533 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Hilbert's tenth problem for weak theories of arithmetic

    Get PDF
    AbstractHilbert's tenth problem for a theory T asks if there is an algorithm which decides for a given polynomial p(x̄) from Z[x̄] whether p(x̄) has a root in some model of T. We examine some of the model-theoretic consequences that an affirmative answer would have in cases such as T = Open Induction and others, and apply these methods by providing a negative answer in the cases when T is some particular finite fragment of the weak theories IE1 (bounded existential induction) or IU-1 (parameter-free bounded universal induction)

    A temporal logic for micro- and macro-step-based real-time systems: Foundations and applications

    Get PDF
    Many systems include components interacting with each other that evolve at possibly very different speeds. To deal with this situation many formal models adopt the abstraction of “zero-time transitions”, which do not consume time. These, however, have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis and pairs them with the traditional “next” operator of temporal logic to introduce a notion of micro- and macro-steps; our approach is enacted in an extension of the TRIO metric temporal logic, called X-TRIO. We study the expressiveness and decidability properties of the new logic. Decidability is achieved through translation of a meaningful subset of X-TRIO into Linear Temporal Logic, a traditional way to support automated verification. We illustrate the usefulness and the generality of our approach by applying it to provide a formal semantics of timed Petri nets, which allows for their automated verification. We also give an overview of a formal semantics of Stateflow/Simulink diagrams, defined in terms of X-TRIO, which has been applied to the automated verification of a robotic cell

    A remark on pseudo proof systems and hard instances of the satisfiability problem

    Get PDF
    We link two concepts from the literature, namely hard sequences for the satisfiability problem sat and so-called pseudo proof systems proposed for study by KrajĂ­cek. Pseudo proof systems are elements of a particular nonstandard model constructed by forcing with random variables. We show that the existence of mad pseudo proof systems is equivalent to the existence of a randomized polynomial time procedure with a highly restrictive use of randomness which produces satisfiable formulas whose satisfying assignments are probably hard to find.Peer ReviewedPostprint (published version

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Mathematical Logic: Proof theory, Constructive Mathematics

    Get PDF
    The workshop “Mathematical Logic: Proof Theory, Constructive Mathematics” was centered around proof-theoretic aspects of current mathematics, constructive mathematics and logical aspects of computational complexit
    • …
    corecore