. Method
A2 registers the histograms of different volumes together
based on predefined milestones defined as percentiles. Table
I presents 12 milestone schemes involved in this study. The
step of the algorithm are presented in the following:

TABLE I
VARIOUS LANDMARK SCHEMES FOR THE ALGORITHM A2

Scheme Landmark points
M01 pLo, p50, pHi

M02 pLo, p25, p75, pHi

M03 pLo, p25, p50, p75, pHi

M04 pLo, p10, p50, p90, pHi

M05 pLo, p20, p40, p60, p80, pHi

M06 pLo, p10, p25, p75, p90, pHi

M07 pLo, p20, p35, p50, p65, p80, pHi

M08 pLo, p10, p25, p50, p75, p90, pHi

M09 pLo, p10, p25, p40, p60, p75, p90, pHi

M10 pLo, p10, p25, p40, p50, p60, p75, p90, pHi

M11 pLo, p10, p20, p30, p40, p60, p70, p80, p90, pHi

M12 pLo, p10, p20, p30, p40, p50, p60, p70, p80, p90, pHi

1) For any record with index h (h = 1 . . . H), we estab-
lish a bounded linear mapping of original intensities
y(h) → min{max{a(h)y(h) + b(h), 0}, 1} in such a
way that the percentile pLo is mapped to 0 and pHi

is mapped to 1. The identified coefficients a(h) and
b(h) are used to identify the mapped positions of each
milestone p(h)m (m = 1 . . .M , M stands for the number
of milestones) from the chosen milestone scheme (see
Table I): p(h)m → ŷ

(h)
m = a(h)p

(h)
m + b(h).

2) The final transformation for any record h maps the
milestone p

(h)
m (m = 1 . . .M ) to the averaged value

ym = 1
H

∑H
i=1 ŷ

(i)
m , and apply piecewise linear in-

terpolation for any intensity value situated between
consecutive milestones. So the final transformation of
intensity y of record h is given by the formula:

y →


0 if y < p

(h)
Lo

1 if y > p
(h)
Hi

ym +
(ym+1−ym)(y−ph

m)

ph
m+1

−ph
m

otherwise

,

where m is established in such a way that phm ≤ y <
phm+1.

IV. RESULTS AND DISCUSSION

Both histogram normalization methods underwent a thor-
ough evaluation process that involved the two MRI data
sets presented in Section II-A, the three classifier algorithms
with the 7 settings listed in Section II-B. The statistical
evaluation is based on the global accuracy in case of the
infant brain MRI data, and the average and overall Dice
similarity score in case of the whole tumor segmentation
problem. The obtained results are presented in the following
paragraphs.

Figure 2 exhibits the global accuracy obtained by the ran-
dom forest classifier, when using Algorithm A2 for histogram
normalization. The plot on the left side shows that at low
amount of training data (setting RF1), the milestone schemes
M01, M03, and M07 performed the best, while parameter
setting pLo = 0.5% is the optimal choice in most cases.
Using larger amount of training data (setting RF2) leads
to higher global accuracy values, while the best performing
settings remaining the same. The plot on the right side shows
the segmentation accuracy achieved by the setting RF3 that
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Fig. 2. Global accuracy achieved by the random forest classifiers RF1 (left), RF2 (middle), and RF3 (right) in the segmentation of infant brain tissues,
after histogram normalization via Algorithm A2 using various milestone settings and pLo parameter values, or Algorithm A1 with various values of λ25.
RF3 combined with Algorithm A2 used pLo = 0.5%.

Fig. 3. Global accuracy achieved by the KNN classifiers KNN1 (left), KNN2 (middle), and KNN3 (right) in the segmentation of infant brain tissues,
after histogram normalization via Algorithm A2 using various milestone settings and pLo parameter values, or Algorithm A1 with various values of λ25.
KNN3 combined with Algorithm A2 used pLo = 0.5%.

Fig. 4. Global accuracy achieved by the SVM1 classifier in the segmen-
tation of infant brain tissues, after histogram normalization via Algorithm
A2 using various milestone settings and pLo parameter values.

Fig. 5. Global accuracy achieved by the SVM1, KNN1, KNN2 and
RF1 classifiers in the segmentation of infant brain tissues, after histogram
normalization via Algorithm A1 using various values of parameter λ25.

uses very large training data set. Here the red columns
indicate the accuracy obtained by the use of Algorithm A1
for histogram normalization and the blue ones for Algorithm
A2 with pLo = 0.5%. Apparently M01 is the best performing
milestone scheme, and it gives 0.5% higher global accuracy
than Algorithm A1 at any value of λ25. This difference can
be seen at lower training data sets as well, if we compare
the global accuracy values with the ones presented in Fig. 5.

Analogously to Fig. 2, Fig. 3 presents the segmentation ac-
curacy achieved by the KNN classifier, using three different
training data sizes. Here the milestone schemes M01, M02,
M03, M05, and M07 seem to perform better than others, and
the global accuracy values seem to be 0.2-0.5% higher than

in case of linear transform based histogram normalization.
Similarly to the RF classifier, KNN seems to perform best
when using Algorithm A2 for histogram normalization, M01
or M03 milestone scheme, and pLo = 0.5%.

Figure 4 presents the segmentation accuracy results ob-
tained by the ensemble of SVM classifiers using setting
SVM1. The best performing milestone schemes of Algorithm
A2 are the same as in case of KNN or RF classifiers. As
the best result obtained by SVM in combination with linear
transform based histogram normalization is 79.6% (see Fig.
5), Algorithm A2 with its best setting has a lead of 0.5%
in accuracy. Figure 5 presents the segmentation accuracy
achieved by various classifiers combined with Algorithm
A1, plotted against the value of parameter λ25. Whenever
λ25 < 0.42, the value of λ25 does not influence the accuracy.
As λ25 approaches its theoretical maximum 0.5, the accuracy
achieved by KNN classifier is damaged. This is because at
such high values of λ25, hardly anything is cut in the tails
of the histograms, and KNN is sensitive to extreme feature
values.

For the whole brain tumor segmentation problem, the
obtained Dice scores are represented in Figs. 6-9 in an
analogous way with Figs. 2-5. The difference here is that
instead of a single global accuracy value we have an average
and an overall Dice score. The latter is always greater by 2-
3%, due to the fact that larger tumors are likely to be detected
with better accuracy than smaller ones.

Figure 6 presents the Dice scores obtained by the random
forest classifier, when using Algorithm A2 for histogram
normalization. The plot on the left side shows that at low
amount of training data (setting RF1), the milestone schemes
M01, M02, M03, M05 and M07 performed better than the
others, while parameter pLo should be kept below 0.5% to
achieve fine accuracy. Using larger amount of training data
(with RF2 and RF3) leads to higher global accuracy values,
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Fig. 6. Average and overall Dice Scores achieved by the random forest classifiers RF1 (left), RF2 (middle), and RF3 (right) in the segmentation of
whole tumors, after histogram normalization via Algorithm A2 using various milestone settings and pLo parameter values, or Algorithm A1 with various
values of λ25. RF3 combined with Algorithm A2 used pLo = 0.5%.

Fig. 7. Average and overall Dice Scores achieved by the random forest classifiers RF1 (left), RF2 (middle), and RF3 (right) in the segmentation of
whole tumors, after histogram normalization via Algorithm A2 using various milestone settings and pLo parameter values, or Algorithm A1 with various
values of λ25. KNN3 combined with Algorithm A2 used pLo = 0.5%.

Fig. 8. Global accuracy achieved by the SVM1 classifier in the segmenta-
tion of whole tumors, after histogram normalization via Algorithm A2 using
various milestone settings and pLo parameter values.

Fig. 9. Average and overall Dice Scores achieved by the SVM1, KNN1,
KNN2, RF1 and RF2 classifiers in the segmentation of whole tumors,
after histogram normalization via Algorithm A1 using various values of
parameter λ25.

while the best performing settings prove to be milestone
schemes M01, M02 and M03 with pLo around 0.3%. The plot
on the right side also includes three columns that represent
best Dice scores obtained with histogram normalization via
Algorithm A1, having values 0.8% below the highest ones
provided by Algorithm A2.

It is not surprising at all that KNN classifier provides
similar results (Fig. 7). Dice scores are somewhat lower than
in case of using RF classifier, mainly due to using smaller
sets of training data because KNN becomes prohibitively
slow when the training data exceeds certain size. KNN gives
best Dice scores when combined with Algorithm A2 using

milestone scheme M03 and pLo = 0.1%.
Figure 8 exhibits the Dice scores obtained by the ensemble

of SVM classifiers using setting SVM1. The best performing
milestone schemes of Algorithm A2 are the same ones as
in case of KNN or RF classifiers, but not always in the
same order. The comparison with the Dice scores achieved
using Algorithm A1 for histogram normalization (Fig. 9)
reveals that Algorithm A2 at its best settings can provide
Dice scores that are greater by 1%. Figure 9 presents the
Dice scores achieved by various classifiers combined with
Algorithm A1, plotted against the value of parameter λ25.
None of the classifiers is really influenced by the value of
parameter λ25. The absolute value of the Dice scores are
below the ones provided by Algorithm A2.

Recommendations formulated based on the above pre-
sented experiments are listed below:

• Algorithm A2, proposed in general form by Nyúl et al.
[1], can cause better accuracy than a well-designed lin-
ear transform in machine learning based segmentation
of MRI data, if it is properly adjusted.

• The best performing milestone schemes contain no more
than five milestones, including the ones situated at the
two ends of the intensity range, pLo and pHi.

• The best performing milestone schemes do not use
milestones at p10 and p90 percentiles. The milestones
situated closest to pLo and pHi should be at least as far
as p20 and p80, respectively.

• Our experiments showed that pLo should be set at the
0.5% percentile or below that, and accordingly, pHi at
the 99.5% percentile or above that.

• The above recommendations are valid for histogram
normalization of MRI data, no matter whether it con-
tains focal lesions or not.

The results of our investigation suggests that studies like
Tustison et al. [18] may have achieved up to 1% higher
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Dice scores by using the histogram normalization of Nyúl
et al. [1] with the above recommended settings, instead
of deploying the simple linear transform. Similarly, studies
like Soltaninejad et al. [16] and Pinto et al. [17] may have
obtained half to one percent higher Dice scores if they used
the Algorithm A2 with considerably less milestones. Further
on, the uncountable amount of brain MRI segmentation
papers within the BraTS mainstream, which only mention
having employed the histogram normalization of Nyúl et al.
[1], may improve their segmentation accuracy by adjusting
their work according to our recommendations.

Limitations of this study include the following: only two
sets of MRI records were used to investigate the behavior of
histogram normalization techniques. Further on, only brain
MRI data were involved in this investigation, so its findings
may not be equally valid in case of imaging other organs.

V. CONCLUSIONS
This paper proposed to investigate, which of the com-

monly used histogram normalization methods provides the
most suitable preprocessed brain MRI data for accurate
segmentation via machine learning techniques, and which
parameter settings are likely to assure high quality results.
Two publicly available brain MRI data sets were involved
in the investigation, one without and the other with focal
lesions. Based on the results obtained via experimental eval-
uation, we recommend using the histogram normalization
method of Nyúl et al. [1], with milestone scheme M03 or
M01 given in Table I.
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