42 research outputs found

    Enumerating Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.Comment: 12 pages; 10 figures; 10 references. Revision of version in Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Nov. 2000, pp. 9-12. See also cs.CG/000701

    Ununfoldable Polyhedra with Convex Faces

    Get PDF
    Unfolding a convex polyhedron into a simple planar polygon is a well-studied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that ``open'' polyhedra with triangular faces may not be unfoldable no matter how they are cut.Comment: 14 pages, 9 figures, LaTeX 2e. To appear in Computational Geometry: Theory and Applications. Major revision with two new authors, solving the open problem about triangular face

    Continuous Blooming of Convex Polyhedra

    Full text link
    We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.Comment: 13 pages, 6 figure

    Star Unfolding Convex Polyhedra via Quasigeodesic Loops

    Get PDF
    We extend the notion of star unfolding to be based on a quasigeodesic loop Q rather than on a point. This gives a new general method to unfold the surface of any convex polyhedron P to a simple (non-overlapping), planar polygon: cut along one shortest path from each vertex of P to Q, and cut all but one segment of Q.Comment: 10 pages, 7 figures. v2 improves the description of cut locus, and adds references. v3 improves two figures and their captions. New version v4 offers a completely different proof of non-overlap in the quasigeodesic loop case, and contains several other substantive improvements. This version is 23 pages long, with 15 figure

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    A Generalization of the Source Unfolding of Convex Polyhedra

    Get PDF
    We present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and Vîlcu
    corecore