52,466 research outputs found

    Sectional normalization and recognization on the PV-Diagram of reciprocating compressor

    Get PDF
    The shortcomings of familiar normalization method on the PV-Diagram of reciprocating compressor are analyzed in the paper. A sectional normalization method of the PV-Diagram was put forward, and a recognizing technique of fault characteristics based on support vector machines for cylinder and piston system in reciprocating compressor is introduced. Four sections of curve in the PV-Diagram indicate four stages of a gas compression cycle. After the PV-Diagram is normalized with the new method, the curvilinear curvatures are unchanged in comparison with the original diagram. The contour and shape relations between normal and fault state character curves are retained. The pressure signals collected from cylinder are normalized and treated as characteristic vectors, and the vectors are inputted into a multi-class classifier composed of many support vector machines in order to classify fault modes. The experimental results show that the method can identify faults of the cylinder and piston system more correctly

    Control-Group Feature Normalization for Multivariate Pattern Analysis Using the Support Vector Machine

    Get PDF
    Normalization of feature vector values is a common practice in machine learning. Generally, each feature value is standardized to the unit hypercube or by normalizing to zero mean and unit variance. Classification decisions based on support vector machines (SVMs) or by other methods are sensitive to the specific normalization used on the features. In the context of multivariate pattern analysis using neuroimaging data, standardization effectively up- and down-weights features based on their individual variability. Since the standard approach uses the entire data set to guide the normalization it utilizes the total variability of these features. This total variation is inevitably dependent on the amount of marginal separation between groups. Thus, such a normalization may attenuate the separability of the data in high dimensional space. In this work we propose an alternate approach that uses an estimate of the control-group standard deviation to normalize features before training. We also show that control-based normalization provides better interpretation with respect to the estimated multivariate disease pattern and improves the classifier performance in many cases

    Generalization properties of finite size polynomial Support Vector Machines

    Full text link
    The learning properties of finite size polynomial Support Vector Machines are analyzed in the case of realizable classification tasks. The normalization of the high order features acts as a squeezing factor, introducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the corresponding generalization error presents a crossover, more or less abrupt depending on the distribution's anisotropy and on the task to be learned, between a fast-decreasing and a slowly decreasing regime. This behaviour corresponds to the stepwise decrease found by Dietrich et al.[Phys. Rev. Lett. 82 (1999) 2975-2978] in the thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.Comment: 12 pages, 7 figure

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Distinguishing Posed and Spontaneous Smiles by Facial Dynamics

    Full text link
    Smile is one of the key elements in identifying emotions and present state of mind of an individual. In this work, we propose a cluster of approaches to classify posed and spontaneous smiles using deep convolutional neural network (CNN) face features, local phase quantization (LPQ), dense optical flow and histogram of gradient (HOG). Eulerian Video Magnification (EVM) is used for micro-expression smile amplification along with three normalization procedures for distinguishing posed and spontaneous smiles. Although the deep CNN face model is trained with large number of face images, HOG features outperforms this model for overall face smile classification task. Using EVM to amplify micro-expressions did not have a significant impact on classification accuracy, while the normalizing facial features improved classification accuracy. Unlike many manual or semi-automatic methodologies, our approach aims to automatically classify all smiles into either `spontaneous' or `posed' categories, by using support vector machines (SVM). Experimental results on large UvA-NEMO smile database show promising results as compared to other relevant methods.Comment: 16 pages, 8 figures, ACCV 2016, Second Workshop on Spontaneous Facial Behavior Analysi

    Gait classification of patients with Fabry's disease based on normalized gait features obtained using multiple regression models

    Get PDF
    Diagnosis of Fabry disease (FD) remains a challenge mostly due to its rare occurrence and phenotipical variability, with considerable delay between onset and clinical diagnosis. It is then of extreme importance to explore biomarkers capable of assisting the earlier diagnosis of FD. There is growing evidence supporting the use of gait assessment in the diagnosis and management of several neurological diseases. In fact, gait abnormalities have previously been observed in FD, justifying further investigation. The aim of this study is to evaluate the effectiveness of different machine learning strategies when distinguishing patients with FD from healthy controls based on normalized gait features. Gait features of an individual are affected by physical characteristics including age, height, weight, and gender, as well as walking speed or stride length. Therefore, in order to reduce bias due to inter-subject variations a multiple regression (MR) normalization approach for gait data was performed. Four different machine learning strategies - Support Vector Machines (SVM), Random Forest (RF), Multiple Layer Perceptrons (MLPs), and Deep Belief Networks (DBNs) - were employed on raw and normalized gait data. Wearable sensors positioned on both feet were used to acquire the gait data from 36 patients with FD and 34 healthy subjects. Gait normalization using MR revealed significant differences in percentage of stance phase spent in foot flat and pushing (p < 0.05), with FD presenting lower percentages in foot flat and higher in pushing. No significant differences were observed before gait normalization. Support Vector Machine was the superior classifier achieving an FD classification accuracy of 78.21% after gait normalization, compared to 71.96% using raw gait data. Gait normalization improved the performance of all classifiers. To the best of our knowledge, this is the first study on gait classification that includes patients with FD, and our results support the use of gait assessment on the clinical assessment of FD.This work was partially supported by the projects NORTE-01-0145- FEDER- 000026 (DeM-Deus Ex Machina) financed by NORTE2020 and FEDER, and the Pluriannual Funding Programs of the research centres CMAT and Algoritm
    corecore