18 research outputs found

    Complexity Framework for Forbidden Subgraphs III: When Problems Are Tractable on Subcubic Graphs

    Get PDF
    For any finite set H = {H1,. .. , Hp} of graphs, a graph is H-subgraph-free if it does not contain any of H1,. .. , Hp as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes of H-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set

    Independent paths and K5-subdivisions

    Get PDF
    A well known theorem of Kuratowski states that a graph is planar iff it contains no subdivision of K5 or K3,3. Seymour conjectured in 1977 that every 5-connected nonplanar graph contains a subdivision of K5. In this paper, we prove several results about independent paths (no vertex of a path is internal to another), which are then used to prove Seymour’s conjecture for two classes of graphs. These results will be used in a subsequent paper to prove Seymour’s conjecture for graphs containing K − 4, which is a step in a program to approach Seymour’s conjecture

    Complexity Framework for Forbidden Subgraphs {III:}: When Problems Are Tractable on Subcubic Graphs

    Get PDF
    For any finite set H = {H1, . . ., Hp} of graphs, a graph is H-subgraph-free if it does not contain any of H1, . . ., Hp as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity can be classified on classes of H-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most 3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set

    Complexity Framework for Forbidden Subgraphs {III:}: When Problems are Tractable on Subcubic Graphs

    Get PDF
    For any finite set H={H1,…,Hp} of graphs, a graph is H-subgraph-free if it does not contain any of H1,…,Hp as a subgraph. In recent work, meta-classifications have been studied: these show that if graph problems satisfy certain prescribed conditions, their complexity is determined on classes of H-subgraph-free graphs. We continue this work and focus on problems that have polynomial-time solutions on classes that have bounded treewidth or maximum degree at most~3 and examine their complexity on H-subgraph-free graph classes where H is a connected graph. With this approach, we obtain comprehensive classifications for (Independent) Feedback Vertex Set, Connected Vertex Cover, Colouring and Matching Cut. This resolves a number of open problems. We highlight that, to establish that Independent Feedback Vertex Set belongs to this collection of problems, we first show that it can be solved in polynomial time on graphs of maximum degree 3. We demonstrate that, with the exception of the complete graph on four vertices, each graph in this class has a minimum size feedback vertex set that is also an independent set

    On graphs double-critical with respect to the colouring number

    Get PDF
    The colouring number col(G) of a graph G is the smallest integer k for which there is an ordering of the vertices of G such that when removing the vertices of G in the specified order no vertex of degree more than k-1 in the remaining graph is removed at any step. An edge e of a graph G is said to be &em;double-col-critical if the colouring number of G-V(e) is at most the colouring number of G minus 2. A connected graph G is said to be double-col-critical if each edge of G is double-col-critical. We characterise the double-col-critical graphs with colouring number at most 5. In addition, we prove that every 4-col-critical non-complete graph has at most half of its edges being double-col-critical, and that the extremal graphs are precisely the odd wheels on at least six vertices. We observe that for any integer k greater than 4 and any positive number ε, there is a k-col-critical graph with the ratio of double-col-critical edges between 1- ε and 1

    The Characterization Of Graphs With Small Bicycle Spectrum

    Get PDF
    Matroids designs are defined to be matroids in which the hyperplanes all have the same size. The dual of a matroid design is a matroid with all circuits of the same size, called a dual matroid design. The connected bicircular dual matroid designs have been characterized previously. In addition, these results have been extended to connected bicircular matroids with circuits of two sizes in the case that the associated graph is a subdivision of a 3-connected graph. In this dissertation, we will use a graph theoretic approach to discuss the characterizations of bicircular matroids with circuits of two and three sizes. We will characterize the associated graph of a bicircular matroid with circuits of two sizes. Moreover, we will provide a characterization of connected bicircular matroids with circuits of three sizes in the case that the associated graph is a subdivision of a 3-connected graph. We will also investigate the circuit spectrum of bicircular matroids whose associated graphs have minimum degree at least i for k ≥ 1, and show that there exists a set of bicycles with consecutive bicycle lengths
    corecore