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Abstract 
 

Metal rubber (MR) devices, a new wire mesh material, have been extensively used in recent years due to several 
unique properties especially in adverse environments. Although many practical studies have been completed, the 
related theoretical research on metal rubber is still in its infancy. In this paper, a semi-constitutive dynamic 
model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb 
damping is adopted to model MR devices. After approximating the bilinear hysteresis damping using 
Chebyshev polynomials of the first kind, a very efficient procedure based on the orthogonal least squares (OLS) 
algorithm and the adjustable prediction error sum of squares (APRESS) criterion is proposed for model structure 
detection and parameter estimation of an MR device for the first time. The OLS algorithm provides a powerful 
tool to effectively select the significant model terms step by step, one at a time, by orthogonalizing the 
associated terms and maximizing the error reduction ratio, in a forward stepwise procedure. The APRESS 
statistic regularizes the OLS algorithm to facilitate the determination of the optimal number of model terms that 
should be included into the dynamic model. Because of the orthogonal property of the OLS algorithm, the 
approach leads to a parsimonious model. Numerical ill-conditioning problems confronted by the conventional 
least squares algorithm can also be avoided by the new approach. Finally by utilising the transient response of a 
MR specimen, it is shown how the model structure can be detected in a practical application. The identified 
model agrees with the experimental measurements very well.  
 
Keywords: metal rubber; nonlinear damping material; nonlinear system identification; bilinear hysteresis model 
 
1. Introduction 
 
Metal rubber (MR) devices[1], also called wire mesh dampers[2-6], are a new type of material made by coiling 
thin metal wires with circular or noncircular sections into elastic spirals, which are then stretched and cold-
pressed into various shapes. Subsequent handling procedures such as tempering and vibration stabilization may 
also be undertaken. The MR element produced by this process has both the rubber-like elasticity and porosity 
formed by the contacts between adjacent wires. When excited by external forces, the wires will deform, slide 
and extrude, resulting in vibration energy dissipation[7]. Since the material can be made of special steel wires 
and can be processed by some special technologies[1], it thus can give not only good elastic and high damping 
capacity, but also the properties of resistance to high and low temperatures, corrosion proofing, little variation of 
stiffness and damping with temperatures, softening characteristic of the stiffness with an increase of excitation 
level, anti-aging, non-volatility in a vacuum, radiation withstandance, and so on, which normal rubber material 
lacks. Because of these unique and attractive properties, MR devices have already been used in health care and 
the aerospace industry since the 1950s, usually in extremely adverse environments, to reduce noises, isolate 
vibrations, absorb shocks, and even as seals, heat pipe linings, filters, throttle valves and bearing bushes[1, 4, 8-
10]. However, despite all these applications, the related theoretical analysis is still in its infancy. 
 
Experiments showed that the mechanical properties of MR devices, such as the energy dissipation and 
microscopic deformation mechanisms, depend on quite a lot of factors including the mass, shape, diameter of 
the spirals, orientational angle of the spirals in the compression direction, diameter of the wires, material of the 
wires, forming pressure, temperature, and preload[11-13]. This makes the constitutive model (usually on a 
microscopic scale) of this material very difficult to construct. Very few publications on the constitutive model 
are available. The models already proposed are the model of a bar system[1], the pyramidal model[1], the model 
of micro spring elements[14], and the model of porous materials[15-16]. Although these models can reveal 
some properties of MR devices, all of them are constructed under static load assumptions and can’t be used to 
describe the dynamic characteristics.     
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However, the dynamic stress-stain relation of MR devices is usually represented in the form of hysteresis loops 
and thus can be modelled on a macroscopic scale. In the past several decades, much research effort has been 
made to model and analyse hysteresis phenomena. Mathematical hysteresis is normally defined as a rate 
independent memory effect, that is, the hysteresis loops are stable with respect to arbitrary changes of the time 
scale[17]. However, in reality, hysteretic effects are rarely rate independent since hysteresis is coupled with 
viscous-type effects. Therefore, both rate independent and rate dependent models have been proposed[18]. Of 
them, the Duhem type models and the Preisach type models are the most used. Variations of these two model 
types have been studied in different contexts under various names. The ferromagnetic material model, the Bouc-
Wen model, the Madelung model, the Dahl friction model, the LuGre friction model, the Maxwell-slip model 
and the presliding friction model are specialized Duhem models while the Masing model and the Iwan model 
are special cases of Preisach models. The LuGre friction model is rate dependent while other models are rate 
independent[19]. More rate dependent models can be found in [20] and [21]. Despite so many models being 
available, it is surprising to find that very few have been applied to the modelling of MR devices. One 
application was made by Ulanov and Lazutkin[22], who used Masing’s principle and the coordinate 
transformation and proposed a method to obtain a description of the hysteresis loops in a loading process of MR 
devices. To obtain a more accurate model in a multi-axial loading process, the influence of the loading history in 
one axis on that in another was also investigated[23]. Compared with the constitutive models, the hysteretic 
models do not come, in general, from a detailed analysis of the physical mechanisms but just concentrate on 
describing the shape of the hysteresis loops. That is to say, they are phenomenological models. But one 
important aspect of a model is how meaningful the model parameters are. Physically meaningful parameters can 
give lots of information about the real properties of a system and are also significantly important in the analysis 
and design of a system.  
 
Experimental results demonstrated that the dynamic characteristic of MR devices exhibits nonlinear behaviour 
which is also dependent on the input frequency. This indicates that the materials damping also consists of a 
viscous damping component in addition to the dry friction damping between the wires. Therefore, in this paper, 
a model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb 
damping is adopted. This model can not only describe the dynamic restoring force at the macro level but also 
has a basis on the microstructure of the sliding surfaces between the wires although it is not constructed directly 
on a microscopic scale. In this sense, it is a semi-constitutive model. In previous studies, an odd ordered 
polynomial function was used to describe the elastic stiffness and viscous damping characteristics. But how 
many terms should be included in the model has not been explored. Some researchers used a cubic 
polynomial[24-26] while others suggest that a quintic polynomial might be needed[27]. In this paper, a new 
approach based on the Chebyshev polynomial approximation and the orthogonal least squares (OLS) algorithm, 
regularised by an adjustable prediction error sum of squares (APRESS) criterion, will be developed to detect the 
model structure and then estimate the parameters of the model to provide, for the first time, a systematic 
procedure for the identification of dynamic nonlinear models of MR devices.   
 
2. Dynamic model 
 
A cylindrical MR specimen is shown in Fig. 1. The model illustrated in Fig. 2 is used to represent the MR 
device, which consists of a nonlinear elastic spring ௞݂ሺȉሻ in parallel with a nonlinear viscous damper ௖݂ሺȉሻ and a 
hysteretic Coulomb damper ݖ. The nonlinear spring and nonlinear damper are only relevant to the current 
deformation while the hysteretic Coulomb damper has memory characteristics and also depends on the 
deformation history. The elastic stiffness restoring force is described by an odd ordered polynomial function of 
current displacement with the highest degree  ଵ while the viscous damping restoring force is described by an 
odd ordered polynomial function of current velocity with the highest degree  ଶ, such that 
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where ݇ ଶ௜ିଵ ሺ݅ ൌ ͳǡǥ ǡ  ଵሻ, ܿ ଶ௜ିଵ ሺ݅ ൌ ͳǡǥ ǡ  ଶሻ are the parameters of the stiffness characteristic and damping 
characteristic respectively. The MR device is subject to a preload ܨ଴  and a harmonic excitation force of 
amplitude ܨ௠ and frequency π. Set the equilibrium position of the MR device under preload as the origin of the 
displacement. Then the equation of motion for the MR device can be written as   
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where ݕ଴ is the static displacement produced by the preload. 
 
For convenience of analysis, denote 

     0cosmF t F t F    (4) 

 
Substituting Eq.(4) into Eq.(3) yields 
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As shown in Fig. 2, the hysteretic Coulomb damper is composed of a hysteretic Coulomb friction model with a 
serial linear spring, the characteristic of which is described by a bilinear hysteresis model[28-29] shown in Fig. 
3. The incremental representation of this bilinear hysteresis model can be expressed as 

       1 sgn
2
s

s

k
dz t z z t dy t      (6) 

  s
s

s

z
k

y
 (7) 

where  ୱ is the stiffness of the linear spring,  ୱ  the memorized restoring force when sliding between wires 
occurs,  ୱ the elastic deformation limit, and the sign function here is defined as 
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In Fig. 3, the states from the initial state Ͳᇱ to state 2 represent the static response of the MR device under 
preload while the states thereafter describe the transient response of the MR device subject to a harmonic 
excitation. The asymmetric steady state response of the MR device is shown in Fig. 4. In Fig. 3, from state Ͳᇱ to 
the critical sliding state 1, the restoring force ݖሺݐሻ increases and the energy is stored. Then from state 1 to state 2, 
the stored energy is dissipated by sliding friction and ݖሺݐሻ remains constant. In the subsequent cycles, the energy 
flows as follows: dissipation (2ĺ3), release (3ĺ4), storage (4ĺ5), dissipation (5ĺ6), release (6ĺ7), storage 
(7ĺ8), dissipation (8ĺ9), release (9ĺ10), and so on. The energy flow of the steady state response in Fig. 4 
repeats the following process: storage (1ĺ2), dissipation (2ĺ3), release (3ĺ4), storage (4ĺ5), dissipation 
(5ĺ6), and release (6ĺ1). In Fig. 4,  ୫ is the maximum displacement of the steady state response while  ሺ ୫ሻ,  ሺ ୫ାଵሻ, etc. in Fig. 3 are the peak displacements of the transient response. 
  
Although Eq. (6) combined with Eq. (5) clearly describes the deformation and energy dissipation mechanism of 
MR devices, it is not easy to use these expressions to identify the dynamic model. However, by using some 
series expansion[30-31], Eq. (6) can be written in a series form and then can be easily used for the model 
identification. Of these series expansions, Chebyshev polynomials can give a high accuracy by using the least 
terms and thus is adopted in this paper to approximate the bilinear hysteresis relation. 
 
3. Chebyshev polynomial approximations 

 
Suppose that  ሺ ୫ሻ ൐  ୱ, where  ൒  ,  ǡ א  , and  ሺ ୫ሻ is one of the peak displacements of the MR 
device’s response. That is to say, sliding between the wires happens in each cycle after time  ୑. This condition 
can easily be satisfied by utilising a large amplitude excitation and these cycles will then be collected for the 
model identification. Without loss of generality, suppose that  ൌ ͳ. The maximum amplitude span is defined 
as 

    1max m m
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ሻܜሶሺܡ  3.1 ൑ ૙ 
 
The bilinear hysteresis restoring force ݖሺݐሻ  of one branch with minus velocity, e.g. 3ĺ4ĺ5ĺ6, after 
continuation can be expressed as 
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where  ൌ ͳǡ ͵ǡ ͷǡ  .ڄڄڄ
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and then Eq.(10) can be written as 
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Now ݖሺݐሻ  becomes a continuous function in ൣെͳǡ  ͳ൧  and thus can be approximated by the Chebyshev 
polynomials of the first kind as[32] 
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where the primed summation indicates only half of the first term is included,  ܰ ଷ is the maximum degree of the 
truncated Chebyshev polynomials, ܽ௡ is the Chebyshev coefficient given by 
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and 
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Considering Eqs.(15) and (16), Eq.(12) now takes the form 
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Then substituting Eq.(17) into Eq.(14) yields 
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The Chebyshev polynomial approximations of ݖሺݐሻ can be obtained by substituting Eqs.(11), (15), and (18) into 
Eq.(13) as 
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and οݕ, ߮  are given by Eqs.(9) and (16) respectively. 
 
ሻܜሶሺܡ  3.2 ൐ ૙ 
 
Similar to the branch with minus velocity, the restoring force ݖሺݐሻ of one branch with positive velocity, e.g. 
6ĺ7ĺ8ĺ9, after continuation can be expressed as 
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Apparently the expression for the transformed displacement ݕ෤ሺݐሻ in Eq.(22) is different from that in Eq.(11). 
This has been confused in [31]. 
 
Considering Eqs.(15) and (16), Eq.(23) is expressed as 
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Substituting Eqs. (22), (15), and (25) into Eq.(13) yields 

          3
10

1

2 2
sgn sgn cos arccos 1

2

N
mn

n
n

y t y ta
z t y t a y t n

y




                  
  (26) 

where ݐ א ௠ǡݐൣ   ୫ାଵ൧, ܽ ௡, οݕ, and ߮  are given by Eqs.(25), (9) and (16) respectively. 
 
Noticed that the Chebyshev coefficient തܽ௡ given by Eq.(20) and ܽ ௡  given by Eq.(25) are in the same form, 
Eqs.(19) and (26) can be combined in a uniform expression,  
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where ݐ א ௠ǡݐൣ   ୫ାଵ൧, ܽ ௡, οݕ, and ߮  are given by Eqs.(25), (9) and (16) respectively. 
 
Substituting Eq.(27) into Eq.(5) gives 

 

      

         

1

3

2
0

1

2 1 2 1

2 1 0 2 1
1 1

1

sgn
2

2 2
sgn cos arccos sgn

N N
n n

n n
n n

N
mn

n
n

a
y t

y t y t
a y

k y t

t n

y c y

y t F t
y

t





 
 

 

  

    

  

           


 


 (28) 

 
Eq.(28) shows that the excitation force ܨሺݐሻ  is a function of the displacement ݕሺݐሻ  and the velocity  ሶ ሺ ሻ . 
Therefore, if the displacement and the corresponding velocity under various excitation forces are measured and 
the higher-order terms are neglected, a model of the MR device can be estimated. For example, if ݕሺݐ௜ሻ, ݕሶሺݐ௜ሻ, ݅ ൌ ͳǡʹǡڮ ǡܰ are measured for N different excitation forces ܨሺݐ௜ሻ respectively, and then consider the first ഥܰଵ 
terms for the elastic stiffness force, ഥܰଶ  terms for the viscous damping force, ഥܰଷ ൅ ͳ terms for the bilinear 
hysteresis damping force on the left-hand side of Eq.(28), the following equation can be derived, 
   (29) 
where 

      1 2, , ,
T

NF t F t F t     (30) 

 1 2 N, , ,        (31) 

    1 , ,
T

j j j Nt t       (32)

 

  
 

 

       

2 1

0 1

2 1

1 1 2

1 2

1
1

2

1,2, ,

1, ,

0.5sgn ,

2 2
sgn cos arccos sgn , ,

1,2

,

,

1

2,

, ,

j i i

i mj

j

i

i

j

i

i

j

j
t y t j

y t y t
y t j

y

y t j
y

t y N

y t N N N

N N

N N

i

N

N









  

  


    


             



 
 

     
 

(33) 

 1 2 3 1N N N N     (34) 

 
1 321 2 1 2 11 0 1 NN N

T
c c a ak ak  

      ˈ ˈ ˈ ˈ ˈ ˈˈ ˈˈ  (35) 

  1 N

T   ̍ˈ  (36) ȩ is the error signal with zero mean and assumed to be uncorrelated with ɔ୧,  ൌ ͳǡʹǡڮ ǡ  ഥ. 
 
After the identification of the dynamic model, the parameters of the bilinear hysteresis model can be obtained 
from Eqs.(25), (16) and (7),    
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 

 

1

2 0

1
20

1
sin 2 ˆ22 ;

ˆcos sin sin
2

ˆ 1 cos ;
4

ˆˆ cos sin sin ;
2

ˆ ˆˆ .

s

s

s s s

a

a

y
y

a
k

y

z k y

  

   



    


 


 


 

      



 (37) 

 
It should be noted that although Eq.(29) holds for both the transient response and the steady state response, the 
columns of the matrix Ȱ of the transient response are always linearly independent while in the steady state 
response case, this will no longer hold. Thus the procedure of model identification for the steady state response 
is different from that for the transient response. This will be presented in a later publication. This paper will 
concentrate on the model identification utilising the measurements from the transient response only. 
 
The solution of Eq.(29) can be obtained by using the least squares (LS) algorithm as 

   1T T
      (38) 

But in practice, the information matrix Ȱ୘Ȱ is often ill -conditioned. Researchers[33-34] have indicated that 
when ill-conditioning is present, the parameter estimation based on the LS approach tends to be biased. In 
addition, the LS approach needs to make an assumption that the excitation force ܨሺݐሻ  in Eq.(28) can be 
represented by ܰഥଵ ൅ ഥܰଶ ൅ ഥܰଷ ൅ ͳ terms while ܰഥଵ, ܰഥଶ, and ܰഥଷ are all sufficiently large numbers. However, many 
of these candidate model terms may be redundant. The inclusion of redundant model terms often makes the 
model become oversensitive to the training data and is likely to exhibit poor generalisation properties. To 
overcome these problems, the orthogonal least squares (OLS) algorithm can be used. The OLS method provides 
a powerful tool to select the significant model terms, determine the optimal number of model terms, and then 
estimate the model parameters and has already been widely applied in the identification of nonlinear 
systems[35-42].  
 
4. Orthogonal least squares algorithm 
 
Since the  ൈ  ഥ ( ഥ ൑  ) measured matrix Ȱ has full column rank, it can be uniquely decomposed as 
 QR  (39) 

where   is an  ൈ  ഥ unitary matrix and   is an  ഥ ൈ  ഥ upper triangular matrix with positive diagonal elements  ଵଵ,  ଶଶ, ڮ,  ୒ഥ୒ഥ . 
 
Denote  ൌ     ሾ ଵଵǡ  ଶଶǡ ڮ ǡ  ୒ഥ୒ഥ ሿ and then Eq.(39) can be rewritten as 
 WA   (40) 
where  ൌ  ିଵ  is an  ഥ ൈ  ഥ upper triangular matrix with unit diagonal elements, that is, 

 

12 13 1

23 2

1

1

0 1

0 0

1

0 0 0 1

N

N

N N

a a a

a a

A

a 

 
 
 
 
 
 
  

 (41) 

and  ൌ    is an  ൈ  ഥ matrix with orthogonal columns  ୨,  ൌ ͳǡʹǡڮ ǡ  ഥ such that 

 
2

1 2, , ,T
NW W D H diag h h h       (42) 

where 

 , , 1,2, ,j j jh w w j N    (43) 

and the symbol ۃȉǡ   ȉۄ denotes the inner product of two vectors. 
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Substituting Eq.(40) into Eq.(29) gives 
 WA   (44) 
 
Denote 
 A g  (45) 

and then Eq.(44) can be expressed as 
 Wg   (46) 

or 

 
1

N

j j
j

g w


   (47) 

which is an auxiliary model equivalent to Eq.(29) and the space spanned by the orthogonal basis vectors  ଵǡ  ଶǡ ୒ഥ ,ڮ  is the same as that spanned by the original model basis ɔଵǡ ɔଶǡ ɔ୒ഥ,ڮ .  
 
By using the LS algorithm, the auxiliary parameter vector   can be solved from Eq.(46), 

   1T Tg W W W


  (48) 

 
Substituting Eq.(42) into Eq.(48) gives 

 
1 Tg H W  (49) 

or  

 , 1,2, ,
,

j

j

j j

w
g j N

w w
  

ˈ
 (50) 

 
Several orthogonalization procedures including classical Gram-Schmidt, modified Gram-Schmidt and 
Householder transformation[43] can be used to implement the orthogonal decomposition of the measured matrix Ȱ. Then after obtaining the auxiliary parameter vector   by Eq.(49), the parameter vector ȣ can be easily solved 
from Eq.(45) by using backward substitutions. However, our objective is not just to estimate the parameters, but 
also to detect which terms are significant and should be included within the model. This can be achieved by 
computing the error reduction ratio(ERR) described below. 
 
Suppose that  ሺ ୧ሻ, ,  ൌ ͳǡʹǡڮ ǡ   is the output after its mean has been removed. Since ȩ is uncorrelated with ɔ୧,  ൌ ͳǡʹǡڮ ǡ  ഥ, the variance of  ሺ ୧ሻ can be expressed as 

 

 

 

 

2 2

2

1

2

1

1

1
2

1
2

1
2

1 1

F i

T

TT T T

TT T

N
T T T

j j
j

N
T T

j j j
j

E F t

N

g W Wg Wg
N

g Hg
N

g h
N

g w w
N N







   



      

       

 
       

 

   



  (51) 

where the first part ൫σ  ୨ଶ ୨୘ ୨୒ഥ୨ୀଵ ൯  Τ , which can be explained by the involved terms, is the desired output 

variance while the second part ሺȠ୘Ƞሻ  Τ  represents the unexplained variance. Thus  ୨ଶ ୨୘ ୨  Τ  is the increment 
to the explained desired output variance brought by the jth term  ୨ and the jth error reduction ratio introduced 
by  ୨ can be defined as 
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2

1,2,0 ,10 %,
T

j j j
j T

j N
g w w

ERR      (52) 

 
Substituting Eq.(50) into Eq.(52) yields 

 

2

100% 1, ,
,

, 2,
j

j j

jER j NR
w

w w
   

ˈ

ˈ
 (53) 

which is also called the squared correlation coefficient between ࣠ and  ୨. 
 

From Eq.(51), the residual sum of squares or the sum-squared-error ԡȩԡଶ ൌ ฮ࣠ െ ෠࣠ฮଶ
, where ࣠෠ is the model 

prediction produced by the associated  ഥ terms model, can also be obtained,  

 

2

2

1 ,

j

j j

N

j

w

w w

  
ˈ

ˈ  (54) 

while the residual ȩ can be expressed from Eq.(47) as 

 
1 , j

N

j
j

j

j

w

w w
w



  
ˈ

 (55) 

 
Dividing both sides of Eq.(51) by ࣠ ୘࣠  Τ  gives 

 
 
 

2

2
1

1
TN

j T
j F

N
ERR

N




 
    (56) 

which clearly indicates that the larger the ERR value associated with a particular term is, the more reduction in 
the residual variance will be produced if this term is included in the model. Thus the ERR provides a simple but 
effective means to detect which term is significant and should be selected. Notice that a term which is 
introduced at an early stage will have a larger ERR than that would be obtained if it were reordered to enter as a 
candidate term at a later stage. To overcome the order dependency of ERR, the terms can be selected in a 
forward stepwise manner. The detailed orthogonalization, for example, using the classical Gram-Schmidt 
algorithm, and terms selection procedure is described as follows. 
 ᇝ At the first step, consider all the possible ɔ୨ ,  ൌ ͳǡʹǡڮ ǡ  ഥ  as candidates for  ଵ , and for  ൌ ͳǡʹǡڮ ǡ ഥ , 
compute 

 

 

 
 

   

1

1

1

1

2

1

;

100
,

%.

j
j

j

j

j j

w

w

w w
ERR



 
ˈ

ˈ

 (57) 

Find the maximum of    ଵሺ୨ሻ, say    ଵሺ୨భሻ ൌ    ቄ   ଵሺ୨ሻǡ ͳ ൑  ൑  ഥቅ. Then the first term to be included in the 

model is ɔ୨భ.  ଵ ൌ  ଵሺ୨భሻ ൌ ɔ୨భ is then selected as the first column of   together with the first element of the 
auxiliary parameter vector  ,  ଵ ൌ ۄǡ ଵ࣠ۃ ଵǡ ۃ  ଵۄΤ , the error reduction ratio produced by the first term,    ଵ ൌ    ଵሺ୨భሻ , and the associated sum-squared-error ԡȩଵԡଶ ൌ ǡ࣠ۃ ଶۄǡ ଵ࣠ۃെۄ࣠ ଵǡ ۃ  ଵۄΤ . As defined in 
Eq.(41), the first column of  ,  ଵଵ ൌ ͳ.   

 ᇝ At the kth step where  ൒ ʹ, all the ɔ୨,  ൌ ͳǡʹǡڮ ǡ  ഥ,  ב ሼ ଵǡ ڮ ǡ  ୩ିଵሽ are considered as possible candidates 
for  ୩, and for  ൌ ͳǡʹǡڮ ǡ  ഥ,  ב ሼ ଵǡ ڮ ǡ  ୩ିଵሽ, calculate 
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   
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100
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k
j pj

k j p
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j
kj

k j j
k k

w
w w

w w

w

w w
ERR








 

 
ˈ

ˈ

ˈ

 (58) 

Find the maximum of    ୩ሺ୨ሻ, say    ୩ሺ୨ౡሻ ൌ    ቄ   ୩ሺ୨ሻǡ ͳ ൑  ൑  ഥǡ  ്  ଵǡ ڮ ǡ  ്  ୩ିଵቅ. Then the kth term to 

be included in the model is ɔ୨ౡ  while the kth column of  ,  ୩ ൌ  ୩ሺ୨ౡሻ , the kth element of the auxiliary 

parameter vector  ,  ୩ ൌ ۄǡ ୩࣠ۃ ୩ǡ ۃ  ୩ۄΤ , the kth error reduction ratio    ୩ ൌ    ୩ሺ୨ౡሻ , and the kth sum-
squared-error ԡȩ୩ԡଶ ൌ ǡ࣠ۃ ۄ࣠ െ σ ଶۄǡ ୨࣠ۃ ୨ǡ ۃ  ୨ۄൗ୩୨ୀଵ . The elements of the kth column of   are computed by 

 
, 1, , 1

,

1,

kj p

pk p p

w
p k

a w w

p k


   

 




ˈ

 (59) 

  ᇝ According to Eq.(56), the procedure can be terminated at the നܰth step (ܰന ൑ ഥܰ) when 

 
1

1 , 0 1
N

j
j

ERR  


     (60) 

where ߩ is a chosen error tolerance and in practice, can actually be learnt during the selection procedure. 
 
The criterion (60) concerns only the performance of the model (variance of residuals). Because a more accurate 
performance is often achieved at the expense of using a more complex model, a trade-off between the 
performance and complexity of the model is often desired. A number of model selection criteria that provide a 
compromise between the performance and the number of parameters have been introduced and incorporated into 
the OLS algorithm in the past decade. Despite the differences amongst these model selection criteria, they are 
asymptotically equivalent under general conditions[42]. In this paper, the adjustable prediction error sum of 
squares (APRESS)[39] is employed to solve the model length determination problem, 

      APRESS n c n MSE n  (61) 

where 

  
2

1

1
c n

n N
 

   
 (62) 

with ߙ ൒ ͳ, is the complexity cost function and 

  
2

nMSE n
N


  (63) 

is the mean-squared-error corresponding to the model performance. 
 
The model selection procedure is terminated at the നܰth step when 

    
1
min

n N
APRESS N APRESS n

 
     (64) 

Practically a distinct turning point of the APRESS statistic versus the model length can be easily found, 
especially when computed by using several adjustable parameters Ƚ, and this can then be used to determine the 
model length. 
   
The final model is thus the linear combination of the നܰ  significant terms ɔ୨భ ǡ ڮ ǡ ɔ୨ നొ  selected from the ܰഥ 

candidate terms ɔଵǡ ڮ ǡ ɔ୒ഥ , 

    
1

ˆ
k

N

k j
k

F t t 


   (65) 

where the parameter ȣ෡ ൌ ൣɅ෠ଵǡ ڮ ǡ Ʌ෠୒ന ൧୘ can easily be computed from Eq.(45) by using backward substitutions, 
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1

ˆ ;

ˆ ˆ 1, 2, ,1.

N

k

jN

N

k j kp p
p k

g

g a for k N N



 
 



      
 (66) 

  
It should be pointed out that in practice the mean of the output does not need to be removed because adding a 
constant to the denominator of the ERR (52) will not affect the result of the maximization in this selection 
procedure. Because of the orthogonal property, this procedure is very efficient and leads to a parsimonious 
model. Moreover, any numerical ill-conditioning can be avoided by eliminating  ୩  if  ୩୘ ୩  is less than a 
predetermined threshold. Similar selection procedures can also be derived using the modified Gram-Schmidt 
algorithm and Householder transformation algorithm. 
 
5. Model identification of a metal rubber specimen 
 
The cylindrical MR specimen, shown in Fig. 1, with diameter of 30 mm, height of 30 mm, diameter of the 
stainless steel (0Cr18Ni9Ti) wires 0.12 mm, diameter of spirals 1.2 mm, relative density (the ratio of metal 
rubber density to the wire density) 0.24, and forming pressure 82.03 MPa, was tested on a servohydraulic 
material testing machine at room temperature. A precompression of 2.2 mm was initially loaded to the MR 
specimen. Then a harmonic excitation, which is produced by the testing machine under a displacement control 
with the amplitude of 1.5 mm and frequency of 20 Hz, was applied. The deformation displacement and applied 
force signals are collected by a data acquisition system with sampling frequency of 5000 Hz.  
 
As stated in Section 2, the measurements of the transient response will be utilised in this paper to identify the 
dynamic model of the MR specimen. As a starting point, suppose that the term length of the elastic stiffness 
restoring force, the viscous damping restoring force, and the bilinear hysteresis restoring force ܰഥଵ, ܰഥଶ, ܰഥଷ in 
Eq.(29) are all 10. The initial model thus involves a total of 31 candidate terms. Performing the OLS algorithm 
indicates that the terms with the order higher than 5 and 13 for the elastic stiffness force and the viscous 
damping force respectively lead to ill -conditioning of the measured matrix. Therefore they should not be 
included into the model, that is to say, ഥܰଵ ൌ ͵, ഥܰଶ ൌ ͹, and ܰഥଷ ൌ ͳͲ. Under these assumptions, the OLS 
algorithm is again used to select and rank the significant model terms. By setting the adjustable parameter Ƚ ൌ Ͳǡ ʹǡڮ ǡ ͳ͸, the APRESS statistic versus the model length over the acquisition data, are calculated and 
shown in Fig. 5, where the bottom line with circles, corresponding to Ƚ ൌ Ͳ, indicates the mean-squared-errors. 
It can be seen from Fig. 5 that there is an obvious turning point at the abscissa 13 for various values of the 
adjustable parameter Ƚ. The indexes of the first 13 model terms selected and ranked in order of the significance 
by the OLS algorithm, together with the coefficient of each term and its corresponding ERR, are shown in Table 
1. Table 1 indicates that the terms with the cubic, quintic and linear stiffness restoring forces, the linear and 
quintic damping restoring forces, and the approximating Chebyshev series of maximum degree 7 should be 
included within the model. Representing the dynamic model using these 13 terms and performing the OLS 
algorithm over the measurements once again gives the estimation of the model parameters. Then after solving 
Eq.(37), the final identified model is obtained,  

 

                

      

3 5 5

1 0 3 0 5 0 1 5

1 sgn
2
s

s

k y t y k y t y k y t y c y t c y t z t F t

k
dz t z z t dy t

        

    







 (67) 

where  ଵ ൌ ʹǤͶͺͲͳ ൈ ͳͲସ    ିଵ ,  ଷ ൌ െʹǤͲʹ͸ͳ ൈ ͳͲଽ    ିଷ ,  ହ ൌ ʹǤͻʹͳ͸ ൈ ͳͲଵସ    ିହ ,  ଵ ൌͳͲ͹Ǥ͹ͻ      ିଵ,  ହ ൌ െ͸ǤͳͲͲͲ ൈ ͳͲ଺  ିହ    ିହ,  ୱ ൌ ͸Ǥͺ͸ͻͷ ൈ ͳͲସ    ିଵ,   ୱ ൌ ʹͲǤͷͺ͹   and  ଴ ൌ ʹǤʹ ൈͳͲିଷ m, which is corresponding to the preload  ଴. 
 
The bilinear hysteresis loop produced by the identified model is shown in Fig. 6, which clearly demonstrates 
that the elastic deformation limit  ୱ (ʹǤͻͻ͹ ൈ ͳͲିସ m) is smaller than all of the peak displacements and sliding 
between wires happens in each cycle collected, just as assumed in Section 2. A comparison of the hysteresis 
loop produced by the identified model and that plotted directly from the experimental measurements is shown in 
Fig. 7 while a comparison of the corresponding restoring force is shown in Fig. 8. Note that there is a 
discrepancy at the peaks of the restoring force because the deformation velocity of the MR specimen is obtained 
by differencing the collected displacement signal, which is quite noisy at the peaks. This can be greatly 
improved if  an additional accelerometer or speedometer can be incorporated into the data acquisition system. 
However, despite this discrepancy, the identified model still agrees with the experimental results very well. 
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Notice that the quintic damping term is selected at a later stage by the OLS algorithm and the ERR listed in 
Table 1 also indicates that it is less significant compared with other selected terms. In fact as aforementioned, 
the model without the quintic viscous damping force has already been used to model MR devices by some 
researchers although it is shown here for the first time how the model structure of MR devices can be 
automatically detected from the experimental data only. Since the damping of MR devices consists of a viscous 
damping component, the hysteretic effects are rate dependent. Actually, the experimental results have 
demonstrated that the hysteretic effects of MR devices depend not only the input frequency but also the input 
amplitude. However, a generalised dynamic model can be obtained by following the same procedure in this 
paper under a series of excitations with interested amplitudes and frequencies and then expressing the model 
coefficients as a function of the input amplitude and frequency. This is currently being studied and will be 
reported in a later paper.  
 
6. Conclusions 
 
A semi-constitutive model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear 
hysteretic Coulomb damping, which was later approximated by Chebyshev polynomials of the first kind, has 
been adopted to model MR devices. Then an efficient OLS algorithm, regularised by the APRESS criterion, was 
developed for model structure detection and parameter estimation. By utilising the transient response of a MR 
specimen, it has been shown for the first time how the model structure of MR devices can be automatically 
detected and then the model parameters can be estimated. The identified model agrees with the experimental 
results very well. It is believed that the basic ideas and algorithms developed in this paper can form an important 
basis for the modelling of MR devices and thus promote the theoretical analysis in this important research area.  
 
This paper has concentrated on the model identification utilising the transient response of the MR device. 
Although the obtained model can provide lots of information about the properties of the MR device, MR devices 
often work in steady state and the model structure detection and parameter estimation utilising the steady state 
response will provide a more accurate and practical model, which is more meaningful for the analysis and 
design of metal rubber. This will be studied in a later publication. 
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Table 1 The model terms selected and ranked in order of the significance by the OLS algorithm together with the coefficient  
             of each term and its corresponding ERR. 

index 2 4 3 12 1 16 18 
terms k3 c1 k5 a1 k1 a5 a7 
ERR 97.57% 2.0111% 0.20186% 0.017059% 0.020169% 0.018927% 0.0061967% 

        
index 14 17 11 13 6 15  
terms a3 a6 a0 a2 c5 a4  
ERR 0.0019921% 0.0069366% 0.0067529% 0.0029812% 0.0074239% 0.001445%  

 

 
Fig. 1 A cylindrical metal rubber (MR) specimen. 
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Fig. 2 A semi-constitutive mechanical model of metal rubber. 
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Fig. 3 The transient-state bilinear hysteresis loop of a metal rubber under static preload (from state Ͳᇱ to state 2) and then  

                subject to a harmonic excitation ( after state 2). 
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Fig. 4 The steady-state bilinear hysteresis loop of a metal rubber. 

 
 
 

 
Fig. 5 The APRESS statistic versus the model length: the lines from bottom to the top correspond to Ƚ ൌ Ͳǡ ʹǡڮ ǡ ͳ͸. 

              The bottom line with circles, corresponding to Ƚ ൌ Ͳ, indicates the mean-squared-errors (MSE). 
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Fig. 6 The bilinear hysteresis loop produced by the identified model of a metal rubber specimen. 

 

 
Fig. 7 A comparison of the hysteresis loop produced by the identified model of a metal rubber specimen with that plotted 

          directly from the corresponding experimental measurements. 
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Fig. 8 A comparison of the restoring force produced by the identified model of a metal rubber specimen with the 

                 corresponding experimental measurements. 
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