530 research outputs found

    A review of electro-hydraulic servovalve research and development

    Get PDF
    This paper provides a review of the state of the art of electro-hydraulic servovalves, which are widely used valves in industrial applications and aerospace, being key components for closed loop electrohydraulic motion control systems. The paper discusses their operating principles and the analytical models used to study these valves. Commercially available units are also analysed in detail, reporting the performance levels achieved by current servovalves in addition to discussing their advantages and drawbacks. Adetailed analysis of research that investigates these valves via computational fluid dynamic analysis is also provided. Research studies on novel control systems and novel configurations based on the use of smart materials, which aim to improve performance or reduce cost, are also analysed in detail.</p

    A review of electro-hydraulic servovalve research and development

    Get PDF
    This paper provides a review of the state of the art of electro-hydraulic servovalves, which are widely used valves in industrial applications and aerospace, being key components for closed loop electrohydraulic motion control systems. The paper discusses their operating principles and the analytical models used to study these valves. Commercially available units are also analysed in detail, reporting the performance levels achieved by current servovalves in addition to discussing their advantages and drawbacks. Adetailed analysis of research that investigates these valves via computational fluid dynamic analysis is also provided. Research studies on novel control systems and novel configurations based on the use of smart materials, which aim to improve performance or reduce cost, are also analysed in detail.</p

    Volume 1 – Symposium: Tuesday, March 8

    Get PDF
    Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Components:Group A: Digital Hydraulics Group B: Intelligent Control Group C: Valves Group D | G | K: Fundamentals Group E | H | L: Mobile Hydraulics Group F | I: Pumps Group M: Hydraulic Component

    Position control of pneumatic actuators with PLC

    Get PDF
    Design and application of the robust and accurate position control for pneumatic cylinders based on the sliding-mode technique is presented by experimental investigations. The paper describes the model of the pneumatic cylinder and the three main design steps of the proposed control method. The aim of this paper is to investigate controlling pneumatic actuators using a Programmable Logic Controller (PLC) instead of micro-controllers chips. As PLCs are now involved in most industrial processes

    MULTI‐PHYSICAL MODELLING AND PROTOTYPING OF AN ENERGY HARVESTING SYSTEM INTEGRATED IN A RAILWAY PNEUMATIC SUSPENSION

    Get PDF
    The aim of this PhD thesis is the investigation of an energy harvesting system to be integrated in a railway pneumatic spring to recovery otherwise wasted energy source from suspension vibration. Exploiting the piezoelectric effect to convert the mechanical energy into an electrical one, the final scope consists on the use of this system to power supply one or more sensors that can give useful information for the monitoring and the diagnostics of vehicle or its subsystems. Starting from the analysis of the energy sources, a multi‐physical approach to the study of an energy harvesting system is proposed to take into account all physics involved in the phenomenon, to make the most of the otherwise wasted energy and to develop a suitable and affordable tool for the design. The project of the energy harvesting device embedded in a railway pneumatic spring has been carried out by means of using a finite element technique and multi‐physics modelling activity. The possibility to combine two energy extraction processes was investigated with the purpose of making the most of the characteristics of the system and maximize the energy recovering. Exploiting commercial piezoelectric transducers, an experimental activity was conducted in two steps. A first mock‐up was built and tested on a shaker to develop the device and to tune the numerical model against experimental evidence. In the second step a fullscale prototype of an air spring for metro application with the EH system was realized. In order to test the full‐scale component, the design of a new test bench was carried out. Finally, the Air spring integrated with the EH device was tested and models validated

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit

    MR conditional prostate intervention systems and actuations review

    Get PDF
    Magnetic resonance imaging (MRI) has the ability to provide high-resolution images of soft tissues without the use of radiation. So much research has been focused on the development of actuators and robotic devices that can be used in the MRI environment so “real-time” images can be obtained during surgeries. With real-time guidance from MRI, robots can perform surgical procedures with high accuracy and through less invasive routes. This technique can also significantly reduce the operation time and simplify pre-surgical procedures. Therefore, research on robot-assisted MRI-guided prostate intervention has attracted a great deal of interest, and several successful clinical trials have been published in recent years, pointing to the great potential of this technology. However, the development of MRI-guided robots is still in the primary stage, and collaboration between researchers and commercial suppliers is still needed to improve such robot systems. This review presents an overview of MRI-guided prostate intervention devices and actuators. Additionally, the expected technical challenges and future advances in this field are discussed

    Power Transmission and Motion Control (PTMC 2006)

    Get PDF

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio
    • 

    corecore