331 research outputs found

    Hypothesis Testing Using Spatially Dependent Heavy-Tailed Multisensor Data

    Get PDF
    The detection of spatially dependent heavy-tailed signals is considered in this dissertation. While the central limit theorem, and its implication of asymptotic normality of interacting random processes, is generally useful for the theoretical characterization of a wide variety of natural and man-made signals, sensor data from many different applications, in fact, are characterized by non-Gaussian distributions. A common characteristic observed in non-Gaussian data is the presence of heavy-tails or fat tails. For such data, the probability density function (p.d.f.) of extreme values decay at a slower-than-exponential rate, implying that extreme events occur with greater probability. When these events are observed simultaneously by several sensors, their observations are also spatially dependent. In this dissertation, we develop the theory of detection for such data, obtained through heterogeneous sensors. In order to validate our theoretical results and proposed algorithms, we collect and analyze the behavior of indoor footstep data using a linear array of seismic sensors. We characterize the inter-sensor dependence using copula theory. Copulas are parametric functions which bind univariate p.d.f. s, to generate a valid joint p.d.f. We model the heavy-tailed data using the class of alpha-stable distributions. We consider a two-sided test in the Neyman-Pearson framework and present an asymptotic analysis of the generalized likelihood test (GLRT). Both, nested and non-nested models are considered in the analysis. We also use a likelihood maximization-based copula selection scheme as an integral part of the detection process. Since many types of copula functions are available in the literature, selecting the appropriate copula becomes an important component of the detection problem. The performance of the proposed scheme is evaluated numerically on simulated data, as well as using indoor seismic data. With appropriately selected models, our results demonstrate that a high probability of detection can be achieved for false alarm probabilities of the order of 10^-4. These results, using dependent alpha-stable signals, are presented for a two-sensor case. We identify the computational challenges associated with dependent alpha-stable modeling and propose alternative schemes to extend the detector design to a multisensor (multivariate) setting. We use a hierarchical tree based approach, called vines, to model the multivariate copulas, i.e., model the spatial dependence between multiple sensors. The performance of the proposed detectors under the vine-based scheme are evaluated on the indoor footstep data, and significant improvement is observed when compared against the case when only two sensors are deployed. Some open research issues are identified and discussed

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance

    Copula-based Multimodal Data Fusion for Inference with Dependent Observations

    Get PDF
    Fusing heterogeneous data from multiple modalities for inference problems has been an attractive and important topic in recent years. There are several challenges in multi-modal fusion, such as data heterogeneity and data correlation. In this dissertation, we investigate inference problems with heterogeneous modalities by taking into account nonlinear cross-modal dependence. We apply copula based methodology to characterize this dependence. In distributed detection, the goal often is to minimize the probability of detection error at the fusion center (FC) based on a fixed number of observations collected by the sensors. We design optimal detection algorithms at the FC using a regular vine copula based fusion rule. Regular vine copula is an extremely flexible and powerful graphical model used to characterize complex dependence among multiple modalities. The proposed approaches are theoretically justified and are computationally efficient for sensor networks with a large number of sensors. With heterogeneous streaming data, the fusion methods applied for processing data streams should be fast enough to keep up with the high arrival rates of incoming data, and meanwhile provide solutions for inference problems (detection, classification, or estimation) with high accuracy. We propose a novel parallel platform, C-Storm (Copula-based Storm), by marrying copula-based dependence modeling for highly accurate inference and a highly-regarded parallel computing platform Storm for fast stream data processing. The efficacy of C-Storm is demonstrated. In this thesis, we consider not only decision level fusion but also fusion with heterogeneous high-level features. We investigate a supervised classification problem by fusing dependent high-level features extracted from multiple deep neural network (DNN) classifiers. We employ regular vine copula to fuse these high-level features. The efficacy of the combination of model-based method and deep learning is demonstrated. Besides fixed-sample-size (FSS) based inference problems, we study a distributed sequential detection problem with random-sample-size. The aim of the distributed sequential detection problem in a non-Bayesian framework is to minimize the average detection time while satisfying the pre-specified constraints on probabilities of false alarm and miss detection. We design local memory-less truncated sequential tests and propose a copula based sequential test at the FC. We show that by suitably designing the local thresholds and the truncation window, the local probabilities of false alarm and miss detection of the proposed local decision rules satisfy the pre-specified error probabilities. Also, we show the asymptotic optimality and time efficiency of the proposed distributed sequential scheme. In large scale sensors networks, we consider a collaborative distributed estimation problem with statistically dependent sensor observations, where there is no FC. To achieve greater sensor transmission and estimation efficiencies, we propose a two-step cluster-based collaborative distributed estimation scheme. In the first step, sensors form dependence driven clusters such that sensors in the same cluster are dependent while sensors from different clusters are independent, and perform copula-based maximum a posteriori probability (MAP) estimation via intra-cluster collaboration. In the second step, the estimates generated in the first step are shared via inter-cluster collaboration to reach an average consensus. The efficacy of the proposed scheme is justified

    Fusing Heterogeneous Data for Detection Under Non-stationary Dependence

    Get PDF
    In this paper, we consider the problem of detection for dependent, non-stationary signals where the non-stationarity is encoded in the dependence structure. We employ copula theory, which allows for a general parametric characterization of the joint distribution of sensor observations and, hence, allows for a more general description of inter-sensor dependence. We design a copula-based detector using the Neyman-Pearson framework. Our approach involves a sample-wise copula selection scheme, which for a simple hypothesis test, is proved to perform better than previously used single copula selection schemes. We demonstrate the utility of our copula-based approach on simulated data, and also for outdoor sensor data collected by the Army Research Laboratory at the US southwest border
    corecore