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We link two concepts from the literature, namely hard sequences for the satisfiability problem SAT and so-
called pseudo proof systems proposed for study by Krajı́ček. Pseudo proof systems are elements of a particular
nonstandard model constructed by forcing with random variables. We show that the existence of mad pseudo
proof systems is equivalent to the existence of a randomized polynomial time procedure with a highly restrictive
use of randomness which produces satisfiable formulas whose satisfying assignments are probably hard to find.
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1 Introduction

Pseudo proof systems. It is a basic question of mathematical logic, unsettled to date, whether there exists a
propositional proof system that has short proofs for all tautologies. Abstractly, a propositional proof system is
a polynomial time function from the set of binary strings {0, 1}∗ into the set TAUT of (binary strings coding)
propositional tautologies. Often [11] it is additionally required, that the function is not only into TAUT, meaning
soundness, but also onto, meaning completeness. Having short proofs means that the system is polynomially
bounded: every tautology has a proof, i.e., preimage, of length polynomial in its length. Such proof systems exist
if and only if NP = coNP [11].

As is well known, “one can think of length-of-proofs lower bounds as about problems of how to construct
suitable models of particular bounded arithmetic” [23, p. 175]. A general method to construct such models is
developed in [23] following Scott’s [35] forcing with random variables. An important instance of this method is the
Boolean valued model K (Fn

PV).1 Its universe is given by the set of all polynomial time functions on binary strings
of some fixed nonstandard length n ∈ M , where M is some fixed large nonstandard model of true arithmetic.
The Boolean valuation considers two such functions equal if they differ only on an infinitesimal fraction of input
strings. The model interprets the language having symbols for all polynomial time functions and relations, and
it turns out that in K (Fn

PV) all true universal statements in this language are valid. In particular, this holds for
Cook’s theory PV formalizing feasible reasoning [9]. This together with its appealing and familiar definition
makes K (Fn

PV) an object of interest. We shall mention some related constructions (cf. Remark 3.3) once we gave
the precise definition in § 3.2.

The objects of K (Fn
PV) “can be viewed from two different perspectives” [23, p. 160], namely, first as elements

of the universe of K (Fn
PV) and second as functions defined on binary strings {0, 1}n . For example, viewed as an

element of K (Fn
PV) a propositional proof system is a tautology in the sense of K (Fn

PV). Conversely, a tautology
in the sense of K (Fn

PV) is a pseudo proof system (Definition 3.4). Viewed as a function on binary strings a pseudo
proof system may be unsound. In fact, it is conceivable that mad pseudo proof systems exist (Definition 3.6).
Viewed as elements of K (Fn

PV) these are tautologies in the sense of K (Fn
PV) but viewed as functions on binary

strings they never output a tautology.

∗ Corresponding author; e-mail: jmaly@dbai.tuwien.ac.at
1 A short introduction to the model-theoretic concepts is given in § 3, no knowledge of [23] is assumed.
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In [23, § 24.4], Krajı́ček asks for transfer principles concerning pseudo proof systems. Loosely speaking, a
transfer principle is a statement that allows to infer properties of standard objects from properties of nonstandard
objects, and vice-versa. In this note we prove such a transfer principle that links the existence of mad pseudo proof
systems to a hypothesis concerning the computational complexity of the satisfiability problem SAT of independent
interest, explained next.

Hard sequences. For an algorithm solving a hard computational task there exist instances of the problem
witnessing that the algorithm is not feasible. For example, P �= NP if and only if every SAT-algorithm has a hard
sequence:

Definition 1.1 Let Q ⊆ {0, 1}∗ and A be a Q-algorithm, i.e., an algorithm deciding Q, and let p be a
polynomial. A sequence (xn)n∈N is p-hard for A if for infinitely many n ∈ N

(H1) xn ∈ Q and
(H2) tA(xn) > p(|xn|, n).

Here, tA(x) denotes the running time of A on input x . Being hard for A means being p-hard for A for all
polynomials p.

It is a natural question to ask whether such a sequence could be computable in polynomial time. Here, we say
that a sequence (xn)n∈N of binary strings xn ∈ {0, 1}∗ is polynomial time computable if so is the function that
computes xn from 1n = 1 · · · 1 (n times).2

Hard sequences have been studied from at least two perspectives. The first is speed-up, going back at least to
[36], and the second, more relevant to this paper, is to witness failure of feasible algorithms, studied not only for
deterministic but also for randomized [3, 13, 37] and non-uniform algorithms [2, 27]. Cf. [6, 31] for some recent
discussions.

Hard Sequence Hypothesis 1.2 For every SAT-algorithm A there exists a polynomial time computable
sequence which is hard for A.

We are not aware of a place where this hypothesis has been formulated explicitly, but it is certainly implicit in
many papers. We are also not aware of any well-established computational hardness hypothesis that would imply
this hypothesis.

A natural (cf., e.g., [13]) weakening of the Hard Sequence Hypothesis is to allow randomness in the construction
of hard sequences. One then asks for polynomial time samplable (as opposed to computable) probably hard
sequences (Definitions 2.2 & 2.1). We observe that SAT-algorithms do have such sequences under cryptographic
assumptions (Proposition 2.4). Second, we observe that SAT-solvers do have polynomial time computable hard
sequences under a well-established hypothesis (Proposition 2.7): SAT-algorithms which upon accepting a satisfiable
input formula F also output a binary string of length � |F | that satisfies F . We say that x = x1 · · · xn ∈ {0, 1}n

satisfies F if so does the truth assignment that maps the i-th variable of F to xi if i � n and to 0 otherwise.

Transfer principle. Our transfer principle links the existence of mad pseudo proof systems with the existence
of probably hard sequences that are samplable with a quite restrictive use of randomness that we call invertibility
(cf. Definition 2.8). Intuitively, the sampler is required to witness its outputs by publishing the random seed used.

Theorem 1.3 Let M be an ℵ1-saturated elementary extension of N. Then the following are equivalent:
(a) There is a nonstandard n ∈ M such that K (Fn

PV) contains mad pseudo proof systems.
(b) Every SAT-solver has an invertibly samplable probably hard sequence.
(c) There is a polynomial time computable function f such that for all ε > 0 and all polynomial time

computable functions g there are infinitely many n ∈ N such that
(i) for all x ∈ {0, 1}n: f (x) is a falsifiable propositional formula;

(ii) for at most an ε-fraction of x ∈ {0, 1}n: g(x) is a falsifying assignment of f (x).

These statements are true if NE ∩ coNE �⊆ E and pseudo-random generators exist.

2 Note that (H2) in the definition of a polynomial time computable hard sequence is equivalent to the statement that tA(xn) is not nO(1) ,
matching the definition in [8].
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The property in (c) could be taken as a standard definition of a mad pseudo proof system, i.e., one not referring to
nonstandard models. It is our notion of invertibility that makes the equivalence of (b) and (c) an easy consequence
of Levin’s optimal SAT-solver [26]. The equivalence to (a) is the remark this short paper wants to communicate,
as a contribution to the model-theory of the structures K (Fn

PV).

2 Hard sequences

Assuming NP �⊆ P, Gutfreund, Shaltiel, and Ta-Shma showed that for every fixed polynomial p every SAT-
algorithm has polynomial time computable p-hard sequence [13]. A diagonalizing argument shows that one can
compute hard sequences in slightly superpolynomial time (cf. [13, Theorem 1.6] for such a construction) but the
construction of polynomial time computable hard sequences is open.

Does randomness help? As for a notion of feasibility for sequences of random strings3 we borrow the following
from average case complexity [4]:

Definition 2.1 A sequence of random strings (Xn)n∈N is (polynomial time) samplable if there exists a
polynomial time computable sampler for it, that is, a function D : {0, 1}∗ → {0, 1}∗ such that D ◦ Un has the
same distribution as Xn for all n ∈ N. Here, Un denotes a random variable uniformly distributed in {0, 1}n .

The following definition is convenient. With suitable adjustments, it makes sense for randomized SAT-
algorithms, and has been implicitly studied in [13, 37]. Here, we restrict attention to deterministic algorithms.

Definition 2.2 Let A be a Q-algorithm, p a polynomial and δ, ε � 0. A sequence (Xn)n∈N of random strings
is (δ, ε)-probably p-hard for A if for infinitely many n ∈ N

(P1) Pr(Xn ∈ Q) � 1 − δ and
(P2) Pr(tA(Xn) > p(|Xn|, n)) � 1 − ε.

The sequence is (δ, ε)-probably hard for A if for all polynomials p it is (δ, ε)-probably p-hard for A. And we
call it probably hard for A if for all ε > 0 it is (0, ε)-probably hard for A.

We observe that, using randomness, (superpolynomial) hardness is achievable under cryptographic
assumptions:4

Definition 2.3 A cryptographic pseudo-random generator with stretch 2n is a polynomial time computable
function G : {0, 1}∗ → {0, 1}∗ such that |G(r)| = 2|r | for all r ∈ {0, 1}∗ and for all positive polynomials p and
all randomized polynomial time algorithms A we have for all sufficiently large n:

∣∣ Pr(A accepts G(Un)) − Pr(A accepts U2n)
∣∣ � 1/p(n). (1)

Proposition 2.4 Assume cryptographic pseudo-random generators with stretch 2n exist. Then there is a
samplable sequence which is probably hard for every SAT-algorithm.

P r o o f . Let G be a generator as assumed to exist. Clearly, its image Q := {G(r) | r ∈ {0, 1}∗} is in NP, so
there is a polynomial time reduction f from Q to SAT. Define D(r) := f (G(r)), and note Pr(D(Un) ∈ SAT) = 1
for all n ∈ N. Assume for the sake of contradiction, that (D(Un))n is not probably hard for some SAT-algorithm
B. Then there are a polynomial p and ε > 0 such that Pr(tB(D(Un)) � p(n)) � ε for infinitely many good n.

Let A accept an input r if and only if B accepts f (r) in at most p(|r |) steps. Then Pr(A accepts G(Un)) � ε

for all good n. But the event that A accepts U2n implies the event that B accepts f (U2n), hence f (U2n) ∈ SAT,
hence U2n ∈ Q. The latter event has probability � 2n/22n = 2−n . Thus, for all large enough good n the difference
of the probabilities in (1) is at least ε − 2−n � ε/2, a contradiction. �

While we are not aware of a reference for the above result, its proof is certainly folklore. Early refer-
ences for similar constructions are [5, 10] where, instead of general SAT-algorithms, SAT-solvers are considered.

3 A random string is a random variable with values in {0, 1}∗. Given any random variable we always use Pr to denote the probability
measure of the underlying probability space.

4 Such assumptions are prohibitive in the context of [2, 3, 13] who are concerned with the problem to reduce average-case hardness
hypotheses to worst-case hardness hypotheses.
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Cryptographic assumptions are not required in this case, e.g., [3, 24] construct p-hard sequences assuming cer-
tain proof lower bounds and NP �⊆ P respectively. The sequences in [3, 5, 10] also produce formulas along with
satisfying assignments, and it is clear that deterministic such sequences, namely dreambreakers [3], cannot be
(superpolynomially) hard for Levin’s optimal SAT-solver L:

Theorem 2.5 (Levin; [26]) There exists a SAT-solver L such that for every SAT-solver A there exists a poly-
nomial pA such that tL(F) � pA(tA(F) + |F |) for every F ∈ SAT.

We shall use the following easy consequence mainly with δ = 0 by referring to “the optimality of L”. Note the
lemma applies to (deterministic) hard sequences because these are (0,0)-probably hard sequences.

Lemma 2.6 Let (Xn)n∈N be a sequence of random strings and ε � δ � 0. If (Xn)n∈N is (δ, ε − δ)-probably
hard for L, then it is (δ, ε)-probably hard for every SAT-solver.

P r o o f . Let A be a SAT-solver. Assume for the sake of a contradiction that (Xn)n∈N is (δ, ε − δ)-probably
hard for L but not for A. Then, let p be a polynomial such that for almost all n ∈ N:

Pr(Xn ∈ SAT) � 1 − δ implies Pr(tA(Xn) � p(|Xn|, n)) � ε. (2)

Choose a nondecreasing polynomial pA for A according to Theorem 2.5. Then (2) implies

Pr(Xn ∈ SAT) � 1 − δ implies Pr(tL(Xn) � pA(p(|Xn|, n)) or Xn /∈ SAT) � ε,

and thus

Pr(Xn ∈ SAT) � 1 − δ implies Pr(tL(Xn) � pA(p(|Xn|, n))) � ε − δ.

Hence, (Xn)n∈N is not (δ, ε − δ)-probably hard for L. Contradiction. �

We point out that one can construct superpolynomially hard sequences for SAT-solvers under standard worst-
case assumptions. The proof is essentially known. Recall, E and NE denote deterministic and nondeterministic
simply exponential time 2O(n) , respectively.

Proposition 2.7 The following statements are equivalent, and implied by NE ∩ coNE �⊆ E:
(a) There exists a polynomial time computable sequence which is hard for L.
(b) There exists a polynomial time computable sequence which is hard for all SAT-solvers.
(c) For every SAT-solver A there exists a polynomial time computable sequence which is hard for A.
(d) For every SAT-solver A there exists an injective polynomial time computable sequence (Fn)n∈N which is

hard for A and such that |Fn| � n for all n ∈ N.

P r o o f . (a)⇒(b) follows from the optimality of L (Lemma 2.6). (b)⇒(c) and (d)⇒(a) are trivial. To prove
(c)⇒(d) we proceed as in [8, Proposition 3.2] using a padding function: a polynomial time computable function
pad that maps a formula F and a string y ∈ {0, 1}∗ to a formula pad(F, y) of length at least |F | + |y| that has the
same satisfying assignments as F , and such that there are two polynomial time functions mapping any input of
the form pad(F, y) to F and y, respectively.

Let A be a SAT-solver and assume (c). Define an algorithm B as follows: given a formula F , for t = 0, 1, . . .

compute t steps of A on each of pad(F, 10), . . . , pad(F, 1t); as soon as one of these computations halts, return
the answer obtained.

Clearly, B is a SAT-solver and there is a polynomial p such that for every t ∈ N and every formula F we
have tB(F) � p(t + tA(pad(F, 1t))). By (c) there is a polynomial time computable sequence (Fn)n hard for
B. Then (pad(Fn, 1n))n is polynomial time computable and hard for A. This sequence is injective and satisfies
|pad(Fn, 1n)| � n for all n ∈ N.

We have proved that (a)–(d) are equivalent. We now derive (b) assuming there exists a problem Q ∈ NE ∩
coNE\E. For a binary string x let num(x) be the natural number with binary expansion 1x . Then

Q′ := {1num(x) | x ∈ Q} ∈ NP ∩ coNP\P.

We now proceed as in [7, Proposition 4.5]. By the NP-completeness of SAT, there are polynomial time reductions
r1 and r0 from Q′ and {0, 1}∗\Q′ to SAT. We can assume that r1(1n) and r0(1n) are propositional formulas. Then
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r1(1n) ∨ r0(1n) ∈ SAT, and a satisfying assignment satisfies exactly one of r1(1n) and r0(1n), namely r1(1n) if
1n ∈ Q′, and r0(1n) if 1n /∈ Q′. Since Q′ /∈ P, there is no SAT-solver A such that tA(r1(1n) ∨ r0(1n)) � nO(1) . �

We now consider sequences sampled with some restricted use of randomness, as announced § 1.5

Definition 2.8 A sequence of random strings (Xn)n∈N is invertibly samplable if it has a polynomial time
sampler D which is invertible, i.e., D is injective and the partial function D−1 is computable in polynomial time.

The sampler defined in the proof of Proposition 2.4 is not invertible. For invertible samplers, hardness has the
following handy reformulation.

Lemma 2.9 Let D be an invertible polynomial time sampler for (Xn)n∈N. Then the following are equivalent:

(a) (Xn)n∈N is probably hard for L.
(b) For every polynomial time function g and for all ε > 0 there are infinitely many n such that Pr(Xn ∈

SAT) = 1 and

Pr
(
|g(Un)| � |D(Un)| and g(Un) satisfies D(Un)

)
� ε. (3)

P r o o f . “(a)⇒(b)”. Assume (b) fails and choose g and ε witnessing this. Define the following algorithm
A: given as input a formula F , compute the string y := g(D−1(F)) and check whether it has length � |F | and
satisfies F ; if so, then accept with output y, else reject.

Further, define the algorithm B to run A in parallel with an arbitrary SAT-solver. If one of the two procedures
halts accepting, then B accepts with the corresponding output. If both procedures reject, so does B.

Since A is polynomial time bounded, there is a polynomial p such that tB(F) � p(|F |) for every formula
F accepted by A. Since B is a SAT-solver, there exists a polynomial pB such that then tL(F) � pB(p(|F |))
(Theorem 2.5). Thus

Pr
(

tL(Xn) � pB(p(|Xn|))
)

� Pr
(
A accepts Xn

)

= Pr
(
|g(D−1(Xn))| � |Xn| and g(D−1(Xn)) satisfies Xn

)
.

Note this last probability equals the probability in (3). By our assumption that (a) fails this probability is > ε or
Pr(Xn ∈ SAT) < 1 for almost all n. Hence, (Xn)n∈N is not (0, ε)-probably (pB ◦ p)-hard for L.

“(b)⇒(a)”. If (a) fails, there is a polynomial p and an ε > 0 such that for almost all n, Pr(Xn ∈ SAT) < 1 or
Pr(tL(Xn) � p(|Xn|, n)) > ε.

Define a polynomial time function g as follows. On input r run L on D(r) for at most p(|D(r)|, |r |) steps. If this
computation does not halt accepting, then return the empty string; else return L’s output. Then |g(r)| � |D(r)|
for all r , and the probability in (3) equals the probability of the event that g(Un) satisfies D(Un). For n with
Pr(Xn ∈ SAT) = 1, this event is implied by the event that tL(Xn) � p(|Xn|, n), so has probability > ε. Thus
statement (b) fails. �

An easy corollary is the equivalence of statement (b) and (c) of our main theorem.

P r o o f o f T h e o r e m 1.3 (b)⇔(c). It follows from the optimality of L that there is D as in Lemma 2.9 (a)
if and only if if Theorem 1.3 (b) holds.

We show that there is D as in Lemma 2.9 (b) if and only if Theorem 1.3 (c) holds. Given a sampler D as in
Lemma 2.9 (b), define f (r) := neg(D(r)), where neg maps (a binary string coding) a formula to a its negation.
Conversely, given a function f as in Theorem 1.3 (c), define the invertible sampler D(r) := pad(neg( f (r)), r),
where pad is the padding function from the proof of Proposition 2.7.

For every n ∈ N and every polynomial time computable function g we have: D(r) is a satisfiable formula for
all r ∈ {0, 1}n if and only if f (r) is a falsifiable formula for all r ∈ {0, 1}n; further, the probability that g(Un)
satisfies D(Un) is � ε if and only if g(r) is a falsifies f (r) for only a ε-fraction of r ∈ {0, 1}n . �

5 Our notion of invertibility is more restrictive than the one considered in [38].
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Hard sequences can be transformed into invertibly samplable probably hard sequences using pseudo-random
generators (of the Nisan-Wigderson type). This is a standard application of the “general framework for deran-
domization” of [21]. For definiteness we use the parameter setting from the standard textbook [1].

Definition 2.10 Let S : N → N. A function G : {0, 1}∗ → {0, 1}∗ is an S(�)-pseudo-random generator if
G(r) is computable in time 2O(|r |) , has length S(|r |) and for all � ∈ N and all Boolean circuits C with at most
S(�)3 gates and at most S(�) inputs

| Pr
(
C(G(U�)) = 1

) − Pr
(
C(US(�)) = 1

)| < 0.1. (4)

We say pseudo-random generators exist if there is δ > 0 such that 2�δ��-pseudo-random generators exist.

Proposition 2.11 Assume pseudo-random generators exist. If there exists a polynomial time computable hard
sequence for L, then there exists an invertibly samplable probably hard sequence for L.

P r o o f . Let (Fn)n be polynomial time computable and hard for L. By Proposition 2.7 we can assume that
the sequence is injective and |Fn| � n for all n. Using the padding function pad from the proof of this proposition,
define a sampler D(r) := pad(F|r |, r).

Clearly, D is polynomial time computable and invertible. Assume for the sake of contradiction that (D(Un))n

is not probably hard for L. Applying Lemma 2.9 we get a polynomial time function g and ε > 0 and n0 ∈ N such
that for all n > n0

Pr(D(Un) ∈ SAT) = 1 implies Pr(|g(Un)| � |D(Un)| and g(Un) satisfies D(Un)) > ε. (5)

Note Pr(D(Un) ∈ SAT) is 1 or 0 depending on whether Fn ∈ SAT or not. Further note that a string satisfies
D(Un) if and only if it satisfies Fn . Hence (5) implies

Fn ∈ SAT implies Pr(g(Un) satisfies Fn) > ε. (6)

Call n ∈ N good if n > n0 and Fn ∈ SAT. We claim there is a SAT-solver A such that tA(Fn) � nO(1) for all
good n. This implies that (Fn)n is not hard for A and thus also not for L (Lemma 2.6), a contradiction.

Let c ∈ N be such that (1 − ε)c � 0.9. Let Cn be a size nO(1) circuit with c · n inputs that accepts r1 · · · rc with
ri ∈ {0, 1}n if and only if at least one of g(r1), . . . , g(rc) satisfies Fn . If n is good, then Pr(Cn(Ucn) = 1) > 0.1 by
choice of c and (6). For every m � cn we can view Cn as a circuit C ′

m on m inputs. Further, there is a polynomial
time function g such that g(n, r) satisfies Fn whenever r ∈ {0, 1}m is such that C ′

m(r) = 1.
If we set mn := 2�δ�n� where �n := �d log n� for a sufficiently large constant d ∈ N, then mn � cn and C ′

mn

has size � m3
n . Here, δ > 0 witnesses that there exists a pseudo-random generator G. For all good n we have

Pr(C ′
mn

(Umn ) = 1) > 0.1, so Pr(C ′
mn

(G(U�n )) = 1) �= 0 by (4). Hence, for good n, g(n, G(r)) satisfies Fn for at
least one r ∈ {0, 1}�n .

Define the SAT-solver A as follows. Given a formula F it runs some arbitrary SAT-solver and in parallel does
the following: compute F0, . . . , F|F |; unless there is n0 < n � |F | such that Fn = F , reject; otherwise compute
the strings g(n, G(r)) for all � nd many r ∈ {0, 1}�n ; if one of them satisfies F = Fn , then output it and accept;
else reject.

It is easy to see that A is polynomially time bounded on Fn for good n, as desired. �

3 Mad pseudo proof systems

3.1 Preliminaries: language LPV and model M

So far we considered polynomial time on the set of binary strings {0, 1}∗. To view polynomial time on N, we view
every n ∈ N as a binary string, say, by taking the binary expansion of n and deleting the most significant bit. Then
{0, 1}n corresponds to the numbers between 2n and 2n+1 − 1, and we continue to write {0, 1}n for this interval.

We consider every r -ary polynomial time computable function f : Nr → N as an r -ary function symbol and
every r -ary polynomial time decidable relation R ⊆ Nr as an r -ary relation symbol. Constants are nullary function
symbols. Let LPV denote the resulting first-order language. The standard LPV-structure has as universe N and
interprets all function and relation symbols from LPV by themselves. We denote this structure also by N and in
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general do not distinguish structures from their universes notationally. The theory Th∀(LPV) is the set of universal
sentences true in N.

To fix some notation we list some symbols of the language LPV. It contains a unary function |n| denoting the
length of n as a binary string; the {0, 1}-valued binary function bit(i, n) gives the i-th bit of this string, and 0 if
i > |n|. We say n codes the set �n� := {i ∈ N | bit(i, n) = 1}. For a set A ⊆ N coded in N let �A� denote its
code. A finite function α is coded by m if m codes the set of 〈i, α(i)〉 for i in the domain of α; here, 〈i, j〉 is a
bijection from N2 onto N. For readability we write i ∈ A for bit(i, �A�) = 1, and α(i) for a suitable LPV-term
applied to i and the code of α.

Positive rationals are coded by pairs 〈n, m〉 written n/m with m �= 0 and ambiguously we use the symbol �
also with its meaning in the rationals. There is a unary function card(n) in LPV giving the cardinality of �n�.
Further, LPV contains a unary function mapping �∅� to 0, and �A� to the rational card(�A�)/2n = Pr(Un ∈ A)
for every nonempty A ⊆ {0, 1}n . We also write Pr for this function.

We fix an ℵ1-saturated elementary extension M of N. This means M is an extension of N with the property that
every countable family of definable subsets of M with the finite intersection property has non-empty intersection.
By definable we mean definable by formulas with parameters from M . Elements of M\N are nonstandard.

We speak of sets and functions coded in M in the same sense as explained above, in particular, we have the
notations �a� and �A� for elements a of M and coded subsets A of M . The interpretation of a symbol σ ∈ LPV

in M is denoted σ M but we shall often omit the superscript M . Pairs 〈a, b〉 = 〈a, b〉M written a/b with b �= 0 are
M-rationals. E.g., the values of PrM are M-rationals. Note that every (code of a) rational is an M-rational.

We use the following notions from nonstandard analysis (cf., e.g., [19]). The standard part of an M-rational
a/b is the real

(a/b)∗ := inf{q ∈ Q | a/b � q},
provided the set on the r.h.s. is non-empty; it is undefined otherwise. An M-rational with standard part 0 is
infinitesimal.

3.2 Krajı́ček’s model K (Fn
PV)

The model K (Fn
PV) is Boolean valued with values in the Boolean algebra Bn , defined below.

The function n �→ �{0, 1}n� is definable in the standard model N. Since M is an elementary extension of
N, this function extends to a function on M . Evaluating it on n ∈ M gives the code of a subset of M that we
denote by {0, 1}n . Let An be the set of subsets of {0, 1}n that are coded in M . Then An is a Boolean algebra and
{�A� | A ∈ An} is coded in M . Note that for every LPV-formula ϕ(x) (even with parameters from M) we have
{ω ∈ {0, 1}n | M |= ϕ(ω)} ∈ An .

Let n ∈ M be nonstandard. The set Infn := {A ∈ An | PrM(�A�) is infinitesimal} is an ideal in An (and not
coded in M). Call A, A′ equivalent if their symmetric difference is in Infn . The equivalence class of A ∈ An is
denoted A/Infn . These classes form the Boolean algebra Bn , defined as the factor Bn := An/Infn .

Using the assumption that M is ℵ1-saturated one can show [23, Lemma 1.2.1]:

Lemma 3.1 For every nonstandard n ∈ M, the Boolean algebra Bn is complete.

We now describe the model K (Fn
PV). Its universe is Fn

PV, the set of all restrictions f M	{0, 1}n of f M to {0, 1}n

where f ∈ LPV is a unary function symbol (and f M its interpretation in M). We use α, β, . . . to range over Fn
PV.

Observe that every α ∈ Fn
PV is coded in M (but not the set Fn

PV, viewed as a set of codes). Further observe that for
every r -ary symbol f ∈ LPV and every r -tuple (α1, . . . , αr ) the function ω �→ f M(α1(ω), . . . , αr (ω)) defined on
ω ∈ {0, 1}n is in Fn

PV. We interpret the function symbols of LPV in this way over Fn
PV. Then every closed LPV-term

t with parameters from Fn
PV denotes an element t K (Fn

PV) of Fn
PV. The Boolean valuation maps every LPV-sentence

ϕ with parameters from Fn
PV to a Boolean value [[ϕ]] ∈ Bn . For atomic ϕ this Boolean value is defined setting:

[[R(t1, . . . , tr )]] :=
{
ω ∈ {0, 1}n |

(
t

K (Fn
PV)

1 (ω), . . . , t
K (Fn

PV)
r (ω)

)
∈ RM

}
/Infn,

[[t = s]] :=
{
ω ∈ {0, 1}n | t K (Fn

PV)(ω) = sK (Fn
PV)(ω)

}
/Infn,
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where t, s, t1, . . . tr are closed LPV-terms with parameters from Fn
PV and R ∈ LPV is an r -ary relation symbol.

For arbitrary sentences with parameters in Fn
PV the Boolean value is then determined via the usual recurrence:

[[¬ϕ]] := ∼[[ϕ]], [[(ϕ ∨ ψ)]] := [[ϕ]] ∪ [[ψ ]], [[∃xϕ(x)]] := supα[[ϕ(α)]] where ∼,∪, sup denote the obvious operations
of Bn as a complete Boolean algebra. The minimal and maximal elements of Bn are respectively 0Bn := ∅/Infn

and 1Bn := {0, 1}n/Infn .
A sentence ϕ is valid in K (Fn

PV) if [[ϕ]] = 1Bn . One straightforwardly verifies [23, Lemma 1.4.2]:

Lemma 3.2 Let n ∈ M be nonstandard. If ϕ(x, y, . . .) is a quantifier-free L PV -formula and α, β, . . . ∈ Fn
PV,

then

[[ϕ(α, β, . . .)]] = {ω ∈ {0, 1}n | M |= ϕ(α(ω), β(ω), . . .)}/Infn.

In particular, every sentence in Th∀(LPV) is valid in K (Fn
PV).

We close this subsection with some historical notes meant to back up our claim from the Introduction that the
definition of K (Fn

PV) follows natural and familiar lines.

Remark 3.3 (Historical notes) Boolean valued models date back to the work of Rasiowa and Sikorski [34],
and became popular when it was realized that Cohen’s method of forcing can be viewed as a method to construct
Boolean valued models of set theory. We refer to [17, Chapter 14] and the references therein. In [35] Scott
explained this view by constructing a model based on random variables of a higher-order theory of the reals as an
ordered field. Such Boolean powers are studied in more generality in [29, 32].

The book [23] develops Scott’s [35] forcing with random variables as a method to build models K (F) (and
two-sorted extensions thereof) of bounded arithmetics. Instead of Fn

PV these use suitable families F ⊆ M� for �

coded in M , together with an analogously defined complete Boolean algebra B. The crucial move being to restrict
the construction to families F of random variables samplable with limited computational complexity. Technically,
fullness ([17, p. 208],[29, Theorem 1.4]) of the model is lost and much of the theory develops around finding
conditions ensuring partial fullness for certain classes of formulas.

The models K (F) can be seen as partial randomizations of M in the sense of Keisler [20]: the triple (F, PrM ,B)
satisfies only a fragment of Keisler’s randomization theory. In particular, K (F) satisfies Keisler’s “Fullness Axiom”
[20, p. 128] only for very special F (cf. [23, Theorem 3.5.2]), and K (Fn

PV) does not.
As remarked in [23, footnote 2, p. 3] one can collapse K (Fn

PV) to a usual two-valued model by factoring Bn

with a suitable ultrafilter (cf. [34, Lemma 9.1]). The result is a restricted ultrapower of M . These have been studied
for fragments of arithmetic [12, 16, 22, 25, 30, 33] ever since Skolem’s definable ultrapower (cf. [14, IV.1.(b)]).

3.3 Pseudo proof systems

Let Fml be the set of naturals which (viewed as binary strings) code propositional formulas, and Sat contain the
pairs (�, m) such that m ∈ Fml and � (as a binary string) satisfies the formula coded by m. Then Fml and Sat are
relation symbols in LPV. The formula

Taut(x) := ∀y(|y| � |x | → Sat(y, x))

defines TAUT, viewed as a set of naturals. It follows from Lemma 3.2 that, if f ∈ LPV is a proof system (i.e.,
∀x Taut( f (x)) ∈ Th∀(LPV)), then f M	{0, 1}n ∈ Fn

PV is a pseudo proof system as defined in [23, p. 162]:

Definition 3.4 Let n ∈ M be nonstandard. An element α ∈ Fn
PV is a pseudo proof system in K (Fn

PV) if Taut(α)
is valid in K (Fn

PV).

Hirsch, Itsykson, Monakhov, and Smal study heuristic proof systems in [15]. These are randomized proof
systems that are allowed to prove non-tautologies (with constant probability) but only few of them with respect
to some distribution. Pseudo proof systems are conceptually different. First, they are not randomized. More
importantly, the point of a pseudo proof system is that erroneous outputs (non-tautologies) are hard to detect as
such, and not that there are few of them. In fact, as we shall see in the next section, it is conceivable that there
are mad pseudo proof systems, pseudo proof systems all of whose outputs are erroneous. The notion of a pseudo
proof system is more akin to Kabanets’s pseudoP-classes [18].
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Let neg ∈ LPV map every n ∈ Fml to its negation (to the number coding the negation of the formula coded
by n).

Lemma 3.5 Let n ∈ M be nonstandard and f ∈ LPV. The following are equivalent.
(a) f M	{0, 1}n is a pseudo proof system in K (Fn

PV).
(b) For all g ∈ LPV:

{
ω ∈ {0, 1}n | M |= |g(ω)| � | f (ω)| ∧ ¬Sat(g(ω), f (ω))

} ∈ Infn.

If M |= ∀x ∈ {0, 1}n Fml( f (x)), then these statements are equivalent to

(c) For all g ∈ LPV:
{
ω ∈ {0, 1}n | M |= Sat(g(ω), neg( f (ω)))

} ∈ Infn.

P r o o f . Write α := f M	{0, 1}n . Let β range over Fn
PV. Statement (a) means

0Bn = sup
β

∼ [[|β| � |α| → Sat(β, α)]]

= sup
β

∼ {ω ∈ {0, 1}n | M |= |β(ω)| � |α(ω)| → Sat(β(ω), α(ω))}/Infn,

using Lemma 3.2. Equivalently, for all β:
{
ω ∈ {0, 1}n | M |= |β(ω)| � | f (ω)| ∧ ¬Sat(β(ω), f (ω))

} ∈ Infn.

This is equivalent to (b) because the β ∈ Fn
PV are precisely the functions of the form g	{0, 1}n for g ∈ LPV.

Suppose M |= ∀x ∈ {0, 1}n Fml( f (x)). Then for all g ∈ LPV, Sat(g(x), neg( f (x)) is equivalent to
¬Sat(g(ω), f (ω)) in M , so (c) implies (b). Conversely, given g ∈ LPV there is g′ ∈ LPV such that the set in
(c) for g equals the set in (b) for g′: if |g(ω)| > | f (ω)|, then g′(ω) deletes the last |g(ω)| − | f (ω)| many bits;
this truncation does not change how the variables of the formula f (ω) are evaluated. �

We are interested in pseudo proof systems that never output a tautology.

Definition 3.6 Let n ∈ M be nonstandard. A pseudo proof system f M	{0, 1}n in K (Fn
PV) is mad if

M |= ∀x ∈ {0, 1}n(Fml( f (x)) ∧ ¬Taut( f (x))). (7)

3.4 Proof of Theorem 1.3

We already showed that (b) is equivalent to (c) and now show that (a) is equivalent to (c).
“(a)⇒(c)”. Suppose there are n ∈ M\N and f ∈ LPV such that f M	{0, 1}n is a mad pseudo proof system. We

claim that f N satisfies (i) and (ii) of (c). By (7) we have M |= ψ(n) where ψ(x) is the LPV-formula

∀y ∈ {0, 1}x ∃z Sat(z, neg( f (y))). (8)

Now, let Ag, f (x) be the function, definable in N, mapping m to the code of
{
ω ∈ {0, 1}m | N |= |g(ω)| � |neg( f (ω))| ∧ Sat(g(ω), neg( f (ω))

}
.

Since M |= ∀x ∈ {0, 1}nFml( f (x)) by (7), we get �AM
g, f (n)� ∈ I n fn by Lemma 3.5 (c). This implies for all

g ∈ LPV and all standard � > 0 that M and hence N models

∃x � �
(
ψ(x) ∧ Pr(Ag, f (x)) < 1/�

)
.

This is equivalent to (c).
“(c)⇒(a)”. Let f be a function as in (c), i.e., for all g ∈ LPV and all ε > 0 there are infinitely many m ∈ N

such that Pr(neg( f (Um)) ∈ SAT) = 1 and

Pr
(
|g(Um)| � | f (Um)| and (g(Um), neg( f (Um))) ∈ Sat

)
� ε.
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Then f ∈ LPV and we claim that there is a nonstandard n ∈ M such that f M	{0, 1}n is a mad pseudo proof system
in K (Fn

PV). We can assume that ∀yFml( f (y)) holds in N and hence in M . So to get the madness property (7) it
suffices to get M |= ψ(n) for the formula ψ(x) defined in (8).

Now, for g ∈ LPV let Bg, f : N → N map m ∈ N to

Bg, f (m) := �{ω ∈ {0, 1}m | N |= |g(ω)| � | f (ω)| ∧ ¬Sat(g(ω), f (ω))}�.

This function is definable in the standard model N, so extends to a function B M
g, f on M . We have for all n ∈ M :

�B M
g, f (n)� := {ω ∈ {0, 1}n | M |= |g(ω)| � | f (ω)| ∧ ¬Sat(g(ω), f (ω))} ∈ An.

For g ∈ LPV and standard � > 0 let ϕg, f,�(x) be the formula

x � � ∧ ψ(x) ∧ Pr(Bg, f (x)) < 1/�.

Given finitely many such formulas ϕg0, f,�0 , . . . , ϕgk , f,�k set � := maxi�k �i and let g ∈ LPV be computed by
the following polynomial time algorithm: on input ω, compute f (ω), g0(ω), . . . , gk(ω); if there is i � k such
that |gi(ω)| � | f (ω)| and (gi (ω), f (ω)) /∈ Sat, then output such gi(ω) (say for the least such i � k); otherwise
output 0.

Then we have for all m ∈ N that
⋃

i�k�Bgi , f (m)� ⊆ �Bg, f (m)� and thus for all i � k:

Pr(Bgi , f (m)) � Pr(Bg, f (m)). (9)

Now, by assumption, for every �, there are infinitely many m ∈ N such that N |= ψ(m) and Pr(Bg, f (m)) < 1/�.
So there is such m � �. By choice of � and (9) we get Pr(Bgi , f (m)) < 1/� � 1/�i for all i � k. That is, m � � � �i

satisfies ϕgi ,�i (x) for all i � k.
Hence, any finitely many of the formulas ϕg, f,�(x) for g ∈ LPV and standard � > 0 are jointly satisfiable

in N and hence in M . In other words, the family of subsets of M defined by these formulas has the finite
intersection property. Since M is ℵ1-saturated, there is n ∈ M satisfying all these formulas. This n is nonstandard
and satisfies M |= ψ(n), hence f is mad in K (Fn

PV). Furthermore, PrM(Bg, f (n)) < 1/� for all standard � > 0
and all g ∈ LPV. Hence, �Bg, f (n)� ∈ Infn for all g ∈ LPV. This is Lemma 3.5 (b), so f M	{0, 1}n is a pseudo
proof system in K (Fn

PV).
Finally, we show that statement (b) holds assuming NE ∩ coNE �⊆ E and pseudorandom generators exist. By

Proposition 2.7, the first assumption gives a polynomial time computable hard sequences for L. By Proposi-
tion 2.11, the second assumption gives an invertibly samplable probably hard sequence for L. By optimality of L,
this sequence is probably hard for every SAT-solver.
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