5 research outputs found

    Model structure detection and system identification of metal rubber devices

    Get PDF
    Metal rubber (MR) devices, a new wire mesh material, have been extensively used in recent years due to several unique properties especially in adverse environments. Although many practical studies have been completed, the related theoretical research on metal rubber is still in its infancy. In this paper, a semi-constitutive dynamic model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb damping is adopted to model MR devices. After approximating the bilinear hysteresis damping using Chebyshev polynomials of the first kind, a very efficient procedure based on the orthogonal least squares (OLS) algorithm and the adjustable prediction error sum of squares (APRESS) criterion is proposed for model structure detection and parameter estimation of an MR device for the first time. The OLS algorithm provides a powerful tool to effectively select the significant model terms step by step, one at a time, by orthogonalizing the associated terms and maximizing the error reduction ratio, in a forward stepwise procedure. The APRESS statistic regularizes the OLS algorithm to facilitate the determination of the optimal number of model terms that should be included into the dynamic model. Because of the orthogonal property of the OLS algorithm, the approach leads to a parsimonious model. Numerical ill-conditioning problems confronted by the conventional least squares algorithm can also be avoided by the new approach. Finally by utilising the transient response of a MR specimen, it is shown how the model structure can be detected in a practical application. The identified model agrees with the experimental measurements very well

    The wavelet-NARMAX representation : a hybrid model structure combining polynomial models with multiresolution wavelet decompositions

    Get PDF
    A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the basis functions have the property of localization in both time and frequency, outperform many other approximation schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise the global property of polynomials and the local property of wavelet representations simultaneously, in this study polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-output system might involve a large number of basis functions and therefore a great number of model terms. Experience reveals that only a small number of these model terms are significant to the system output. A new fast orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also introduced in this study to determine which terms should be included in the final model

    A unified wavelet-based modelling framework for non-linear system identification: the WANARX model structure

    Get PDF
    A new unified modelling framework based on the superposition of additive submodels, functional components, and wavelet decompositions is proposed for non-linear system identification. A non-linear model, which is often represented using a multivariate non-linear function, is initially decomposed into a number of functional components via the wellknown analysis of variance (ANOVA) expression, which can be viewed as a special form of the NARX (non-linear autoregressive with exogenous inputs) model for representing dynamic input–output systems. By expanding each functional component using wavelet decompositions including the regular lattice frame decomposition, wavelet series and multiresolution wavelet decompositions, the multivariate non-linear model can then be converted into a linear-in-theparameters problem, which can be solved using least-squares type methods. An efficient model structure determination approach based upon a forward orthogonal least squares (OLS) algorithm, which involves a stepwise orthogonalization of the regressors and a forward selection of the relevant model terms based on the error reduction ratio (ERR), is employed to solve the linear-in-the-parameters problem in the present study. The new modelling structure is referred to as a wavelet-based ANOVA decomposition of the NARX model or simply WANARX model, and can be applied to represent high-order and high dimensional non-linear systems

    System identification methods for metal rubber devices

    Get PDF
    Metal rubber (MR) devices, a new wire mesh material, have been extensively used in recent years due to several unique properties especially in adverse environments. Although many practical studies have been completed, the related theoretical research on metal rubber is still in its infancy. In this paper, a semi-constitutive dynamic model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb damping is adopted to model MR devices. The model is first approximated by representing the bilinear hysteresis damping as Chebyshev polynomials of the first kind and then generalised by taking into account the effects of noises. A very efficient systematic procedure based on the orthogonal least squares (OLS) algorithm, the adjustable prediction error sum of squares (APRESS) criterion and the nonlinear model validity tests is proposed for model structure detection and parameter estimation of MR devices for the first time. The OLS algorithm provides a powerful tool to effectively select the significant model terms step by step, one at a time, by orthogonalising the associated terms and maximising the error reduction ratio, in a forward stepwise manner. The APRESS statistic regularises the OLS algorithm to facilitate the determination of the optimal number of model terms that should be included into the model. And whether the final identified dynamic model is adequate and acceptable is determined by the model validity tests. Because of the orthogonal property of the OLS algorithm, the selection of the dynamic model terms and noise model terms are totally decoupled and the approach also leads to a parsimonious model. Numerical ill-conditioning problems which can arise in the conventional least squares algorithm can be avoided as well. The methods of choosing the sampling interval for nonlinear systems are also incorporated into the approach. Finally by utilising the response of a cylindrical MR specimen, it is shown how the model structure can be detected in a practical application
    corecore