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Unfolding Convex Polyhedra

via Quasigeodesic Star Unfoldings∗

Jin-ichi Itoh† Joseph O’Rourke‡ Costin Vı̂lcu§

December 12, 2008

Abstract

We extend the notion of a star unfolding to be based on a simple
quasigeodesic loop Q rather than on a point. This gives a new general
method to unfold the surface of any convex polyhedron P to a simple,
planar polygon: shortest paths from all vertices of P to Q are cut, and
all but one segment of Q is cut.

1 Introduction

There are two general methods known to unfold the surface P of any convex
polyhedron to a simple polygon in the plane: the source unfolding and the
star unfolding. Both unfoldings are with respect to a point x ∈ P. Here we
define a third general method: the star unfolding with respect to a simple closed
“quasigeodesic loop” Q on P. In a companion paper [IOV08], we will extend
the analysis to the source unfolding with respect to a wider class of curves Q.

The point source unfolding cuts the cut locus of the point x: the closure
of set of all those points y to which there is more than one shortest path on
P from x. Alternatively, the cut locus is the set of all extremities (different
from x) of maximal (with respect to inclusion) shortest paths starting at x.
The notion of cut locus was introduced by Poincaré [Poi05] in 1905, and since
then has gained an important place in global Riemannian geometry; see, e.g.,
[Kob67] or [Sak96]. The point source unfolding has been studied for polyhedral
surfaces since [SS86] (where the cut locus is called the “ridge tree”). The point
star unfolding cuts the shortest paths from x to every vertex of P. The idea
∗A preliminary version of this work appeared in [IOV07a, IOV07b].
†Dept. Math., Faculty Educ., Kumamoto Univ., Kumamoto 860-8555, Japan. j-itoh@
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goes back to Alexandrov [Ale50, p. 181];1 that it unfolds P to a simple polygon
was established in [AO92].

In this paper we extend the star unfolding to be based on a simple closed
polygonal curve Q with particular properties, rather than based a single point.
This unfolds any convex polyhedron to a simple polygon, answering a question
raised in [DO07, p. 307].

The curves Q for which our star unfolding works are quasigeodesics, which
we now define.

Geodesics & Quasigeodesics. A geodesic is a locally shortest path on a
smooth surface. A quasigeodesic is a generalization that extends the notion
to nondifferentiable, and in particular, to polyhedral surfaces. Let Γ be any
directed curve on a convex surface P, and p ∈ Γ be any point in the relative
interior of Γ, i.e., not an endpoint. Let L(p) be the total face angle incident
to the left side of p, and R(p) the angle to the right side. If Γ is a geodesic,
then L(p)=R(p) = π. A quasigeodesic Γ loosens this condition to L(p) ≤ π
and R(p) ≤ π, again for all p interior to Γ [AZ67, p. 16] [Pog73, p. 28]. So
a quasigeodesic Γ has π total face angle incident to each side at all nonvertex
points (just like a geodesic), and has ≤π angle to each side where Γ passes
through a polyhedron vertex. (Geodesics can never pass through vertices.)
A simple closed geodesic is non-self-intersecting (simple) closed curve that is
a geodesic, and a simple closed quasigeodesic is a simple closed curve on P
that is quasigeodesic throughout its length. As all curves we consider must
be simple, we will henceforth drop that prefix. Pogorelov showed that any
convex polyhedron P has at least three closed quasigeodesics [Pog49], extending
the celebrated earlier result of Lyusternik-Schnirelmann showing that the same
holds for geodesics on differentiable convex surfaces.

A geodesic loop is a closed curve that is geodesic everywhere except possibly
at one point, and similarly a quasigeodesic loop is quasigeodesic except possi-
bly at one point x, the loop point, at which the angle conditions on L(x) and
R(x) may be violated—one may be >π. Quasigeodesic loops encompass closed
geodesics and quasigeodesics, as well as geodesic loops.

Although it is known that every P must have at least three closed quasi-
geodesics, there is no algorithm known that will find a simple closed quasi-
geodesic in polynomial time: Open Problem 24.2 [DO07, p. 374]. Fortunately it
is in general easy to find quasigeodesic loops on a given P: start at any nonver-
tex point p, and extend a geodesic from p in opposite directions, following each
branch until they meet at x. If no vertices are encountered, we have a geodesic
loop; if vertices are encountered, maintaining the angle conditions through the
vertices (which is always possible, e.g., by bisecting the surface angle) will result
in a quasigeodesic loop.

An exception to this ease of finding a geodesic loop could occur on an isosce-
les tetrahedron: a tetrahedron whose four faces are congruent triangles, or,
equivalently, one at which the total face angle incident to each vertex is π. It is

1 It is called the “Alexandrov unfolding” in [MP08].
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proved in [IV08b] that a convex surface possesses a simple quasigeodesic line—
a non-self-intersecting quasigeodesic infinite in both directions—if and only if
the surface is an isosceles tetrahedron. So, excepting this case, the procedure
described above will produce a quasigeodesic loop.

Discrete Curvature. The discrete curvature ω(p) at any point p ∈ P, is the
angle deficit or gap: 2π minus the sum of the face angles incident to p. The
curvature is only nonzero at vertices of P; at each vertex it is positive because
P is convex. By the Gauss-Bonnet theorem, a closed geodesic partitions the
curvature into 2π in each “hemisphere” of P . For quasigeodesics that pass
through vertices, the curvature in each half is ≤2π. The curvature in each half
defined by a quasigeodesic loop depends on the angle at the exceptional loop
point.

Some Notation. For a quasigeodesic loop Q on P, P \ Q separates P into
two “halves” P1 and P2. As our main focus is usually on one such half, to ease
notation we sometimes use P without a subscript to represent either of P1 or P2

when the distinction between them does not matter. Unless otherwise stated,
vertices of P are labeled vi in arbitrary order. Other notation will be introduced
as needed. A glossary of all symbols defined (chronologically) throughout the
paper is provided in Appendix 1.

2 Example of Star Unfolding

We start with an example. Figure 1(a) shows a geodesic loop Q on the surface
P of a cube. L(p)=R(p) = π at every point p of Q except at x, where R(x)= 3

2π
and L(x)= 1

2π. Note that three cube vertices, {v3, v6, v7}, are to the left of
Q, and the other five to the right. This is consistent with the Gauss-Bonnet
theorem, because Q has a total turn of 1

2π, so turn plus enclosed curvature is
2π.

For each vertex vi ∈ P, we select a shortest path sp(vi) to Q: a geodesic
from vi to a point v′i ∈ Q whose length is minimal among all geodesics to Q.
In general there could be several shortest paths from vi to Q; we use sp(vi) to
represent an arbitrarily selected one. The point v′i ∈ Q is called a projection of
vi onto Q, and the path sp(vi) = viv

′
i is called a segment on P. In the example,

all the shortest path segments sp(v′i) are unique, which is the generic situation.

Algorithm. If we view the star unfolding as an algorithm with input P and
Q, it consists of three main steps:

1. Select shortest paths sp(vi) from each vi ∈ P to Q.

2. Cut along sp(vi) and flatten each half.

3. Cut along Q, joining the two halves at an uncut segment s ⊂ Q.

3
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Figure 1: (a) Geodesic loop Q on cube. Shortest paths sp(vi) are shown. Faces
are labeled {F, T, L,R,Bt,Bk}. (b) Star unfolding with respect to Q, joined at
s = v′0v

′
7.

After cutting along sp(vi), we conceptually insert an isoceles triangle with
apex angle ω(vi) at each vi, which flattens each half. One half (in our example,
the left half), is convex, while the other half has several points of nonconvexity,
at the images of x. (In our example, only x1 is nonconvex, when the inserted
“curvature triangles” are included.) In the third and final step of the procedure,
we select a segment s of Q whose interior contains neither a vertex vi nor any
vertex projection v′i, such that the extension of s is a supporting line of each
half, and cut all of Q except for s. In our example, we choose s = v′0v

′
7 (many

choices for s work in this example), which leads to non-overlap of the two halves.
We now proceed to detail the three steps of the procedure, this time with

proofs. We use a different example to illustrate the main ideas.

3 Shortest Path Cuts

We again use a cube as an illustrative example, but this time with a closed
quasigeodesic Q, not a loop: Q = (v0, v5, v7); see Figure 2(a). There is π angle
incident to the right at v5, and 1

2π incident to the left; and similarly at v0 and v7.
At all other points p ∈ Q, L(p)=R(p) = π. Thus Q is indeed a quasigeodesic.
We will call the left half (including v2) P1, and the right half (including v4) P2.
In Figure 2(a), the paths from {v1, v3, v6} are uniquely shortest. From v2 there
are three paths tied for shortest, and from v4 also three are tied.

A central fact that enables our construction is this key lemma from [IIV07,
Cor. 1], slightly modified for our circumstances:

Lemma 1 Let Q be a quasigeodesic on a convex surface P, and p any point of
P not on Q. Then for any choice of sp(p) = pp′, this is the unique shortest path
from p to p′ and it is orthogonal to Q if p′ is in the relative interior of Q.

In our situation, the orthogonality condition is only guaranteed to hold when

4
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Figure 2: (a) Cube and quasigeodesic Q = (v0, v5, v7). Shortest paths sp(vi) as
indicated. (b,c) Flattening the left half by insertion of curvature triangles along
the shortest paths sp(vi) = viv

′
i. (d,e) Flattening the right half. (f) Two halves

joined at s = v5v
′
6. 5



p′ is not the exceptional loop point x of a quasigeodesic loop. In the example
of Figure 2(a), there is no exceptional point, so all projections are orthogonal
to Q. Note that this lemma does not say that the shortest path from p to Q
is unique—which we know is not always true—but that, among those that are
tied for shortest, each is the unique shortest path between its two endpoints.

A second fact we need concerning these shortest paths is that they are dis-
joint, excepting those arriving at the exceptional loop point, in which case they
share precisely that point. The reader who accepts this basic fact is invited to
skip beyond the proof.

Lemma 2 Any two shortest paths sp(v1) and sp(v2), not incident to the loop
point x, are disjoint, for distinct vertices v1, v2 ∈ P .

Proof: Suppose for contradiction that at least one point u is shared: u ∈
sp(v1) ∩ sp(v2). We consider four cases: one shortest path is a subset of the
other, the shortest paths cross, the shortest paths touch at an interior point but
do not cross, or their endpoints coincide.

1. sp(v2) ⊂ sp(v1). Then sp(v1) contains a vertex v2 in its interior, which
violates a property of shortest paths [SS86, Lem. 4.1].

2. sp(v1) and sp(v2) cross properly at u. It must be that |uv′1| = |uv′2|,
otherwise both paths would follow whichever tail is shorter. But now it
is possible to shortcut the path in the vicinity of u via σ as shown in
Figure 3(a), and the path (v1, σ, v′2) is shorter than sp(v1).

3. sp(v1) and sp(v2) touch at u but do not cross properly there. Then there is
a shortcut σ to one side (the side with angle <π), as shown in Figure 3(b).

4. v′1 = v′2. Then from Lemma 1, we know the two paths are orthogonal to
the quasigeodesic Q. If we are not in the previous case, then it must be
that there is an angle α > 0 separating the paths in a neighborhood of the
common endpoint; see Figure 3(c). Then Q has more than π angle to one
side at this point, violating the definition of a quasigeodesic. Note that it
is here we use the assumption that the paths are not incident to the loop
point x.

This lemma ensures that the cuttings along sp(vi) do not interfere with one
another.

4 Flattening the Halves.

The next step is to flatten each chosen half P1 and P2 (independently) by
suturing in “curvature triangles” along each sp(v) path. Let P be one of P1

or P2. The basic idea goes back to Alexandrov [Ale05][p. 241, Fig. 103], and
was used also in [IV08a]. Let ` be the length | sp(v)| of a shortest path, and
let ω = ω(v) > 0 be the curvature at v. We glue into sp(v) = vv′ the isosceles

6
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α

(a) (b) (c)
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v´2
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Figure 3: Lemma 2: (a) paths cross; (b) paths touch at an interior point;
(c) paths meet at endpoint.

curvature triangle 4 with apex angle ω gluing to v, and incident sides of length
` gluing along the cut vv′. This is illustrated in Figure 2, where we show the
faces incident to Q in a planar development in (b) and (d), and after gluing
in the triangles in (c) and (e). We display this in the plane for convenience
of presentation; the triangle insertion should be viewed as operations on the
manifolds P1 and P2, each independently.

This procedure only works if ω < π, for ω becomes the apex of the inserted
triangle 4. If ω ≥ π, we glue in two triangles of apex angle ω/2, both with
their apexes at v.2 Slightly abusing notation, we use 4 to represent these two
triangles together. In fact we must have ω < 2π for any vertex v (else there
would be no face angle at v), so ω/2 < π and this insertion is indeed well defined.

We should remark that an alternative method of handling ω ≥ π would be
to simply not glue in anything to the vertex v with ω(v) ≥ π, in which case we
still obtain the lemma below leading to the exact same unfolding.

Now, because ω is the curvature (angle deficit) at v, gluing in4 there flattens
v to have total incident angle 2π. Thus v disappears as a vertex from P (and
two new vertices are created along Q).

Let P4 be the new manifold with boundary after insertion of all curvature
triangles into P . We want to claim that a planar development of P4 does not
overlap. This is straightforward for a closed quasigeodesic, but requires some
argument for a quasigeodesic loop.

Lemma 3 For each half P of P, P4 is a planar, simple (non-overlapping)
polygon.

Proof: P4 is clearly a topological disk: P is, and the insertions of4’s maintains
it a disk. At every interior point of P4, the curvature is zero by construction.
So the interior is flat.

Let ωQ be the total curvature enclosed within Q on P , and τQ the total turn
of Q, i.e., the turn of ∂P . The Gauss-Bonnet Theorem yields τQ + ωQ = 2π.

2 One can view this as having two vertices with half the curvature collocated at v.
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This is precisely the total turn of ∂P4, because that boundary turns τQ, plus
a total of ωQ for all the inserted curvature triangles. So indeed the boundary
of P4 turns just as much as it should if it is a planar polygon. It remains to
establish that it is a simple polygon.

There are two cases to consider, depending on whether Q is a closed quasi-
geodesic, or a closed quasigeodesic loop.

1. Q is a closed quasigeodesic. In this case we show that the boundary ∂P4

is convex. This follows from the orthogonality of sp(v) guaranteed by
Lemma 1, as the base angle of the inserted triangle(s) is π/2 − ω/2 for
ω < π, or π/2− ω/4 for ω ≥ π (see Figure 4; ω = ω(v)), so the new angle
is smaller than π by ω/2 or ω/4. Thus P4 is a planar convex polygon,

ω

π/2−ω/2

ω/2

π/2−ω/4

(a) (b)

Figure 4: Lemma 3, Case 1: (a) ω < π; (b) ω ≥ π.

and therefore simple. See Figure 2(c,e) for examples.

2. Q is a closed quasigeodesic loop, with loop point x. If P is the half of
P in which the angle at x is <π, then the argument above applies. So
assume P is the half in which the angle β at x exceeds π. We consider
two subcases.

(a) No vertex of P projects to x.
Then after insertion of the curvature triangles, P4 is a topological
disk whose boundary is locally convex at all points except at x, whose
internal angle is β > π. We now argue that a planar development
of such a domain is non-overlapping. Let R1 and R2 be rays from x
along the two edges of P4 incident to x; see Figure 5. The boundary
∂P4 of P4 must be exterior to the cone delimited by R1 and R2 in
a neighborhood of those rays, because the boundary turns convexly
at each boundary vertex. So now we have a convex curve, a subset
of ∂P4, leaving R1 and returning to R2. For the purposes of con-
tradiction, assume this curve self-intersects. Then it must “spiral,”
enclosing a point z of winding number ≥2. We noted above that the
total turn of ∂P4 is 2π. Thus the total turn of the convex portion
of ∂P4, i.e., ∂P4 \ {x}, exceeds 2π by the amount 0 < β−π needed

8



x
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z

β−π

R
1

R
2

Figure 5: Lemma 3, Case 2(a): P4 has one point x of local nonconvexity. Here
β = 305◦. The spiral depicted encloses a point z of winding number 2.

to close the shape at x. But β − π < π, so the convex curve turns
at most 2π + (β − π) < 3π. However, the point z must “see” a
turn of ≥4π to have winding number ≥2. Therefore, ∂P4 does not
selt-intersect, and P4 is a simple polygon.

(b) One or more vertices of P project to x.
Let v1, v2, . . . , vk be the vertices that project to x in circular order, as
illustrated in Figure 6(a). Let x1 and x2 be the extreme images of x
in a planar development of P4 after insertion of all curvature trian-
gles, i.e., incident to the planar image of R1 and of R2 respectively;
see Figure 6(b). View the curve ∂P4 as composed of two pieces:
C1,2, the curve counterclockwise from x1 to x2, and C2,1, the com-
plementary curve counterclockwise from x2 to x1; ∂P4 = C1,2∪C2,1.
C1,2 is locally convex everywhere, but C2,1 may be nonconvex, as il-
lustrated in Figure 6(b). Now we partition the remaining argument
into three parts.

i. C1,2 does not self-intersect. The convex portion does not self-
intersect for the same reason we just established in the case
above: the curve would have to spiral and turn ≥4π, but that
total turn angle is not available.

ii. C2,1 does not self-intersect. It clearly cannot if k=1, so we hence-
forth assume k ≥ 2.
This portion of ∂P4 is composed entirely of bases of curvature
triangles. For this portion to self-intersect, it must turn at least
π. We now compute the total turn τ2,1 and show this leads to
a contradiction. Let α1 be the angle R1x1v1 and α2 the angle
R2x2vk. It must be that αi ≥ π/2 because vix is a shortest
path. Let βi be the angle at x on P between vix and vi+1x. See

9
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Figure 6: Lemma 3, Case 2(b): (a) Several vertices project to x. (b) After
insertion of curvature triangles, with R2 held fixed. R′1 is the planar image of
R1.
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v
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v
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Figure 7: Lemma 3, Case 2(b)ii: The curve C2,1 is formed from the bases of
curvature triangles. It needs to turn π to self-intersect.
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Figure 7. Thus, because α1, α2 ≥ π/2, α1 +α2 = β −
∑k

i=1 βi ≥
π, and because

∑k
i=1 βi +α1 +α2 = β < 2π we get

∑k
i=1 βi < π.

We henceforth drop the limits on the sums, which all run the
full appropriate range. The base angle for the curvature triangle
incident to vi is 1

2 (π − ω(vi)). Thus the turn of the curve at the
angle βi is

[
1
2

(π−ω(vi))+
1
2

(π−ω(vi+1))+βi]−π = βi−
1
2

[ω(vi)+ω(vi+1)].

The total turn is therefore

τ2,1 =
∑{

βi −
1
2

[ω(vi) + ω(vi+1)]
}

=
∑

βi −
∑

ω(vi).

To insist that τ2,1>π is to say that

0 <
∑

ω(vi) <
∑

βi − π

a contradiction to
∑
βi − π < 0. Thus τ2,1 ≤ π. It is also worth

noting that the same turn-angle bound holds for any subchain of
C2,1 (just by narrowing the sum limits), a fact we will use below.

iii. C1,2 and C2,1 do not intersect. For C2,1, a potentially nonconvex
curve, to intersect C1,2, it would have to form a path from x1,
crossing R′1 (see Figure 6(b)), and returning to x2 (or symmet-
rically, from x2 cross R2 and return to x1). But this requires
some subchain of C2,1 to turn >π, contradicting the turn-angle
conclusion above. Therefore, ∂P4 does not self-cross, and P4

is indeed a simple polygon.

The above argument would be simpler if it were established that the cone R1xR2

in Figure 6(b) is empty in the planar development. We leave this for future work.

5 Joining the Halves

The third and final step of the unfolding procedure selects a supporting segment
s ⊂ Q whose relative interior does not contain a projection v′ of a vertex. All
of Q will be cut except for s. Our choice of s depends on whether Q is a closed
quasigeodesic or a quasigeodesic loop:

1. Q is a closed quasigeodesic. Then any s generates a supporting line to
a planar development of Pi, i = 1, 2, because P4i is a convex domain.
Then joining planar developments of P1 and P2 along s places them on
opposite sides of the line through s, thus guaranteeing non-overlap. See
Figure 2(f), where s = v5v

′
6.

11



2. Q is a quasigeodesic loop. Let P be the half of P that contains the angle
β > π at x. Thus P4 is potentially nonconvex at points along the chain
C2,1 from x2 to x1. Let R1 and R2 be the rays from x1 and x2 respectively,
tangent to ∂P4. Let L1 and L2 be lines parallel to R1 and R2 tangent

x
1 x

2

R
1

R
2

L
1

L
2

y
1

y
2

C
1,2

C
2,1

s
y

Figure 8: C2,1 cannot cross both extensions of edges incident to y. Here y = y1.

to ∂P4 at y1 and y2 respectively. Let y be any vertex between y1 and
y2; y may be y1 or y2, as in Figure 8. Now we claim that one of the two
edges of ∂P4 incident to y can serve as s. For both these edges to fail to
extend to supporting lines, C2,1 would have to cross both edge extensions.
But, the angle at y is <π (because C1,2 is convex), so crossing both edge
extensions would require C2,1 to turn more than π, which we established
in Lemma 3 is impossible.

Case 2 is illustrated in Figure 1(b), where this reasoning leads to s = v′0v
′
7.

In either case s extends to a supporting line of both halves, and thus we obtain
a non-overlapping placement of the planar developments of P1 and P2.

It should be clear now that this procedure works for any convex polyhedron:

Theorem 4 Let Q be a quasigeodesic loop on a convex polyhedral surface P.
Cutting shortest paths from every vertex to Q, and cutting all but a supporting
segment s of Q as designated above, unfolds P to a simple planar polygon.

Figure 9 shows another example, a closed geodesic on a dodecahedron, this
time a pure geodesic. The unfolding following the above construction is shown in
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Q
(a)

(d)

(c)

(b)

Figure 9: (a) Q here is a geodesic; it includes no vertices, as is evident in the
layout (b). The region isometric to a right circular cylinder is highlighted. The
convex domain P4 from Lemma 3 is shown in (c), and one possible unfolding
in (d).
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Figure 9(c,d). In this case when Q is a pure, closed geodesic, there is additional
structure that can be used for an alternative unfolding. For now Q lives on
a region isometric to a right circular cylinder. Figure 9(b) illustrates that the
upper and lower rims of the cylinder are loops parallel to Q through the vertices
of P at minimum distance to Q (at least one vertex on each side.) In the figure,
these shortest distances to the upper rim are the short vertical paths from Q to
the five pentagon vertices. Those rim loops are themselves closed quasigeodesics.
An alternative unfolding keeps the cylinder between the rim loops intact and
attaches the two reduced halves to either side. See Figure 10.

Figure 10: Alternative unfolding of the example in Figure 9. Various construc-
tion lines are shaded lightly.

6 Future Work

We have focused on establishing Theorem 4 rather than the algorithmic aspects.
Here we sketch preliminary thoughts on computational complexity. Let n be the
number of vertices of P, and let q = |Q| be the number of faces crossed by the
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geodesic loop Q. In general q cannot be bound as a function of n. Finally, let
m = n+ q, the total combinatorial complexity of the “input” to the algorithm.
Constructing Q from a given point and direction will take O(q) time. Identifying
a supporting segment s, and laying out the final unfolding, is proportional to
m. The most interesting algorithmic challenge is to find the shortest paths from
each vertex vi to Q. It appears that this can be accomplished efficiently, in
O(m logm) time, by first computing the cut locus of Q. We expect to address
this computation in [IOV08].

We do not believe that quasigeodesic loops constitutes the widest class of
curves for which the star unfolding leads to non-overlap. In particular, we
believe we can extend Theorem 4 to quasigeodesics with two exceptional points,
one with angle >π to one side, and the other with angle >π to the other side.
But whether this extension constitutes the widest class of curves for which
Theorem 4 holds remains unclear.

If one fixes a nonvertex point p ∈ P and a surface direction −→u at p, a
quasigeodesic loop can be generated to have direction −→u at p. It might be
interesting to study the continuum of star unfoldings generated by spinning −→u
around p.
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Appendix 1: Symbol Glossary

P convex polyhedron
P1, P2 the two “halves” P \Q
P one half, either P1 or P2

vi vertex of P
Q a quasigeodesic loop
x the exceptional loop point of Q
L(p), R(p) angle incident to left/right side of p on curve
Γ directed curve
sp(v) one selected shortest path from v to Q
v′ the projection of v onto Q: sp(v) = vv′

ω = ω(v) the curvature at v, 2π minus the incident face angles
4 a curvature triangle
` | sp(v)|
∂P the boundary of P
P4 the manifold P after insertion of all curvature triangles 4
ωQ total curvature inside Q on P
τQ total turn of Q = ∂P

∂P4 the boundary of P4

β angle >π at the loop point x ∈ Q
x1, x2 extreme images of x in planar development of P4

R1, R2 rays along edges incident to x1, x2

αi α1 is angle R1x1v1 and α2 is angle R2x2vk

βi angle at x on P between vix and vi+1x

C1,2 ∂P4 counterclockwise from x1 to x2

C2,1 ∂P4 counterclockwise from x2 to x1

τ2,1 total turn of curve C2,1 from x2 to x1

L1, L2 lines parallel to R1, R2 tangent to P4

y1, y2 tangency points of L1, L2

y a vertex between y1 and y2
s supporting segment
n number of vertices of P
q combinatorial complexity of Q
m n+ q
−→u direction vector through p ∈ P
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