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Abstract

Metal rubber (MR) devices, a new wire mesh materialelieeen extensively used in recent years due to several
unique properties especially in adverse environments. Although mactycal studies have been completed, the
related theoretical research on metal rubber is still in its infancy. In this, gaemi-constitutive dynamic
model that involves nonlinear elastic stiffneesnlinear viscous damping and bilinear hysteresis Coulomb
damping is adopted to mod@&/iIR devices. After approximating the bilinear hysteresis damping using
Chebyshev polynomials of the first kind, a very efficient procedased on the orthogonal least squares (OLS)
algorithm and the adjustable prediction error sum of squares (APRE®&8pnris proposed for model structure
detection and parameter estimation oMIR device for the first timeThe OLS algorithm provides a powerful
tool to effectively select the significant model terms step by step,abree time, by orthogonalizing the
associated terms and maximizing the error reduction ratio, in a forst@pavise procedure. The APRESS
statistic regularizes the OLS algorithm to facilitate the determination of the optimmdlen of model terms that
should be included into the dynamic model. Because of the orthogariyr of the OLS algorithm, the
approach leads to a parsimonious model. Numerical ill-conditioning prolgenfionted by the conventional
least squares algorithm can alsmavoided by the new approach. Finally by utilising the transient respdres

MR specimen, it is shown how the model structure can be detectedractecg applicationThe identified
model agrees with the experimental measurements very well.

Keywords: metal rubber; nonlinear damping material; nonlinear system identificatiomednilhysteresis model
1. Introduction

Metal rubber (MR) devices[1], also called wire mesh danfipedl area new type of material made by coiling
thin metal wires with circular or noncircular sections into elastic spirals, whehhan stretched and cold-
pressed into various shapes. Subsequent handling procedures smbpering and vibration stabilization may
also be undertaken. The MR element produced by this process habebatibber-like elasticity and porosity
formed by the contacts between adjacent wires. When excited by extenes floe wires will deform, slide
and extruderesulting in vibration energy dissipation[7]. Since the material can be ofaspecial steel wires
and can be processed by some special technologiggHis can give not only good elastic and high damping
capacity but also the properties of resistance to high and low temperatunessian proofing, little variation of
stiffness and damping with temperatures, softening characteristic dffthess with an increase of excitation
level, anti-aging, non-volatility in a vacuum, radiation withstandance sarwh, which normal rubber material
lacks. Because of these unique and attractive propdvtiesleviceshavealready been used in health care and
the aerospace industry since th@50s usually in extremely adverse environments, to reduce noisdateis
vibrations, absorb shocks, and even as seals, heat pipe liiilbegs, throttle valves and bearing bushes[1, 4, 8-
10]. However, despite all these applications, the related theoretical analysis is stithfianity i

Experiments shoed that the mechanical properties MR devices, such as the energy dissipation and
microscopic deformation mechanisms, depend on quite a lot of fastbuging the mass, shape, diameter of
the spirals, orientational angle of the spirals in the compression direction, diamttenofes, material of the
wires, forming pressure, temperature, and preload[11-13]. Thiesnhe constitutive model (usually on a
microscopic scale) of this material very difficult to construct. Very few puiidies on the constitutive model
are available. The models already proposed are the moddlanfsystem[1], the pyramidal model[1he model

of micro spring elements[14bhnd the model of porous materials[16} Although these models can reveal
some properties d¥IR devices all of them are constructed under static load assumpdighsan’t be used to
describe the dynamic characteristics.



However, the dynamic stress-stain relatiotM®® devicess usually represented in the form of hysteresis loops
and thus can be modelled on a macroscopic saalbel past several decades, much research effort has been
made to model and analyse hysteresis phenomena. Mathematical hysteresimaby ndefined as a rate
independent memory effect, that is, the hysteresis loops are stable witht tesgditrary changes of the time
scale[17]. However, in reality, hysteretic effects are rarely rate independeattsiateresis is coupled with
viscous-type effects. Therefore, both rate independent and rate depeondetg have been proposed[18]. Of
them the Duhem type models and the Preisach type models are the most ussibriganf these two model
types have been studied in different contexts under various names. Tomdgnetic material model, the Bouc-
Wen model, the Madelung model, the Dahl friction model, the LuGre friction mtigeeMaxwell-slip model
and the presliding friction model are specialized Duhem models while the Masitel and the Ilwan model
are special cases of Preisach models. The LuGre friction model is rate depemtetiver models are rate
independent[19]. More rate dependent models can be found in [20] AhdEspite so many models being
available, it is surprising to find that very few have been applied to thdellimy of MR devices. One
application was made by Ulanov and Lazutkin[22], who u&hking’s principle and the coordinate
transformation and proposed a method to olaaiascription of the hysteresis loops in a loading process of MR
devices. To obtain a more accurate madel multi-axial loading process, the influence of the loading history
one axis on that in another was also investigated[23]. Comparedhsitbonstitutive models, the hysteretic
models do not come, in general, freanetailed analysis of the physical mechanisms but just concentrate on
describing the shape of the hysteresis loops. That is to say, thgghememenological models. But one
important aspect of a model is how meaningful the model parametePhgsécally meaningful parameters can
give lots of information about the real properties of a systemaendlso significantly important in the analysis
and design of a system.

Experimental results demonstrated that the dynamic characteristic oleMeées exhibits nonlinear behaviour
which is also dependent on the input frequency. This indicatesthbatnaterials damping also consistsaof
viscous damping component in addition to the dry friction dampingdeet the wiresTherefore, in this paper,

a model that involves nonlinear elastic stiffnassnlinear viscous damping and bilinear hysteresis Coulomb
damping is adopted. This model can not only describe the dynamic redtidagat the macro level but also
has a basis on the microstructure of the sliding surfaces between the wivaglait is not constructed directly
on a microscopic scale. In this sengieis a semi-constitutive model. In previous studies, an odd ordered
polynomial function was used to describe the elastic stiffness and viscousndachgiracteristics. But how
many terms should be included in the model has not been explored. ®sg@chers used a cubic
polynomial[2426] while others suggest that a quintic polynomial might be neededj2Thid paper, a hew
approach based on the Chebyshev polynomial approximation andhbgamal least squares (OLS) algorithm,
regularised by an adjustable prediction error sum of squares (APRE®8PN, will be developed to dadtthe
model structure and then estimate the parameters of the model to providiee first time, a systematic
procedure for the identification of dynamic nonlinear models of MR devices.

2. Dynamic mode

A cylindrical MR specimen is showim[Fig. 1 The model illustrated 2 is used to represent the MR
device, which consists @fnonlinear elastic springj, () in parallel with a nonlinear viscous damgg) and a
hysteretic Coulomb dampet The nonlinear spring and nonlinear damper are only relevant to thentcu
deformation while the hysteretic Coulomb damper has memory charactessticalso depends on the
deformation historyThe elastic stiffness restoring force is described by an odd ordered polyhomti#on of
current displacement with the highest deg¥gavhile the viscous damping restoring force is described by an
odd ordered polynomial function of current velocity with the highestedd{,, such that

N, -

fk () = Zan—l(')Z ' 1)
n=1

f S 2n-1

c('):;CZn—l(') (2)

wherek,;_; (i =1, ...,Ny), c5;—1 (i =1, ...,N,) are the parameters of the stiffness characteristic and damping
characteristic respectively. The MR device is subject to a prdlpahd a harmonic excitation force of
amplitudeF,, and frequenc¥). Set the equilibrium position of the MR device under preload as the ofitie
displacement. Themé equation of motion for thBIR device can be written as

Ny ne N, "
3 s (Y(0)+¥6) "+ 2o Y1) 2(1) = FcodQt)+ ®
n=1 n=1



wherey, is the static displacement produced by the preload.

For convenience of analysis, denote

F(t)=F,coqdQt)+ F, (4)
Substituting Eq.(4) into Eq.(3) yields
N; . N, .
> on s (Y)+Yo) T+ o V(1) 4+ 2(1) = F(Y) (5)
n=1 n=1

As shown iff Fig. P,he hysteretic Coulomb damper is composed of a hysteretic Coulomb frictidelwith a
serial linear spring, the characteristic of which is described by a bilinetarésis model[289] shown if Fig]
The incremental representation of this bilinear hysteresis model expiessed as

dz(t)=%[1+ sor( 2| 4 1])] &y 9 ©

k=2 ™
Ye

wherek; is the stiffness of the linear spring,the memorized restoring force when sliding between wires
occursy, the elastic deformation limit, and the sign function here is defised

Sanx = 1 x>0 o
911 x<o0 ®

In[Fig. 3 the states from the initial staéto state 2 represent the static response of the MR device under
preload while the states thereafter describe the transient response of the HR sidject toa harmonic
excitation. The asymmetric steady state response of the MR desivewn if Fig. #In[Fig. 3, from stat®’ to

the critical sliding state 1, the restoring fouge) increases and the energy is stored. Then from state 1 to,state 2
the stored energy is dissipated by sliding friction aftd remains constant. In the subsequent cycles, the energy
flows as follows: dissipation 23), release (3>4), storage (4»>5), dissipation (5+6), release (6>7), storage
(7—8), dissipation (8-9), release (9-10), and so on. The energy flow of the steady state response.id Fig
repeats the following process: storage-@), dissipation (2->3), release (3»4), storage (4>5), dissipation
(5—6), and release (61). In[Fig. 4 y,, is the maximum displacement of the steady state responsey¥thile
y(tm+1), €tc. in Fig. 3 are the peak displacements of the transient response.

Although Eq. (6) combined with Eq. (5) clearly describes the deformatidre@ergy dissipation mechanism of
MR devices, it is not easy to use these expressmidentify the dynamic model. However, by using some
series expansion[381], Eq. (6) can be written in a series form and then can be easilly fas the model
identification. Of these series expansions, Chebyshev polynomialsveaa digh accuracy by using the least
termsand thus is adopted in this paper to approximate the bilinear hystetagan.

3. Chebyshev polynomial approximations

Suppose thag(t,) > ys, wheem > M, m,M € N, andy(t,) is one of the peak displacements of M&
devicésresponse. That is to say, sliding between the wires happens in ekelafogr timety. This condition
can easilybe satisfied by utilising a large amplitude excitation and these cycles willbbenllected for the
model identification Without loss of generalitysuppose thayl = 1. The maximum amplitude span is defined
as

Ay =maxy(t,,) = Y(t,) (©)
31y(tH)) <0

The bilinear hysteresis restoring forgét) of one branch with minus velocity, e.g—38—-5—6, after
continuation can be expressasl



-7, y(tn)—AY< y(t) < y(t,) -2y,

Z( y(t)) = {ZS * kS[y(t)_ y(tm)], y(t)—2y.<y(t)<y(t,)
t

wherem =1, 3,5, -

Define

~ 2 y t -y tm
y
and then EqJ(0) can be written as

KAy 2 4y,
—Szy{y(t)—l+A—y;] 1—A—yy55 y(t)<1
2(3(1))= A
K.y, _1<(t) < 1—A—ys
y

11

12

Now z(t) becomes a continuous function ﬁﬁl, 1] and thus can be approximated by the Chebyshev

polynomials of the first kind as[32]

-3 a,co{ (4]

13

where the primed summation indicates only half of the first terntiaded, N; is the maximum degree of the

truncated Chebyshev polynomiads, is the Chebyshev coefficient given by

a,=2 [ 4 o(y]eod (Y] (3

6(t)=arccog y(t)]

=arcco 4 —
Q Ay

Considering Eqgslf) and (6), Eqg.(12) now takes the form

2(0(1)) = ks—sy{cos[ﬁ(t)]— Siﬁ[%j} , XO(t)<z—0

and

Denote

_ksys’ 72'—(0<9(t)§72'
Then substituting EdL) into Eq.(4) yields
LS y(goCOS(/) sinp+ 7z SiA (p} n= 0
T
a = kziy{” o+ ;sm(qu)} : n=1
()™ I((S y )[ncos(n(p) sinp— sifinp) cog] ,n> Ze N
zn

(14)

(15

(16)

17)

(18

The Chebyshev polynomial approximationsz¢f) can be obtained by substituting EG4)( (15), and 8) into

Eq.13) as



z(t)=%sgn[Y(t)]+ iﬁn sof™[ y(1)] co%n arcc%s?y(t);yzy(tmh }}L (19

wheret € [ty tm],

S y(ngOS(o Sinp+ 7 S|r°1¢) n= 0
T
a = k;ﬂy{ﬂ' ¢+]2'S|n(2¢))] n=1 (20)
KAy
nco Si S co , N> 2ne N
m(r? 1)[ s(np) sinp— sir{np) cop | fie

and Ay, ¢ are given by Eqgs.(9) and®) respectively.
32y(t)>0

Similar to the branch with minus velocity, the restoring far@d of one branch with positive velocity, e.g.
6—7—8—09, after continuation can be expressed as

=z + K| y(t)-y(t,) |, Y(tm) < y() < y(t,)+2y,
Z(y(t)):{ [YO-¥)) vt =0 v()+ o
Z, Y(t)+ 2y < Y(t) < y(ty,) + Ay
wherem = 2,4, 6, ---, andAy is given by Eq.(9).
Define
2| y(t)—y(t
y(ty=2L¢ )Ayy( 1 ) ey <y(t)say 22
and then Eq41) can beewritten as
ﬂ{y(t)ﬂ—ﬁ] L1<y(t)< s g
. 2 Ay Ay
2(9(1))= 4y @3
K.Y —-1<y(1)<1
s Ay <9(t)

Apparently the expression for the transformed displacefngntin Eq.Q2) is different from that in Eql{).
This has been confused in [31].

Considering Eqgslf) and (6), Eq.@3) is expressed as

kAy . ((pj
- o(t fl= |, <6(t)<
z(0(t))=1 2 cog O(t)J+ 2 p=o(t)<m (24)
K.Yy 0<0(t)<gp
Then substituting EcR4) into Eq.(4) gives
< y((PCOS(D sinp + 7 sif q)j n= 0
T
KA 1
a,= Zﬁy{ﬂ o+ ZSIH(&D)} , n=1 25
Y [ ncog(np) sinp— si{rp) cop| , n> 2pe N
7rn( ) » N2




Substituting Eqs.22), (15), and @5) into Eq.(@3) yields

2()~2sa y(]+ Yo, 59" 3(1)] % arcc%?y“)‘zy(tm)— ﬂa 29

Ay
wheret € [t,, tmi1], @n, Ay, ande are given by Eqs26), (9) and (L6) respectively.

Noticed that the Chebyshev coefficient given by Eq.20) anda, given by Eq.25) are in the same form
Eqgs.(9) and @6) can be combined in a uniform expression,

z(t)=%Sgn[y(t)]+ian sghi™[ Y(1)] co%n arcc%gy(t)_zy(tm)— sy t)]}}(ﬂ)

Ay
wheret € [ty tmi1], @n, Ay, ande are given by Eq26), (9) and (L6) respectively.

Substituting EqZ7) into Eq.(5) gives
- n— & . n- .
D ks (VD) + 6"+ D () + Esr{ (1))
n=1 n=1

+iansgri‘+l[y(t)] co{n arcc{szy(t);y(tm)— s@nt)ﬂ} F (1)

(29)

Eq.28) shows that the excitation forédqt) is a function of the displacemen(t) and the velocityy(t).
Therefore, if the displacement and the corresponding velocity under ya&poitation forces are measured and
the higher-order terms are neglected, a mofi¢he MR device can be estimated. For examplei(if), y(t,),
i=1,2,--,N are measured for N different excitation foré&s;) respectively, and then consider the fi¥st
terms for the elastic stiffness fordg, terms for the viscous damping fordé, + 1 terms for the bilinear
hysteresis damping force on the left-hand side of28).{he following equation can be derived,

F=00+Z= (29
where
.
F=[F), Ft). = F(4)] 0
o=[o, ¢ 0 o] D
.
o =[4 1), - 4(4)] 32
(y(t)+ yo)zH, j=12;--N,
y(t )", j=N+L---,N,+N,
9, (t)= O.SSQI{Y(L)] ' J =N+ N, +1 (33
ot 3()] co {j e {Szy(ti)A—yZV(tm)_ S@y(ti)ﬂ} PN N2
i=1,2N
N=N,+N,+N,+1 (34)
T
Ofl o ks & v G & & o 8] ©
E = [gl’ Tty gN ]T (36)

= is the error signal with zero mean and assumed to be uncorrelateg; with 1,2, -+, N.

After the identification of the dynamic modd¢he parameters of the bilinear hysteresis model can be obtained
from Eqs.5), (16) and (7)



1.
7z—¢+§sm(2(p) 28

©COSp— Sip+ 7 siﬁ% %

Y= %(H cosp) ; (37)
A -1
K, =@(¢COS¢— sinp+ 7 Sif fj
Ay 2
2, = ks

It should be noted that although E2f) holds for both the transient response and the steady state reshense, t
columns of the matrix of the transient response are always linearly independent while in the statdy s
response case, this will no longer hold. Thus the procedure adl naeehtification for the steady state response
is different from that for the transient response. This will be presentadater publication. This paper will
concentrate on the model identification utilising the measurements fronaiséetit response only.

The solution of EqQZ9) can be obtained by using the least squdr8y glgorithm as
-1

o=(0'®) o'F (39)
But in practice the information matrixpT® is oftenill -conditioned Researchers[334] have indicated that
when ill-conditioning is present, the parameter estimation based on thepk&ep tends to be biased. In
addition, the LS approach needs to make an assumption that the excitatef (f) in Eq.28 can be
represented by, + N, + N; + 1 terms whileN;, N,, andN; are all sufficiently large numbers. However, many
of these candidate model terms may be redundant. The inclusion of aetlunddel terms often makes the
model become oversensitive to the training data and is likely to exhibit poeraiisation properties. To
overcome these problems, the orthogonal least squares (OLS) algraitive used. The OLS method provides
a powerful tool to select the significant model terms, determine the optimaber of model terms, and then
estimate the model parameters and has already been widely applied in the identifi€ationlinear
systems[3542].

4. Orthogonal least squaresalgorithm

Since theN x N (N < N) measured matri® has full column rank, it can be uniquely decompaed
®=0R (39
whereQ is anN x N unitary matrix ancR is anN x N upper triangular matrix with positive diagonal elements

Fy1, a2, " INN-

DenoteD = diag[r;4, 1,2, -, 'yn] and then Eq39) can be rewritten as

D =WA (40
whereA = D™1R is anN x N upper triangular matrix with unit diagonal elements, that is,
1 a, a; - EN
0 1 a; - ag
A=0 0 . - : (41)
S
o .. 0 O 1
andW = QD is anN x N matrix with orth(;gonal columng;,j = 1,2, ,_N such that
W'W =D?=H =diag[ h, h,, h | 42
where
hj:<Wj,V\{>, j=12;-- N 43

and the symbo{-, -) denotes the inner product of two vectors.



Substituting Eq40) into Eq.Q9) gives

F=WAR+= (44)
Denote
AP =g (45)
and then Eg44) can be expressed as
F=Wg+E (46)
or
N
F=>g,W+E (47)
j=1

which is an auxiliary model equivalent to E2f( and the space spanned by the orthogonal basis vectors
wy, W, ---,wy iS the same as that spanned by the original model pasis -, ¢x.

By using the LS algorithnthe auxiliary parameter vectgrcan be solved from Ed.§),

g=(W'W) W'F 49)
Substituting Eq42) into Eq.@8) gives
g=HW'F (49)
or
B (Fow)) -
g,=7—"%, j=12;-N (50)
<Wi ' W, >

Several orthogonalization procedures including classical Gram-Schmidt, modifiech-S&ranidt and
Householder transformation[43] can be used to implement the orthbgecomposition of the measured matrix
@. Then after obtaining the auxiliary parameter vegtby Eq.@9), the parameter vect@ér can be easily solved
from Eq.@5) by using backward substitutions. However, our objectivetifust to estimate the parameters, but
also to detect which terms are significant and should be included within hel. mMidnis can be achieved by
computing the error reduction ratio(ERR) described below.

Suppose tha(t;), ,i = 1,2,--+, N is the output after its mean has been removed. Sicencorrelated witlp;,
i=1,2,---,N, the variance of(t;) can be expressed as

of =E[ F2(t)]
=%}"T}“
1
- [gTWTWg +2(Wg) =+ ETE}

]

1 N 2 T H_T— —_—Tr—
— Zthj +20° O E+E'E
N | 4

=1

[1]

1 - =
:N[QT Hg+2(®0) =+&"

N
> g w =T Y
=1

where the first par@}“;lgfwfwj)/N, which can be explained by the involved terms, is the desired output
variance while the second p&RTE)/N represents the unexplained varian‘l':IeUngzijwj/N is the increment

to the explained desired output variance brought by the jthvigrand the jth error reduction ratio introduced
by w; canbe defined as



2

grwW w

ERR == - x100%, j=12:-N (52
Substituting EqJ0) into Eq.62) yields
2
Frw; —
ERR = (Fw) x100% j=1,2,--N (53
(Fo F)(w,w)

which is also called the squared correlation coefficient bet@eamndw;.

From Eq.b1), the residual sum of squares or the sum-squareddr= ||F —7:"||2, wheref is the model
prediction produced by the associadeterms model, can also be obtained,

N <J—",W >2
=l = fyf - ] (54)
B (7 )2 s
while the residuak can be expressed from B4} as
N <f, W->
E=F- w (55)
;<Wj ’ Wi> J

Dividing both sides of Egs(l) by FTF /N gives

1- ZERR ((; ))/ /NIL 6: 59

which clearly indicates that the larger the ERR value associated with a particulés, tdrenmore reduction in
the residual variance will be produced if this term is included in the moligs. ffle ERR provides a simple but
effective means to detect which teris significant and should be selected. Notice that a term which is
introduced at an early stage will have a larger ERR than that wouldtéi@ed if it were reordered to enter as a
candidate term at a later stage. To overcome the order dependency ofhER&ms can be selected in a
forward stepwise manner. The detailed orthogonalization, for example, t&nglassical Gram-Schmidt
algorithm, and termsdection procedure is described as follows.

o At the first step, consider all the possilgig, j = 1,2,---,N as candidates fow,, and forj = 1,2,---,N,

compute
MJ):(Dj;
ERR/ = R
F{ <f, f‘><v\él)’v\él)>

Find the maximum oERR(j) sayERR(jl) = max {ERR(j) 1<j< N}. Then the first term to be included in the
(]1)

) 2
<f’ W > x100%. 7

model is@; . wy = = (;, is then selected as the first columnWftogether with the first element of the
auxiliary parameter vect(g g, = (F,wy)/(wy,w,), the error reduction ratio produced by the first term
ERR, = ERR(ljl), and the associated sum-squared-eii|? = (F,F) —(F,w,)?/(wy, w;). As defined in
Eq.@1), the first column oy, a;; = 1.

O At the kth step wherk > 2, all theg;,j = 1,2,--,N,j & {j;, -, jx—1} are considered as possible candidates
for wy, and forj = 1,2,---,N,j € {j;, -, jk—1}, calculate



(58)

ERRY = x100%.

<F’ j:'><vvl((l)’ \NI(<])>
Find the maximum oERRE), sayERng) = max{ERRE), 1<jSNj#jp, ) # jk—l}- Then the kth term to

be included in the model ip;, while the kth column oW, wy = wgk), the kth element of the auxiliary

parameter vectag, g, = (F, wy)/{wy, wy), the kth error reduction ratiBRRy = ERREk), and the kth sum-
squared-errof|Z,||? = (F,F) — Z};l (F, Wj)z/(w-,wj). The elements of the kth columhAdare computetyy

loww) e
ay =1 (W, w,)’ C (59)
1 p=k

o According to Eq%6), the procedure can be terminated atNitte step ¥ < N) when
N
1-> ERR < p, O<p<1 (60)
j=1
wherep is a chosen error tolerance and in practie@actually be learnt during the selection procedure.

The criterion 60) concerns only the performance of the model (variance of residuatsjuBe a more accurate
performance is often achieved at the expense of using a more compt{, a trade-off between the
performance and complexity of the model is often desired. A nunibapdel selection criteria that provide a
compromise between the performance and the number of paranstetsden introduced and incorporated into
the OLS algorithm in the past decade. Despite the differences amongst theseeateatiohscriteria, they are
asymptotically equivalent under general conditions[42]. In this padperadjustable prediction error sum of
squares (APRESS)[39] is employed to solve the model length determipedtdam,

APRESY N= ¢ ) MSE Y D

0| .

with ¢ > 1, is the complexity cost function and

where

TV
=
” n”

MSE( n)= (63

is the mean-squared-error corresponding to the model performance.

The model selection procedure is terminated aivifestep when

APRESY N=min[ APRESS )] (64)

1<n<N
Practically a distinct turning point of the APRESS statistic versus the modgh lean be easily found
especially when computed by using several adjustable parameterd this can then be used to determine the
model length.

The final model is thus the linear combination of Meignificant termsp;,, -+, i selected from th&/
candidate termg;,, -+, @x,

F()=3 4, (t)+¢ -

where the parameté = [,, "',éﬁ]T can easily be computed from E&5) by using backward substitutions,
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= = (66)

It should be pointed out that in practice the mean of the output does nabreedemoved because adding a
constant to the denominator of the ERBR)(will not affect the result of the maximization in this selection
procedure. Because of the orthogonal property, this procedureyieffimient and leads to a parsimonious
model. Moreover, any numerical ill-conditioning can be avoided by elimmatinif w.w, is less than a
predetermined threshold. Similar selection procedures can also be derivedhesimgdified Gram-Schmidt
algorithm and Householder transformation algorithm.

5. Model identification of a metal rubber specimen

The cylindrical MR specimershown if_Fig. ] with diameter of 30 mm, height of 30 mm, diameter of the
stainless steel (0OCr18Ni9Ti) wires 0.12 mm, diameter of spirals 1.2relative dengy (the ratio of metal
rubber density to the wire density) 0.24, and forming pres82re3 MPa, was tested on a servohydraulic
material testing machine at room temperature. A precompression ofird.@as initially loaded to the MR
specimenThen a harmonic excitation, which is produced by the testing machiee ardisplacement control
with the amplitude of 1.5 mm and frequency of 2Q Was applied. The deformation displacement and applied
force signals are collected by a data acquisition system with sampling frgafe&si00 Hz.

As stated in Section 2, the measurements of the transient response wilisbd in this paper to identify the
dynamic model of the MR specimen. As a starting point, suppasdhth term length of the elastic stiffness
restoring forcethe viscous damping restoring force, and the bilinear hysteresis reskomiedV,, N,, N; in
Eq.(29) are all10. The initial model thus involves a total of 31 candidate terms. Perfortimn@LS algorithm
indicates that the terms with the order higher than 5 and 13 for the elastiesstiforce and the viscous
damping force respectively lead tib-conditioning of the measured matrix. Therefore they should not be
included into the model, that is to say, = 3, N, = 7, andN; = 10. Under these assumptions, the OLS
algorithm is again used to select and rank the significant model t8ynsetting the adjustable parameter
a=0,2-,16, the APRESS statistic versus the model length over the acquisition datealeulated and
shown i Fig. b, where the bottom line with circles, corresponding=d, indicates the mean-squared-errors.
It can be seen from Fig.|5 that there is an obvious turning pbitite abscissa 13 for various values of the
adjustable parameter. The indexes of the first 13 model terms selected and ranked inadrither significance
by the OLS algorithm, together with the coefficient of each term and itsspmmding ERR, are shounjTable]
indicates that the terms with the cubjigintic and linear stiffness restoring forcétse linear and
quintic damping restoring forces, and the approximating Chebysérges of maximum degree 7 should be
included within the model. Representing the dynamic model using ff&esrms and performing the OLS
algorithm over the measurements once again gives the estimation obdet parameters. Then after solving
Eq.@37), the final identified model is obtained,

e (Y(1)+ Yo ) + ks (Y(E)+ Yo) +Ke( V(1) + o) +ey(t)+ e (1) + 2() = F(1)

dz(t) == 1+ sor( 2-| 2 1]) ] @y

where k; =2.4801 X 10*Nm™! , k;=-2.0261x10°Nm™3 , kg =29216x10*Nm™> , ¢, =
107.79sNm™?, ¢g = —6.1000 X 10° s> Nm™5, ks = 6.8695 X 10* Nm™?, z, = 20.587 N andy, = 2.2 x
10~2 m, which is corresponding to the preldad

(67)

The bilinear hysteresis loop produced by the identified model is shait. §, which clearly demonstrates
that the elastic deformation limit (2.997 x 10~* m) is smaller than all of the peak displacements and sliding
between wires happens in each cycle collected, just as assumed in SectioonZpakison of the hysteresis
loop produced by the identified model and that plotted directly frenexperimental measurements is shown in
while a comparison of the corresponding restoring force is rstiofFig. §. Note that there is a
discrepancy at the peaks of the restoring force because the deforvedticity of the MR specimen is obtained
by differencing the collected displacement signal, which is quite noisy apehks. This can be greatly
improvedif an additional accelerometer or speedometer can be incorporated into the data atauyisiém
However, despite th discrepancy, the identified model still agrees with the experimental resujtsvell.
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Notice that the quintic damping term is selected at a later stage by the OLS algorihiime ERR listed in
also indicates thdtis less significant compared with other selected terms. In fact as aforementioned
the model without the quintic viscous damping fohas already been used to modéR devices by some
researchers although it is shown here for the first time how theslnsidicture ofMR devicescan be
automatically detected from the experimental data only. Since the damping @éWties consists of a viscous
damping component, the hysteretic effects are rate dependent. Actuallyexgerimental results have
demonstrated that the hysteretic effects of MR devices depend not omiptihdrequency but also the input
amplitude. However, a generalised dynamic model can be obtained by folltwirgame procedure in this
paper under a series of excitations with interested amplitudes and frequenctasrardpressing the model
coefficients as a function of the input amplitude and frequency. Shisirently being studied and will be
reported in a later paper.

6. Conclusions

A semi-constitutive model that involves nonlinear elastic stiffnasslinear viscous damping and bilinear
hyster¢gic Coulomb damping, which was later approximated by Chebysblgwgmials of the first kind, has
been adopted to modkIR devices. Then an efficient OLS algorithm, regularised by the APRESS critedsn
developed for model structure detection and parameter estimation. By utitisitiginsient response of a MR
specimen, it has been shown for the first time how the model stustuviR devices calbe automatically
detected and then the model parameters can be estiriéteddentified model agrees with the experimental
results very well. It is believed that the basic ideas and algorithms devéatapedpaper can form an important
basis for the modelling of MR devices and thus promote the theoretical amatysgsimportant research area.

This paper has concentrated on the model identification utilising the tramsggunse of théVIR device.
Although the obtained model can provide lots of information abeuptbperties of th#IR device, MR devices
often work in steady state and the model structure detection and paraestietation utilising the steady state
response will provide a more accurate and practical model, which is meaeingful for the analysis and
design of metal rubber. This will be studied in a later publication.
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Table 1 The model terms selected and ranked in order of the signiflpattoe OLS algorithm together with the coefficient
of each term and its corresponding ERR.

index 2 4 3 12 1 16 18

terms k3 C; Ks & Ky & &

ERR 97.57% 2.0111% 0.20186% 0.017059% 0.020169% 0.018927% 0.0061967%

index 14 17 11 13 6 15

terms 3 % =) & Cs =)

ERR 0.0019921% 0.0069366% 0.0067529% 0.0029812% 0.0074239% 0.001445%

Fig. 1A cylindrical metal rubber (MR) specimen.

F (1)

Z y()

() fc(-)|_—j Z k

Fig. 2A semi-constitutive mechanical model of metal rubber.
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Fig. 3 The transient-state bilinear hysteresis loogproétal rubber under static preload (from stdtéo state 2) and then
subject to a harmonic excitation ( after state 2).
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Fig. 4 The steady-state bilinear hysteresis looproétal rubber.
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Fig. 5 The APRESS statistic versus the model length: the lines from bottomttip correspond 0= 0, 2, -+, 16.
The bottom line with circles, corresponding te 0, indicates the mean-squared-errors (MSE).
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Fig. 6 The bilinear hysteresis loop produced by the identified had@demetal rubber specimen.
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Fig. 7 A comparison of the hysteresis loop produced by the identifetl of a metal rubber specimen with that plotted
directly from the corresponding experimental measurements.
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Fig. 8 A comparison of the restoring force produced by the identifiecetrmfch metal rubber specimen with the

corresponding experimental measurements.
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