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Abstract—In this paper, we consider the problem of detection
for dependent, non-stationary signals where the non-stationarity
is encoded in the dependence structure. We employ copula
theory, which allows for a general parametric characterization
of the joint distribution of sensor observations and, hence,
allows for a more general description of inter-sensor dependence.
We design a copula-based detector using the Neyman-Pearson
framework. Our approach involves a sample-wise copula selection
scheme, which for a simple hypothesis test, is proved to perform
better than previously used single copula selection schemes.
We demonstrate the utility of our copula-based approach on
simulated data, and also for outdoor sensor data collected by the
Army Research Laboratory at the US southwest border.
Keywords: Detection, dependence modeling, heterogeneous
sensing, model selection, sensor fusion, information fusion.

I. INTRODUCTION

Fusion of data from heterogeneous sources of information,
observing a certain phenomenon, has been shown to improve
the performance of several inference tasks. Two sensors are
said to be heterogeneous if their respective observation models
cannot be described by the same probability density function
(pdf) [1]. Naturally, an information fusion system comprising
multi-modal sensors satisfies this definition. However, sensors
of the same modality too can be heterogeneous, in the sense
defined here, as they may span varied deployment and manu-
facturing conditions.

In this paper, we consider the design of false-alarm con-
strained detectors that operate in non-stationary environments.
The non-stationarity is assumed to manifest itself as time-
varying spatial dependence across the sensors. This is a plau-
sible situation, especially in multi-modal deployments: based
on the physics governing the individual modalities, transient
phenomena may affect one modality more drastically than the
other. This would, therefore, cause the intermodal dependence
to fluctuate, but leave the marginal models relatively invariant
within the same observation window. In other words, for
reasonably short observation windows, the signal from a single
modality can be modeled as a quasi-stationary process, an
approach that has been used extensively in spectral analysis

Research was sponsored by ARO grant W911NF-09-1-0244. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied of the Army Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

and statistical signal processing [2], [3]; modeling cross-
sensor dependence, on the other hand, would require a more
considered approach.

We use a copula-based approach to model dependence. Cop-
ulas are parametric functions that couple univariate marginal
distribution functions to the corresponding multivariate dis-
tribution function. A copula-based formulation is attractive
because observations may exhibit significant nonlinear de-
pendence across sensors, which cannot be adequately char-
acterized by a linear covariance matrix. Many families of
copula functions have been defined in the literature to address
this issue. Further, while kernel/learning based methods can
model nonlinear dependence and are known to converge to
the true joint distribution asymptotically, they also suffer from
scalability issues stemming from the curse of dimensionality.
Copulas are widely used to model stochastic dependence in the
fields of econometrics and finance [4] and have been shown
to be useful in various signal processing contexts [5]–[8].

In the sections that follow, we develop the above ideas
in more detail. Section II discusses the related literature and
provides a brief discussion on copula-based inference. The
detection problem is formulated in Section III. Copula selec-
tion is an important component of any copula based inference
task and our approach, described in Section IV, specifically
addresses the issue of non-stationarity dependence. We discuss
our results in Section V. We compare the performance of our
detector to previously used approaches on simulated data and
also evaluate its performance on seismic and acoustic data
collected by the U.S. Army Research Laboratory at the US
southwest border. Concluding remarks and a brief discussion
on the directions for future research are provided in Section VI.

II. BACKGROUND

A. Previous work
Copula-based approaches for both centralized and dis-

tributed signal processing have been studied recently. Iyengar
et al. [1] have investigated the general framework of copula-
based detection of a phenomenon being observed jointly by
heterogeneous sensors. They quantify the performance loss
due to copula misspecification and demonstrate that a detector
using a copula selection scheme based on area under the
receiver operating characteristic (ROC) can provide signifi-
cant improvement over models assuming independence. Their
results on a NIST multibiometric dataset show that the copula
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based approach is versatile and can fuse not only heteroge-
neous sensor measurements, but can also be applied to fuse
different algorithms. Sundaresan et al. [9] consider the case
of distributed detection and derive the optimum fusion rules
for a Neyman-Pearson detector. Sundaresan and Varshney [10]
also design and analyze the performance of a copula-based
estimation scheme for the localization of a radiation source.

As mentioned above, we also consider seismic-acoustic
fusion as an application of the proposed detector. The data
collected mimic typical scenarios for surveillance of human
activity at border crossings. Signals due to footsteps can be
used as surrogates for human presence when monitoring a
scene of interest using seismic or acoustic sensors. A copula
based detector fusing seismic and acoustic footstep data for
personnel detection in indoor environments has been discussed
by Iyengar et al. [11]. Their approach combines canonical
correlation analysis (CCA) and copula modeling to character-
ize cross-modal dependence in the frequency domain. Time-
frequency analysis using the spectrogram has been shown
to effectively characterize footstep information [12]. Copula
based approaches fusing indoor seismic data have also been
examined for footstep detection [13].

B. Copula theory

As stated in Section I, copulas are parametric functions that
couple univariate marginal distributions to a valid multivariate
distribution. They explicitly model the dependence among
random variables, which may have arbitrary marginal distribu-
tions. Copula theory is an outcome of the work on probabilistic
metric spaces [14] and a copula was initially defined, on the
unit hypercube, as a joint probability distribution for uniform
marginals. Their application to statistical inference is possible
largely due to Sklar’s theorem, which is stated below without
proof [15].

Theorem 1 (Sklar’s Thoerem): Consider an m-dimensional
distribution function F with marginal distribution functions
F1, . . . , Fm. Then there exists a copula C, such that for all
x1, . . . , xm in [−∞,∞]

F (x1, x2, . . . , xm) = C(F1(x1), F2(x2), . . . , Fm(xm)) (1)

If Fk is continuous for 1 ≤ k ≤ m, then C is unique,
otherwise it is determined uniquely on RanF1× . . .×RanFm

where RanFk is the range of cumulative distribution function
(CDF) Fk. Conversely, given a copula C and univariate CDFs
F1, . . . , Fm, F as defined in (1) is a valid multivariate CDF
with marginals F1, . . . , Fm.

Note that the arguments of C in (1) are uniformly distributed
random variables. As a direct consequence of Sklar’s Theo-
rem, for continuous distributions, the joint probability density
function (pdf) is obtained by differentiating both sides of (1),

f(x1, . . . , xm) =

(
m∏
i=1

fi(xi)

)
c(F1(x1), . . . , Fm(xm)) (2)

where, c is termed as the copula density and is given by,

c(u) =
∂m(C(u1, . . . , um))

∂u1, . . . , ∂um
(3)

where, ui = Fi(xi). Several copula functions are defined in the
literature, and are constructed to characterize different types
of dependence [15], of which the elliptical and Archimedean
copulas are widely used. Some of these are listed in Table I.
While not explicitly specified in (1) and (2), copula functions
contain a dependence parameter that quantifies the amount
of dependence between the m random variables. We denote
the dependence parameter as φ, which, in general, may be a
scalar, a vector or a matrix.

An attractive feature of copulas is that nonparametric rank-
based measures of dependence, such as Kendall’s τ , can be
expressed as expectations over the copula distribution. For
independent pairs of random variables (X1, Y1) and (X2, Y2)
having the same distribution as (X,Y ), concordance is defined
as the condition that (X1−X2)(Y1−Y2) ≥ 0 and discordance
is defined as the condition that (X1 − X2)(Y1 − Y2) < 0.
Kendall’s τ is defined to be the difference between the
probabilities of concordance and discordance:

τ � P[(X1−X2)(Y1−Y2) ≥ 0]−P[(X1−X2)(Y1−Y2) < 0].

Nelsen has proved the relationship in (4) for a copula, C, and
random variables X ∼ fX(x), Y ∼ fY (y) [15, p. 161], i.e.,

τ(φ) = 4E[Cφ(FX(x), FY (y))]− 1. (4)

This relationship allows τ to be expressed in terms of the
dependence parameter of the copula, C (Σ for the elliptical
copulas and φ for the Archimedean copulas in Table I). For
the case of elliptical copulas, parametrized by the matrix Σ =
[ρij ],

ρij = sin
(πτij

2

)
, (5)

where τi,j is the Kendall’s τ evaluated for the pair (Ui, Uj) =
(FXi(·), FXj (·)). The sample estimate of Kendall’s τ , for N
observations, can be calculated as the ratio of the difference
in the number of concordant pairs, c, and discordant pairs, d,
to the total number of pairs of observations, i.e.,

τ̂ =
c− d

c+ d
=

c− d(
N
2

) (6)

Typically, the value of the dependence parameter is not known
a priori, and φ needs to be estimated, e.g., using maximum
likelihood estimation (MLE). On the other hand, (6) and (4)
imply that Kendall’s τ can be used for calculating computa-
tionally efficient estimates of φ.

III. PROBLEM FORMULATION

Consider a scene or phenomenon being monitored by
a sensor suite, consisting of L sensors. The i-th sensor,
i = 1, 2, . . . , L, makes a set of N measurements, xij , j =
1 . . . , N . These measurements may represent a time series
(with j being the time index), spectral coefficients (with j
being the frequency index), or some other feature vector.
The vector xj denotes the j-th measurements at all sensors,
i.e., xj = [x1j , x2j , . . . , xLj ]

T. The collective measurements,
x = [x1,x2 . . . ,xj , . . . ,xN ], are received at a processing unit
or fusion center (FC). Based on the joint characteristics of x,
the FC decides whether a phenomenon is present or absent in
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TABLE I
SOME COPULA FUNCTIONS

Copulas Parametric Form Parameter Range

Gaussian ΦΣ(Φ
−1(u1), . . . ,Φ−1(um)), ΦΣ(x) =

∫ x
0 N (x;0,Σ)dx, x ∈ R

m Σ = [ρij ], i, j = 1, . . . ,m

Elliptical
copulas

Φ−1(u) = inf
x∈R

{u ≤ ∫ x
0 N (x; 0, 1)dx} ρij ∈ [−1, 1]

Student-t tν,Σ(t
−1
ν (u1), . . . , t

−1
ν (um)), tν,Σ : multivariate Student-t CDF ν : degrees of freedom,

t−1
ν : inverse CDF of univariate Student-t ν ≥ 3

Clayton
(∑m

i=1 u
−φ
i − 1

)− 1
φ

φ ∈ [−1,∞)\{0}

Archimedean
copulas

Frank − 1
φ
log

(
1 +

∏m
i=1 [exp{−φui}−1]

exp{−φ}−1

)
φ ∈ R\{0}

Gumbel exp

{
− (∑m

i=1(− lnui)
φ
) 1

φ

}
φ ∈ [1,∞)

Independent
∏m

i=1 ui –

the region of interest and, thus, solves the following hypothesis
testing problem:

H0 : f0(x) =

N∏
j=1

f0(xj)

H1 : f1(x) =

N∏
j=1

f1(xj),

(7)

where H0 is the null hypothesis that the background process
is observed, and H1 is the alternative, i.e., the phenomenon of
interest is observed. The pdfs under the null and alternative
hypotheses are, respectively, denoted as f0 and f1. In taking
the product over all j in (7), we assume that for a given
sensor, signals are independent over the index j, e.g., over
time. However, in general,

fk(xj) �=
L∏

i=1

fk(xij), k = 0, 1

This formulation, therefore, asserts that since the sensors
are observing the same phenomenon, at any given instant,
sensor measurements need not be independent spatially (across
sensors).

Using Sklar’s theorem (Section II-B, Theorem 1), the
joint densities in (7) can be expressed in terms of the copula
densities, c0 and c1, respectively under H0 and H1, as,

H0 : f0(x) =
N∏
j=1

[(
L∏

i=1

f0(xij |θ0i)

)
× c0(u

0
1j(θ01), . . . , u

0
Lj(θ0L)|φ0)

]
H1 : f1(x) =

N∏
j=1

[(
L∏

i=1

f1(xij |θ1i)

)
× c1(u

1
1j(θ11), . . . , u

1
Lj(θ1L)|φ1)

]
.

(8)
The copula arguments are the probability integral transforms
(PIT) of xij under hypothesis Hk, i.e., for sensor i and

measurement j,

uk
ij(θki) = Fk(xij |θki) k = 0, 1. (9)

The quantities {θ0,θ1} and {φ0,φ1} in (8) are, respectively,
the marginal density parameters and copula parameters under
{H0, H1}. When these parameters are known, the likelihood
ratio test (LRT) is the optimal test. Equivalently, we can
compare the log-likelihood ratio (LLR) to a threshold η,

TLR(x)
H1

≷
H0

η, (10)

where,

TLR(x) = log
f1(x)

f0(x)

=
N∑
j=1

L∑
i=1

log
f1(xij |θ1i)

f0(xij |θ0i)

+
N∑
j=1

log
c1(u

1
1j(θ11), . . . , u

1
Lj(θ1L)|φ1)

c0(u0
1j(θ01), . . . , u0

Lj(θ0L)|φ0)

(11)

These parameters are typically unknown and have to be
estimated. Using maximum likelihood (ML) estimates in place
of the true parameter values, the test becomes a generalized
likelihood ratio test (GLRT) in the Neyman-Pearson frame-
work. From (8) and (9), it is seen that the copula density is
also a function of the marginal parameter, θki, through the
PIT. Thus, ideally, ML estimation of the parameters would
require simultaneous maximization of the joint likelihood
function over both, the marginal and copula parameters. This
is, however, difficult and a consistent two-step estimation
procedure is commonly used in copula literature [16]. The two-
step maximum likelihood (TSML) procedure first maximizes
the individual marginal likelihoods over each θki:

θ̂ki = argmax
θki

N∑
j=1

fk(xij |θki) (12)
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The second step of TSML substitutes θki = θ̂ki in (9); the
copula likelihood, thus obtained, is then maximized over φk,
i.e.,

ûk
ij = uk

ij(θ̂ki) (13)

φ̂k = argmax
φk

N∑
j=1

ck(û
k
1j , . . . , û

k
Lj |φk). (14)

The GLRT then can be expressed as,

TGLR(x)
H1

≷
H0

η, (15)

where,

TGLR(x) =

N∑
j=1

L∑
i=1

log
f1(xij |θ̂1i)

f0(xij |θ̂0i)

+
N∑
j=1

log
c1(u

1
1j(θ̂11), . . . , u

1
Lj(θ̂1L)|φ̂1)

c0(u0
1j(θ̂01), . . . , u0

Lj(θ̂0L)|φ̂0)

(16)

Alternatively, for the bivariate case (L = 2), we can also use
the sample estimate of Kendall’s τ , defined in (6), to estimate
φk. Noting that the relation in (6) is invertible, we rewrite the
function relationship between τ and φk in (4), in terms of a
function gk so that,

τ = gk(φk) (17)

⇒ φk = g−1
k (τ). (18)

The resultant estimate of φk is given by

φ̃k = g−1
k (τ̂). (19)

Further, since τ̂ is a consistent estimator of τ [17], φ̃k →
φk as N → ∞. For finite N , using φ̃k instead of φ̂k, in
(16), results in a sub-optimal test, but a simpler estimation
procedure.

IV. DETECTION UNDER NON-STATIONARY DEPENDENCE

In Section I, we motivated the need to consider non-
stationary dependence. While the preceding section assumes
that the family of copulas, c0 and c1, are known, a formulation
with non-stationary dependence has to necessarily drop that
assumption. In the following discussion, we assume that the
background model can be predetermined to some degree: the
family of the marginals is known and c0 is known. The more
general case of unknown c0 is considered by Iyengar et al. [1],
but signal detection for such a scheme would need to be
implemented under a training-testing paradigm. However, non-
stationarity notwithstanding, the true underlying copula under
H1, c, is typically not known; this “true copula” is usually
abstracted as a single copula, but it may, in fact, be a composite
of several copulas interacting in an indeterminate fashion,
accounting for the non-stationary nature of observations. Due
to these complexities, copula selection is an important part of
copula based inference and several copula selection methods
have been proposed [1], [7], [13]. Our assumptions are stated
more precisely as follows:

1) We assume that f0, the marginal density families under
H0, are known for each i = 1, . . . , L. The corresponding
marginal parameters, θ0i, may be unknown.

2) The H0 copula family, c0, is known but φ0 may be
estimated, if needed. This section, however, assumes,
without loss of generality, that c0 = 1, i.e., mea-
surements under H0 are independent across sensors.
However, the discussion is valid for any known c0. The
independence under the null hypothesis also allows us
to simplify our notation; we do not explicitly notate for
H1 with respect to the copula function. Therefore, we
set

c1(·) ≡ c(·)
u1
ij(θki) ≡ uij

φ1 ≡ φ

3) The copula under the alternative, c1, is not known a
priori. The “best” copula, in the sense of maximum
likelihood, is selected from a predefined library of
copulas, C = {cm : m = 1, . . . ,M}.

Based on these assumptions, we discuss three detection
scenarios: detection with known parameters, detection with
unknown parameters, and detection with unknown marginals
under H1 and unknown copula parameters.

A. Detection with known parameters

For some applications, it may be feasible to determine, a
priori, the value of the copula parameter φm for each cm ∈ C.
The actual selection of the copula may be done online. For
this case the test-statistic is formulated as a modification of
(11),

TLR(x) = log
f1(x)

f0(x)

=
N∑
j=1

L∑
i=1

log
f1(xij |θ1i)

f0(xij |θ0i)

+
N∑
j=1

log c∗j (u1j , . . . , uLj |φ∗
j ),

(20)

where for each j the maximum copula likelihood is selected
from the library, i.e.,

c∗j = max
cm∈C

C (21)

φ∗
j = arg c∗j (22)

The key difference here is that previous papers have proposed
selecting a single copula for the entire observation window [1],
[13], i.e., choose

c∗N = max
cm∈C
∀j

C (23)

φ∗
N = arg c∗N. (24)

On the other hand, we select the best copula for each j
adapting to potentially changing dependence structure. Denote
the Kullback-Leibler (KL) divergence between the pdfs g and
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h as D(g||h). We now prove that selecting the best copula for
each j, as opposed to a single best copula for all N , leads to
a smaller KL divergence from the single true copula, c.

Proposition 1: Let X ∼ fX(x),X ∈ R
N×L, where,

fX(x) =

N∏
j=1

[(
L∏

i=1

fXi
(xij |θ1i)

)
c(u1j , . . . , uLj |φ)

]
(25)

where c is the true copula. For the copula library,

C = {cm : m = 1, . . . ,M}, (26)

and selection schemes (21) and (23),

D(fX||fc∗j ) ≤ D(fX||fc∗N), (27)

where fc∗j and fc∗N are the joint densities for X under H1

using (21) and (23) respectively.
Proof: Consider the case M = 2. Choosing c1 over c2

when c1 ≥ c2 is equivalent to the decision rule when copula
selection is posed as a decision problem with equally likely
copulas. Let Ω represent the sample space. Let Ωm ⊂ Ω
represent the decision region for x for which cm (m = 1, 2)
is chosen, so that Ω1 ∪Ω2 = Ω and Ω1 ∩Ω2 = ∅. Denote the
product of marginals as fp(xj), i.e.,

fp(xj) =

L∏
i=1

fXi
(xij |θ1i)

Also, define the following sets:

J1 = {j : xj ∈ Ω1} and J2 = {j : xj ∈ Ω2}.
Then,

D(fX||fc∗j ) =
∫

log
fX(x)

fc∗j (x)
dFX

=

∫
log

N∏
j=1

fp(xj)c(u1j , . . . , uLj |φ)
N∏
j=1

fp(xj)
∏
J1

c1(·|φ1)
∏
J2

c2(·|φ2)

dFX

=

∫ N∑
j=1

log c(·)dFX

−
∫ [∑

J1

log c1(·) +
∑
J2

log c2(·)
]
dFX

(28)

The selection criterion in (21), implies that, for the set J2,
c2 ≥ c1. Therefore,∑

J1

log c1(·) +
∑
J2

log c2(·) ≥
∑
J1

log c1(·) +
∑
J2

log c1(·)

=
N∑
j=1

log c1(·),

(29)

and in a similar manner,∑
J1

log c1(·) +
∑
J2

log c2(·) ≥
N∑
j=1

log c2(·) (30)

Therefore, depending on whether c1 or c2 was chosen using
(23), we can substitute either of the inequalities in (29) or (30)
into (28) to get,

D(fX||fc∗j ) ≤ D(fX||fc∗N)
This proves (27) for M = 2. For M > 2 we can successively
partition Ω2 and arrive at a similar result by repeating the
above steps.

Proposition 1 implies that a detector using the proposed
selection scheme in (21) will suffer a lower loss in detection
performance due to copula misspecification [1].

B. Detection with unknown parameters

With unknown parameters, the statistic in (16) for the
composite hypothesis testing problem can be rewritten as,

TGLR(x) =

N∑
j=1

L∑
i=1

log
f1(xij |θ̂1i)

f0(xij |θ̂0i)

+
N∑
j=1

log c∗j (u1j(θ̂11), . . . , uLj(θ̂1L)|φ̂
∗
j ),

(31)

where the TSML procedure has been used to obtain estimates

of marginal and copula parameters. The copula parameters φ̂m

are estimated, over all N , for each cm ∈ C, so that

C = {cm(φ̂m(N)) : m = 1, . . . ,M} (32)

c∗j = max
cm∈C

C (33)

φ̂
∗
j = arg c∗j (34)

While this selection method is motivated by the implications
of Proposition 1 for the simple hypothesis case, a similar result
may not be stated for the composite test. This is because ML
estimation requires that all N samples be drawn from the same
population; this need not hold true for copula selection from
C with unknown parameters.

The copula parameters can also be estimated using τ̂ . The
test-statistic is then,

Tτ̂ (x) =

N∑
j=1

L∑
i=1

log
f1(xij |θ̂1i)

f0(xij |θ̂0i)

+
N∑
j=1

log c∗j (u1j(θ̂11), . . . , uLj(θ̂1L)|φ̃
∗
j ),

(35)

where φ̃
∗
j is the estimate of φ∗

j based on τ̂ . Correspondingly,

C = {cm(φ̃m) : m = 1, . . . ,M} (36)

c∗j = max
cm∈C

C (37)

φ̃
∗
j = arg c∗j (38)

C. Detection with unknown marginals and unknown copula
parameters

In many applications, establishing a model under H1 is
not feasible. In that case, f1 is determined non-parametrically
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and uij is obtained using the empirical probability integral
transform (EPIT). The test statistic is, therefore, expressed as,

TNPM(x) =

N∑
j=1

L∑
i=1

log
f̂1(xij)

f0(xij |θ̂0i)

+
N∑
j=1

log c∗j (û1j , . . . , ûLj |φ̂
∗
j ),

(39)

where c∗j and associated parameters are selected as indicated
in (36), (37) and (38). The uniform random variables in the
copula density are evaluated using EPIT,

F̂i(·) = 1

N

N∑
j=1

Ixij<{·} (40)

ûij = F̂i(xij) (41)

where I is the indicator function.
The marginal model under H1 is determined through a

kernel density estimation procedure. Kernel density estima-
tors [18] provide a smoothed estimate, f̂1(xij), of the true
density. Choosing the correct bandwidth for kernel density
estimation is important for an accurate estimate. The ker-
nel bandwidth is chosen using leave-one-out cross-validation.
The selected bandwidth, h∗, is the minimizer of the cross-
validation estimator of risk, Ĵ , for a kernel, K. The risk esti-
mator may be easily computed using the approximation [18,
p. 136],

Ĵ(h) =
1

hN2

∑
p

∑
q

K∗
(
Xp −Xq

h

)
+

2

Nh
K(0) +O

(
1

N2

)
,

(42)

where,

K∗(x) = K(2)(x)− 2K(x)

K(2)(z) =

∫
K(z − y)K(y)dy.

The Gaussian kernel was selected, so that K(x) = N (x; 0, 1)
and K(2)(z) = N (z; 0, 2). Therefore,

h∗ = argmin
h

Ĵ(h)

V. RESULTS AND DISCUSSION

In this section, we present results when the copula-based
tests, discussed in Section IV, are applied to simulated and
real data. Our results are presented for a two-sensor case, i.e.,
L = 2. We note, however, that the methods described above
apply generally to L > 2, as one can construct a multivariate
copula using bivariate components [13].

A. Simulated data

We simulated normal and beta distributed marginals and
considered various cases of copula dependence. The marginals
and the respective parameters used are tabulated in Table II.
For all copula cases we used Kendall’s τ = 0.2 to specify
dependence. The copula library contains the Gaussian and

TABLE II
DISTRIBUTION OF MARGINALS FOR SIMULATION EXPERIMENTS

i H0 H1

1 N (0, 1) N (0.1, 1.1)

2 Beta(2.0,2.0) Beta(2.2,2.2)

Frank copulas. For all the cases, we compare performances
obtained when testing with TGLR in (31), Tτ̂ in (35), GLR
using single copula selection and the product rule, i.e., inde-
pendence assumption. The results presented are averaged over
104 Monte-Carlo trials with 1000 samples per trial.

In Figs. 1,2 and 3 receiver operating characteristics (ROC)
for different generating copulas are shown. In Fig. 1, we
consider the case in which a t copula is used to generate the
data. Note that this represents the case where the true copula
is not known and is not included in the copula library. The
label non-stationary copula refers to the sample-wise selection
scheme proposed in this paper. Fig. 2 represents the case where
half of all xij were simulated with a Gaussian copula and
the remaining half consisted of samples generated from the
Frank copula. This is, therefore, the case where the copula
library also accommodates the generating model. The case of
a single generating copula that is also a member of the library
is also considered; Fig. 3 shows results when all the data are
generated using the Frank copula.

For all simulation scenarios we observe that the GLRT
and the test based on τ̂ , using our selection scheme perform
comparably. Both outperform the single copula selection and
product rules. We note that these results represent the un-
known parameter case (Section IV-B), for which we were
not able to prove that our method would outperform the
single copula selection method. An intuition for why we
observe this result is that since τ̂ is consistent, for large
N , τ̂ → τ . Also, one value of τ corresponds to different
values of φm = arg cm(·), cm ∈ C. We conjecture that,
asymptotically, this is as if the parameter values are known,
allowing Proposition 1 to be applicable. This implies that
while τ controls the amount of dependence, which remains
unchanged for all N , different copulas represent the shape
of the dependence between the data from the two sensors.
Verifying this conjecture mathematically is difficult, and will
be addressed in our future work.

B. ARL footstep data

We used the footstep data, made available by the US Army
Research Laboratory (ARL), collected at the US southwest
border. The dataset consists of raw observations from several
sensors of different modalities that were deployed in an
outdoor space to record human and animal activity that is
typical in perimeter and border surveillance scenarios. The
participants in the data collection exercise walked/ran along
a predetermined path with sensors laid out along either side
of the path. In this paper, we consider copula-based seismic-
acoustic fusion.

Seismic and acoustic time series for activities representing
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Fig. 1. ROCs for H1 data generated using a t copula
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Fig. 2. ROCs for H1 data generated using Frank and Gaussian copulas

a single person walking, two persons walking and human
leading an animal (among other examples) are available in
the ARL dataset. Each seismic/acoustic time series contains a
leading 60s of background data. We use this as our H0 data.
The data are sampled at 10kHz, and are mean centered and
oscillatory in nature.

Before applying the copula-based detector, we first pre-
process the data. The time series is split into non-overlapping
frames of length T = 512. This raw time series data is called
xTi(t) where i = 1, 2 is the sensor index for the acoustic
and seismic modalities respectively, and t is the time index.
In keeping with Houston’s analysis that Fourier spectra for
seismic and acoustic footstep data are more informative than
time-domain measurements [12], we set

xij =
√
F{xTi(t)}2,

where F is the DFT and j = 1, . . . , N = 256 is the
frequency index. Our sensor measurements are, therefore, now
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Fig. 3. ROCs for H1 data generated using a Frank copula

transformed to the frequency domain and the statistics of
x = [xij ] are used as the input to the detector. The copula
library consists of Gaussian, Gumbel and Frank copulas. We
have observed that due to the interstitial nature of footstep
data, including the independence copula (Table I) in the library
improves the overall detection performance.

For the ARL dataset, we use the statistic TNPM(x) in
(39). To generate ROCs, we compare the test-statistic to a
vector of thresholds. The curve thus generated, for the case
when H1 corresponds to one person walking, is shown in
Fig. 4. This curve is compared to the ROCs for single copula
selection scheme as well as the product rule, i.e., independence
assumption for H1. Similar ROCs are obtained for the cases
of two persons walking, and man leading an animal and are
shown in Fig. 5 and Fig. 6.

For all the three cases, we observe that our proposed
method, using the sample-wise copula selection for non-
stationary data, outperforms the ROCs corresponding to single
copula selection and independence. We further observe that,
the two-persons and man-leading-animal cases have a higher
probability of detection (PD) for a given probability of false
alarm (PF ), when compared to the one person case. This
is intuitive, since for the two-persons case and man-leading-
animal case, we have a higher signal to noise ratio.

VI. CONCLUSION

In this paper, we have considered a detection problem,
with dependent heterogeneous sensor data. We used a copula-
based approach to model the inter-sensor dependency and
applied our scheme to detect non-stationary phenomena. We
considered a specific type of non-stationarity that affects the
inter-modal dependence more severely than the individual
sensor model. A copula-based approach was used to design
detectors for dependent, non-stationary data. We have shown
that, for a simple hypothesis testing problem, a sample-wise
copula selection scheme performs better than selecting a single
copula for the entire observation window. However, a similar
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Fig. 4. ROCs for the ARL dataset for 1 person vs. background detection.
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Fig. 5. ROCs for the ARL dataset for 2 persons vs. background detection.

conclusion cannot be formally stated for the GLRT. We note
that the copula parameters can be estimated using distribution-
free, rank based methods such as Kendall’s τ and observed that
using the sample estimate, τ̂ , gave comparable performance
to MLE-based detection. This motivates future investigation
into whether Proposition 1 can be generalized to the case of
unknown parameters. Empirical results are encouraging, and
support this idea. We note that our method on simulated data
performs favorably even when the true copula is not a part of
the library. Similarly, results on acoustic and seismic datasets
also show that our method yields superior performance.
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