7 research outputs found

    Nonuniform abstractions, refinement and controller synthesis with novel BDD encodings

    Get PDF
    This paper presents a control synthesis algorithm for dynamical systems to satisfy specifications given in a fragment of linear temporal logic. It is based on an abstraction-refinement scheme with nonuniform partitions of the state space. A novel encoding of the resulting transition system is proposed that uses binary decision diagrams for efficiency. We discuss several factors affecting scalability and present some benchmark results demonstrating the effectiveness of the new encodings. These ideas are also being implemented on a publicly available prototype tool, ARCS, that we briefly introduce in the paper

    Nonuniform abstractions, refinement and controller synthesis with novel BDD encodings

    Get PDF
    This paper presents a control synthesis algorithm for dynamical systems to satisfy specifications given in a fragment of linear temporal logic. It is based on an abstraction-refinement scheme with nonuniform partitions of the state space. A novel encoding of the resulting transition system is proposed that uses binary decision diagrams for efficiency. We discuss several factors affecting scalability and present some benchmark results demonstrating the effectiveness of the new encodings. These ideas are also being implemented on a publicly available prototype tool, ARCS, that we briefly introduce in the paper

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore