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Abstract

Unfolding a convex polyhedron into a simple planar polygon is a well-studied problem. In this paper, we study
the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex
polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular
faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be
unfolded if cuts are allowed to cross faces. Finally, we prove that “open” polyhedra with triangular faces may not
be unfoldable no matter how they are cut.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A classic open question in geometry [5,12,20,24] is whether every convex polyhedron can be cut
along its edges and flattened into the plane without any overlap. Such a collection of cuts is called an
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edge cuttingof the polyhedron, and the resulting simple polygon is called anedge unfoldingor net. While
the first explicit description of this problem is by Shephard in 1975 [24], it has been implicit since at least
the time of Albrecht Dürer, circa 1500 [11].

It is widely conjectured that every convex polyhedron has an edge unfolding. Some recent support
for this conjecture is that every triangulated convex polyhedron has avertex unfolding, in which the
cuts are along edges but the unfolding only needs to be connected at vertices [10]. On the other hand,
experimental results suggest that a random edge cutting of a random polytope causes overlap with
probability approaching 1 as the number of vertices approaches infinity [22].

While unfoldings were originally used to make paper models of polyhedra [7,27], unfoldings have
important industrial applications. For example, sheet metal bending is an efficient process for manufac-
turing [14,26]. In this process, the desired object is approximated by a polyhedron, which is unfolded into
a collection of polygons. Then these polygons are cut out of a sheet of material, and each piece is folded
into a portion of the object’s surface using a bending machine. The unfoldings have multiple pieces partly
for practical reasons such as efficient packing into a rectangle of material, but mainly because little theory
on unfolding nonconvex polyhedra is available, and thus heuristics must be used [20].

There are two freely available heuristic programs for constructing edge unfoldings of polyhedra: the
Mathematica package UnfoldPolytope [19], and the Macintosh program HyperGami [15]. There are no
reports of these programs failing to find an edge unfolding for a convex polyhedron; HyperGami even
finds unfoldings for nonconvex polyhedra. There are also several commercial heuristic programs; an
example is Touch-3D [17], which supports nonconvex polyhedra by using multiple pieces when needed.

It is known that if we allow cuts across the faces as well as along the edges, then everyconvex
polyhedron has an unfolding. Two such unfoldings are known. The simplest to describe is thestar
unfolding [1,2], which cuts from a generic point on the polyhedron along shortest paths to each of the
vertices. The second is thesource unfolding[18,23], which cuts along points with more than one shortest
path to a generic source point.

There has been little theoretical work on unfolding nonconvex polyhedra. In what may be the only
paper on this subject, Biedl et al. [4] show the positive result that certain classes of orthogonal polyhedra
can be unfolded. They show the negative result that not all nonconvex polyhedra have edge unfoldings.
Two of their examples are given in Fig. 1. The first example is rather trivial: the top box must unfold to

Fig. 1. Orthogonal polyhedra with no edge unfoldings from [4].
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fit inside the hole of the top face of the bottom box, but there is insufficient area to do so. The second
example is closer to a convex polyhedron in the sense that every face is homeomorphic to a disk.

Neither of these examples is satisfying because they are not “topologically convex”. A polyhedron is
topologically convexif its graph (1-skeleton) is isomorphic to the graph of a convex polyhedron. The first
example of Fig. 1 is ruled out because faces of a convex polyhedron are always homeomorphic to disks.
The second example is ruled out because there are pairs of faces that share more than one edge, which is
impossible for a convex polyhedron.3 In general, a famous theorem of Steinitz [13,16,25] tells us that a
polyhedron is topologically convex precisely if its graph is 3-connected and planar.

The class of topologically convex polyhedra includes allconvex-facedpolyhedra (i.e., polyhedra
whose faces are all convex) that are homeomorphic to spheres. Schevon and other researchers [4,21] have
asked whether all such polyhedra can be unfolded without overlap by cutting along edges. In other words,
can the conjecture that every convex polyhedron is edge-unfoldable be extended to topologically convex
polyhedra? Another particularly interesting subclass, which we consider here, are polyhedra whose faces
are all triangles (calledtriangulatedor simplicial) and are homeomorphic to spheres.

In this paper we construct families of triangulated and convex-faced polyhedra that are homeomorphic
to spheres and have no edge unfoldings. This proves, in particular, that the edge-unfolding conjecture
does not generalize to topologically convex polyhedra. We go on to show that cuts across faces can
unfold some convex-faced polyhedra that cannot be unfolded with cuts only along edges. This is the first
demonstration that general cuts are more powerful than edge cuts.

We also consider the problem of constructing a polyhedron that cannot be unfolded even using general
cuts. If such a polyhedron exists, the theorem that every convex polyhedron is generally unfoldable
(using, for example, the star or source unfolding) cannot be extended to topologically convex polyhedra.
As a step towards this goal, we present an “open” triangulated polyhedron that cannot be unfolded.
Finding a “closed” ununfoldable polyhedron is an intriguing open problem.

A preliminary version of this work appeared in CCCG’99 [3].

2. Basics

We begin with formal definitions and some basic results about polyhedra, unfoldings, and cuttings.
We define apolyhedronto be a connected set of closed planar polygons in 3-space such that (1)

any intersection between two polygons in the set is a collection of vertices and edges common to both
polygons, and (2) each edge is shared by at most two polygons in the set. Aclosedpolyhedron is one
in which each edge is shared by exactly two polygons. If a polyhedron is not closed, we call it anopen
polyhedron; theboundaryof an open polyhedron is the set of edges covered by only one polygon.

In general, we may allow the polygonal faces to be multiply connected (i.e., have holes). However,
in this paper we concentrate on convex-faced polyhedra. A polyhedron isconvex-facedif every face is
strictly convex, that is, every interior face angle is strictly less thanπ . Thus, in particular, every face of
a convex-faced polyhedron is simply connected. A polyhedron istriangulatedif every face is a triangle,
that is, has three vertices.

3 We disallow polyhedra with “floating vertices”, that is, vertices with angleπ on both incident faces, which can just be
removed.
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Next we prove that convex-faced polyhedra (and hence triangulated polyhedra) are a subclass of
topologically convexpolyhedra, that is, polyhedra whose graphs (1-skeleta) are isomorphic to graphs
of convex polyhedra. Aconvex polyhedronis a closed polyhedron whose interior is a convex set—
equivalently, the open line segment connecting any pair of points on the polyhedron’s surface is interior
to the polyhedron.

Theorem 1 (Steinitz’s Theorem [13,16,25]).A graph is the graph of a convex polyhedron precisely if it
is 3-connected and planar.

Corollary 2. Every convex-faced closed polyhedron that is homeomorphic to a sphere is topologically
convex.

Proof. Because the polyhedron is homeomorphic to a sphere, its graphG must be planar. It remains
to show thatG is 3-connected. If there is a vertexv whose removal disconnectsG into at least two
componentsG1 andG2, then there must be a “belt” wrapping around the polyhedron that separatesG1

andG2. This belt has only one vertex (v) connectingG1 andG2, so it must consist of a single face. This
face touches itself atv, which is impossible for a convex polygon. Similarly, if there is a pair(v1, v2) of
vertices whose removal disconnectsG into at least two componentsG1 andG2, then again there must
be a “belt” separating the two components, but this time the belt connectsG1 andG2 at two vertices (v1

andv2). Thus, the belt can consist of up to two faces, and these faces share two verticesv1 andv2. This
is impossible for strictly convex polygons.✷

A cutting of a polyhedronP is a unionC of a finite number of line segments (calledcuts) on P ,
such that cutting alongC results in a connected surfaceP − C that can be flattened into the plane (that
is, isometrically embedded) without overlap. The resulting flattened form is called anunfolding of P .
An edge cuttingof P is a cutting ofP that is just a union ofP ’s edges. The corresponding unfolding
is called anedge unfolding. We sometimes call unfoldingsgeneral unfoldingsto distinguish them from
edge unfoldings. We call a polyhedronunfoldableif it has a general unfolding, andedge-unfoldableif it
has an edge unfolding. Similarly, we call a polyhedron [edge-]ununfoldableif it is not [edge-]unfoldable.

If P is an open polyhedron, we limit attention to cuttings that contain only a finite number of boundary
points ofP . Every neighborhood of a boundary point ofP in C must contain an interior point ofP in C;
otherwise, the boundary point could be removed fromC without changingP − C. Hence, the collection
of boundary points ofP in C can be reduced down to a finite set without any effect.

We define thecurvatureof an interior vertexv to be the discrete analog of Gaussian curvature, namely
2π minus the sum of the face angles atv. (For vertices on the boundary of the polyhedron, we do not
define the notion of curvature.) Hence, the neighborhood of a zero-curvature vertex can be flattened into
the plane, the neighborhood of a positive-curvature vertex (for example, a cone) requires a cut in order to
be flattened, and the neighborhood of a negative-curvature vertex (for example, a saddle) requires two or
more cuts to avoid self-overlap.

We look at a cutting as a graph drawn on the polyhedron, and establish some basic facts about these
graphs in the next lemmas.

Lemma 3. Any cutting of a polyhedronP is a forest, and spans every nonboundary vertex ofP that has
nonzero curvature.
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Fig. 2. A portion of a polyhedron in (left) perspective view and (middle) birds-eye view, and (right) the unfolding that results
from a cutting with a separated connected component of cuts. To formally construct this portion of a polyhedron, start with the
unfolding on the right, and fold as shown.

Proof. If a cutting contained a cycle, having positive area both interior and exterior to the cycle, then
the resulting unfolding would be disconnected, a contradiction. (Above we excluded the possibility of
the cutting containing a cycle on the boundary of an open polyhedronP .) If the cutting did not contain a
particular (nonboundary) point with nonzero curvature, neighborhoods of that point could not be flattened
without overlap. ✷

A common assumption is that an unfolding must be a simple polygon, which implies that a cutting of
a closed polyhedron must furthermore be a (connected) tree; see, e.g., [8,9,22]. Without this restriction,
in most cases, a cutting of a closed polyhedron is a tree, but in fact this is not always the case. Fig. 2
illustrates a basic construction for separating off a connected component of the cutting. We could add
cuts to connect the inner tree to the rest of the forest, but these extra cuts are unnecessary. Using this
construction, we can build a polyhedron and a cutting having arbitrarily many connected components, by
connecting a series of the constructions in Fig. 2 in a “dented barrel” shape, and then capping the ends.

Together with Joseph O’Rourke (personal communication, July 2001), we have proved that such
examples require nonconvexity:

Lemma 4. Any cutting of a convex closed polyhedron is a tree.

Proof. By Lemma 3, the cutting is a forest. Suppose for contradiction that the forest has multiple
connected components. Then there is a closed pathp on the surface of the polyhedron that avoids all
cuts and strictly encloses a connected component of the cutting. In particular,p avoids all vertices
of the polyhedron. Letτ denote the total turn angle along the pathp. Becausep avoids vertices, it
unfolds to a connected (uncut) closed path in the planar layout; thus,τ = 2π . Because the polyhedron
is homeomorphic to a sphere, the Gauss–Bonnet theorem [6, pp. 215–217] applied top says that
τ +γ = 2π whereγ is the curvature enclosed byp. By convexity,γ � 0. Further,p encloses a connected
component of the cutting, which consists of at least one vertex of the polyhedron, soγ > 0. Therefore,
τ < 2π , contradicting thatp could lay out flat in the plane. ✷
Lemma 5. If v is a vertex of a polyhedronP with negative curvature, then any cutting ofP must include
more than one cut incident tov.

Proof. Suppose some cuttingC includes only a single cut incident tov. Let N beP ∩ B, whereB is a
small ball aroundv. NeighborhoodN unfolds to a small disk that self-overlaps by precisely the absolute
value of the curvature ofv. ✷
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3. Hats

Our construction of a closed polyhedron with no edge unfolding begins by constructing open
polyhedra that cannot be edge unfolded. The intuition is to build a “hat-shaped” polyhedron having just
one interior vertex with positive curvature (the peak of the hat). The remaining vertices have negative
curvature and this severely limits the possible edge cuttings.

We know of two combinatorially different families of convex-facedhats that suffice to prevent edge
cuttings. They are shown in Figs. 3 and 4. The remainder of this section defines and analyzes hats in
detail. These hats have the additional property that their boundary is a triangle, and in the next section
we will exploit this by gluing each hat to a face of a regular tetrahedron.

The first hat (Fig. 3) is called abasic hatbecause of its low face count. The second hat (Fig. 4),
however, has only triangular faces, and is hence called atriangulated hat. In both cases, we will

Fig. 3. A basic hat and its constituent faces.

Fig. 4. A triangulated hat and its constituent faces.
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eventually find a convex-faced closed polyhedra with no edge unfoldings, and in the latter case it will
also be triangulated.

The two types of hats are similar, so we will treat them together. First we need some terminology for
features of the hats. The three boundary vertices are called thecornersof the hat, the innermost vertex
is thetip, and the remaining vertices are themiddlevertices. The three triangles incident to the tip form
thespikeof the hat. The remaining faces (incident to the corners) form thebrim of the hat. The brim of
a basic hat consists of three trapezoids, whereas the brim of a triangulated hat consists of six triangles.
Note that the spike of the triangulated hat is rotated 60◦ relative to the boundary, in contrast to the basic
hat.

More formally, hats are parameterized by three parameters. Basic hats are parameterized by anglesα

andβ satisfying 30◦ � α,β < 90◦, and a length� > 1. For consistency with the other type of hat, we
also defineγ = 0 for basic hats. The spike is an open tetrahedron consisting of three identical isosceles
triangles, where the lower angles areα and the bottom sides have unit length. The brim is an open
truncated tetrahedron consisting of three identical symmetric trapezoids, where the lower angles areβ,
the top length is 1, and the bottom length is�.

Triangulated hats are parameterized by anglesα, β, andγ satisfying 30◦ � α,β + γ /2 < 90◦ and
γ < 60◦. The spike is an open tetrahedron with base anglesα, just like the basic hat. In the brim, there
are three identical isosceles triangles touching the boundary along their base edges, which have base
anglesβ; and three identical isosceles triangles touching the peak at their base edges, and touching the
boundary at their opposite vertex, whose angle isγ .

As mentioned above, the key to our constructions is to make the middle vertices have negative
curvature.

Lemma 6. The middle vertices of a hat have negative curvature precisely ifα > β + γ /2. In particular,
for any valid choice ofβ andγ , there is a valid choice ofα that satisfies this property.

Proof. The first claim follows simply by summing the angles incident to a middle vertex and checking
when that sum is greater than 2π . For basic hats, we have

2α + 2(π − β) > 2π

and for triangulated hats, we have

2α + 2
π − γ

2
+ π − 2β > 2π.

Now α is only restricted by 30◦ � α < 90◦ for validity and α > β + γ /2 for negative curvature.
Because 30◦ � β + γ /2, these two conditions are satisfied precisely ifβ + γ /2 < α < 90◦, which is
satisfiable becauseβ + γ /2< 90◦. ✷

Note that these conditions are rather symmetric for the two types of hats, specifying that the angle at
a base vertex of the spike is larger than the angle at a corner of the hat.

A more useful property of hats is that the middle vertices can be made to have negative curvature even
when one of the spike triangles is cut away:

Lemma 7. The middle vertices of a hat have negative curvature even when a spike triangle is removed,
providedα > 2β + γ . In particular, for anyβ andγ with 30◦ � β + γ /2 < 45◦ andγ < 60◦, there is a
valid choice ofα that satisfies these properties.
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Proof. The first claim follows from Lemma 6 by halving the coefficient ofα, because only a singleα
is now included in the sum of angles. The constraints now become 30◦ � α < 90◦ and α > 2β + γ .
Because 30◦ � β + γ /2, these are equivalent to 2β + γ < α < 90◦, which is achievable because
β + γ /2< 45◦. ✷

For example, a hat with anglesα = 81◦, β = 30◦, and γ = 20◦, has negative curvature at the
middle vertices even when a spike triangle is removed. In the case of the basic hat, we would have
α + 2(π − β) = 381◦, and for the triangulated hatα + (π − 2β) + 2(π − γ )/2= 361◦.

Theorem 8. Hats that satisfy the constraints in Lemma7 are open convex-faced polyhedra with no edge
unfoldings.

Proof. By Lemma 3, any edge cutting is a forest of nonboundary edges that covers the tip and middle
vertices. Every connected component of the cutting is a tree, and so must have at least two leaves. Note
that no two corners of the hat can be leaves of a common connected component of the cutting, because
otherwise the path of cuts connecting them would disconnect the polyhedron. (Recall we excluded the
possibility of a boundary edge being in a cutting.) Thus, at most one corner is a leaf of each connected
component of the cutting. By Lemma 6, the middle vertices have negative curvature, so by Lemma 5,
they cannot be leaves of the cutting. Hence, the cutting must in fact be a single path from a corner to the
tip, visiting all of the middle vertices.

It is possible to argue by case analysis that, for basic hats, there is precisely one such path up to
symmetry (see Fig. 5, left), and for triangulated hats, there are two such paths up to symmetry (see Fig. 5,
center and right). Each of these cuttings has a vertex with only one spike triangle cut away (marked by a
gray circle in Fig. 5), which means the remainder has negative curvature, leading to overlap by Lemma 5.

However, this can be argued more simply as follows. Because the spike remains connected to the rest
of the polyhedron, there must be a spike triangleA that remains connected to a brim faceB; see Fig. 6.
Because there is only one cut in the hat incident to a corner, this cut is not incident to one of the two
vertices shared by facesA andB, sayv. Therefore the brim facesB, C, and (in the case of a triangulated
hat)D incident tov and the spike faceA remain connected in the unfolding along edges incident tov.
But by Lemma 7, these faces have total angle atv of more than 360◦, causing overlap. ✷

Fig. 5. The possible cuttings (up to symmetry) of a hat satisfying Lemma 7.
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Fig. 6. Proof of Lemma 8: a planar drawing of each kind of hat with a possible cut in bold.

4. Gluing hats together

Because the boundary of a hat is an equilateral triangle, we can take four hats and place them against
the faces of a regular tetrahedron (and then remove the guiding tetrahedron). The result is a closed
polyhedron with no edge unfolding, which we call aspiked tetrahedron. First observe the following
property of unfolded hats:

Lemma 9. In any edge cutting of a spiked tetrahedron, there is a path joining at least two corners of each
hat using nonboundary edges of that hat, provided the parameters satisfy the constraint in Lemma7.

Proof. This lemma follows directly from Theorem 8: an edge cutting of the spiked tetrahedron cannot
induce an edge cutting of a constituent hat, and cannot cause overlap, so it must cut each hat into at least
two pieces, by way of a path with the claimed properties.✷

Now the desired result follows easily:

Theorem 10. Spiked tetrahedra are convex-faced closed polyhedra with no edge unfoldings, provided
the constituent hats satisfy the constraint in Lemma7.

Proof. Suppose there were an edge cutting. By Lemma 9, inside each of the four hats would be paths of
cuts joining two corners, and these paths share no cuts because they use only nonboundary edges. But
because there are only four corners in total, these paths would form a cycle in the cutting, contradicting
Lemma 3. ✷

This theorem also proves that the analogously definedspiked octahedroncannot be edge unfolded for
hats satisfying the constrain in Lemma 7. In particular, there is a basic-hat spiked octahedron having
no edge unfolding, for anyβ satisfying 30◦ � β < 45◦. Using a different proof technique [3], it can be
shown that there is such a spiked octahedron for anyβ satisfying 45◦ < β < 60◦.

5. General unfolding

While spiked tetrahedra are not edge-unfoldable for certain choices of the parameters, they are always
generally unfoldable; see Fig. 8. We start with the parallelogram unfolding of the underlying tetrahedron
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Fig. 7. Spiked tetrahedra for both types of hats.

Fig. 8. General unfolding of a spiked tetrahedron.

on which we glued the hats. The spikes do not have room to unfold in the middle of an unfolded brim,
so we use the following trick. Cut out each spike and a small band that connects it to an edge on the
boundary of the tetrahedron unfolding. Now attach that band and unfolded spike to the corresponding
edge of the tetrahedron unfolding (corresponding in the sense that the edges are glued to each other). The
bands are chosen to be nonperpendicular so that a band does not attempt to attach where another band
was removed.
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Fig. 9. Open polyhedron with no unfolding. One cut creates an unfolding with overlap, but two cuts disconnect the results.

6. No general unfolding

An intriguing open question is whether there is a convex-faced polyhedron, triangulated polyhedron,
or any closed polyhedron that cannot be generally unfolded. This section makes a step toward solving
this problem by presenting a triangulatedopenpolyhedron (polyhedron with boundary) with no general
unfolding.

The construction is to connect several triangles in a cycle, all sharing a common vertexv, as shown in
Fig. 9. By connecting enough triangles and/or adjusting the triangles to have large enough angle incident
to v, we can arrange for vertexv to have negative curvature.

Theorem 11. The open polyhedron in Fig.9 has no general unfolding ifv has negative curvature.

Proof. A cutting could only have leaves on the boundary, becausev has negative curvature, and because
the cut incident to any other leaf could be glued (uncut) without affecting the unfolding. But any cutting
has at least two leaves, so it must disconnect the polyhedron, a contradiction.✷

7. Conclusion

The spiked tetrahedra (Fig. 7) show that the conjecture about edge unfoldings of convex polyhedra
cannot be extended to topologically convex polyhedra. Fig. 8 further illustrates the added power of cuts
along faces for topologically convex polyhedra. Fig. 9 shows an open polyhedron that cannot be unfolded
at all, but the flexibility exploited in Fig. 8 suggests that it will be more difficult to settle whether there is
a closed polyhedron with that property. Another interesting open question is the complexity of deciding
whether a given triangulated polyhedron has an edge unfolding, now that we know that the answer is not
always “yes”.

Acknowledgements

We thank Anna Lubiw for helpful discussions. We thank Joseph O’Rourke for his contributions to
Section 2 and for many helpful comments on the paper.



62 M. Bern et al. / Computational Geometry 24 (2003) 51–62

References

[1] P.K. Agarwal, B. Aronov, J. O’Rourke, C.A. Schevon, Star unfolding of a polytope with applications, SIAM J.
Comput. 26 (6) (1997) 1689–1713.

[2] B. Aronov, J. O’Rourke, Nonoverlap of the star unfolding, Discrete Comput. Geom. 8 (3) (1992) 219–250.
[3] M. Bern, E.D. Demaine, D. Eppstein, E. Kuo, Ununfoldable polyhedra, in: Proceedings of the 11th Canadian Conference

on Computational Geometry, Vancouver, Canada, 1999. http://www.cs.ubc.ca/conferences/CCCG/elec_proc/fp38.ps.gz.
Also Technical Report CS-99-04, Department of Computer Science, University of Waterloo, August 1999.

[4] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, M. Overmars, J. O’Rourke, S. Robbins, S. Whitesides, Unfolding some
classes of orthogonal polyhedra, in: Proceedings of the 10th Canadian Conference on Computational Geometry, Montréal,
Canada, 1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-unfolding.ps.gz.

[5] H.T. Croft, K.J. Falconer, R.K. Guy, in: Unsolved Problems in Geometry, Springer-Verlag, 1991, pp. 73–76.
[6] P.R. Cromwell, Polyhedra, Cambridge University Press, 1997.
[7] H.M. Cundy, A.P. Rollett, Polyhedra, in: Mathematical Models, 2nd edition, Oxford University Press, 1961, Chapter 3,

pp. 76–160.
[8] E. Demaine, M. Demaine, A. Lubiw, J. O’Rourke, Examples, counterexamples, and enumeration results for foldings

and unfoldings between polygons and polytopes, Technical Report 069, Smith College, Northampton, MA, July 2000.
http://www.arXiv.org/abs/cs.CG/0007019.

[9] E.D. Demaine, M.L. Demaine, A. Lubiw, J. O’Rourke, Enumerating foldings and unfoldings between polygons and
polytopes, in: Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Japan, 2000.
http://www.arXiv.org/abs/cs.CG/0107024.

[10] E.D. Demaine, D. Eppstein, J. Erickson, G.W. Hart, J. O’Rourke, Vertex-unfoldings of simplicial polyhedra, July 2001,
arXiv:cs.CG/0107023. http://www.arXiv.org/abs/cs.CG/0107023.

[11] A. Dürer, The Painter’s Manual: A Manual of Measurement of Lines, Areas, and Solids by Means of Compass and Ruler
Assembled by Albrecht Dürer for the Use of All Lovers of Art with Appropriate Illustrations Arranged to be Printed in
the Year MDXXV, Abaris Books, New York, 1977. English translation of: Unterweysung der Messung mit dem Zirkel un
Richtscheyt in Linien Ebnen uhnd Gantzen Corporen, 1525.

[12] K. Fukuda, Strange unfoldings of convex polytopes, June 1997. http://www.ifor.math.ethz.ch/staff/fukuda/unfold_home/
unfold_open.html.

[13] B. Grünbaum, Convex Polytopes, Interscience, New York, 1967.
[14] S.K. Gupta, D.A. Bourne, K.H. Kim, S.S. Krishnan, Automated process planning for sheet metal bending operations,

J. Manufacturing Systems 17 (5) (1998) 338–360.
[15] B. Hayes, Pleasures of plication, American Scientist, November–December 1995. See also http://www.cs.colorado.

edu/~eisenbea/hypergami/ for information on HyperGami.
[16] M. Henk, J. Richter-Gebert, G.M. Ziegler, Basic properties of convex polytopes, in: J.E. Goodman, J. O’Rourke (Eds.),

Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton, 1997, Chapter 13, pp. 243–270.
[17] Lundstrom Design, Touch-3d, July 1998. http://www.algonet.se/~ludesign/.
[18] J.S.B. Mitchell, D.M. Mount, C.H. Papadimitriou, The discrete geodesic problem, SIAM J. Comput. 16 (4) (1987) 647–

668.
[19] M. Namiki, K. Fukuda, Unfolding 3-dimensional convex polytopes: A package for Mathematica 1.2 or 2.0, Version 1.0,

September 1994. ftp://ftp.ifor.math.ethz.ch/pub/fukuda/mathematica/UnfoldPolytope.tar.Z.
[20] J. O’Rourke, Folding and unfolding in computational geometry, in: Revised Papers from the Japan Conference on Discrete

and Computational Geometry, Tokyo, Japan, in: Lecture Notes in Computer Science, Vol. 1763, 1998, pp. 258–266.
[21] C. Schevon, Unfolding polyhedra. sci.math Usenet article, February 1987. See http://www.ics.uci.edu/~eppstein/gina/

unfold.html.
[22] C. Schevon, Algorithms for geodesics on polytopes, PhD Thesis, Johns Hopkins University, 1989.
[23] M. Sharir, A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1) (1986) 193–215.
[24] G.C. Shephard, Convex polytopes with convex nets, Math. Proc. Cambridge Philos. Soc. 78 (1975) 389–403.
[25] E. Steinitz, H. Rademacher, Vorlesungen über die Theorie der Polyeder, Springer-Verlag, Berlin, 1934. Reprinted 1976.
[26] C.-H. Wang, Manufacturability-driven decomposition of sheet metal, PhD Thesis, Carnegie Mellon University, Robotics

Institute, Technical Report CMU-RI-TR-97-35, September 1997.
[27] M.J. Wenninger, Polyhedron Models, Cambridge University Press, 1971.


