9 research outputs found

    The IPRS Image Processing and Pattern Recognition System.

    Get PDF
    IPRS is a freely available software system which consists of about 250 library functions in C, and a set of application programs. It is designed to run under UNIX and comes with full source code, system manual pages, and a comprehensive user's and programmer's guide. It is intended for use by researchers in human vision, pattern recognition, image processing, machine vision and machine learning

    Investigating carbon materials nanostructure using image orientation statistics

    Get PDF
    International audienceA new characterization method of the lattice fringe images of turbostratic carbons is proposed. This method is based on the computation of their orientation field without explicit detection of fringes. It allows meaningful insights into the material nanostructure and nanotexture at several scales, either qualitatively or quantitatively. The calculation of pairwise spatial statistics of the orientation field at short distance provides measurements of the coherence lengths along any direction, in particular along and orthogonally to the layers. These statistics also allow representing orientation coherence patterns typical of the observed nanostructure. At larger distances, the mean disorientation of the fringes is computed and information about the homogeneity of the sample is obtained. An experimental validation is carried out on various artificial images and an application to the characterization of four bulk turbostratic carbons is provided

    Modelling the interpretation of digital mammography using high order statistics and deep machine learning

    Get PDF
    Visual search is an inhomogeneous, yet efficient sampling process accomplished by the saccades and the central (foveal) vision. Areas that attract the central vision have been studied for errors in interpretation of medical images. In this study, we extend existing visual search studies to understand features of areas that receive direct visual attention and elicit a mark by the radiologist (True and False Positive decisions) from those that elicit a mark but were captured by the peripheral vision. We also investigate if there are any differences between these areas and those that are never fixated by radiologists. Extending these investigations, we further explore the possibility of modelling radiologists’ search behavior and their interpretation of mammograms using deep machine learning techniques. We demonstrated that energy profiles of foveated (FC), peripherally fixated (PC), and never fixated (NFC) areas are distinct. It was shown that FCs are selected on the basis of being most informative. Never fixated regions were found to be least informative. Evidences that energy profiles and dwell time of these areas influence radiologists’ decisions (and confidence in such decisions) were also shown. High-order features provided additional information to the radiologists, however their effect on decision (and confidence in such decision) was not significant. We also showed that deep-convolution neural network can successfully be used to model radiologists’ attentional level, decisions and confidence in their decisions. High accuracy and high agreement (between true and predicted values) in such predictions can be achieved in modelling attentional level (accuracy: 0.90, kappa: 0.82) and decisions (accuracy: 0.92, kappa: 0.86) of radiologists. Our results indicated that an ensembled model for radiologist’s search behavior and decision can successfully be built. Convolution networks failed to model missed cancers however

    Variational Tensor-Based Models for Image Diffusion in Non-Linear Domains

    Full text link

    Nonlinear image operators for the evaluation of local intrinsic dimensionality

    No full text
    Local intrinsic dimensionality is shown to be an elementary structural property of multidimensional signals that cannot be evaluated using linear filters. We derive a class of polynomial operators for the detection of intrinsically 2-D image features like curved edges and lines, junctions, line ends, etc. Although it is a deterministic concept, intrinsic dimensionality is closely related to signal redundancy since it measures how many of the degrees of freedom provided by a signal domain are in fact used by an actual signal. Furthermore, there is an intimate connection to multidimensional surface geometry and to the concept of `Gaussian curvature'. Nonlinear operators are inevitably required for the processing of intrinsic dimensionality since linear operators are, by the superposition principle, restricted to OR-combinations of their intrinsically 1-D eigenfunctions. The essential new feature provided by polynomial operators is their potential to act on multiplicative relations between frequency components. Therefore, such operators can provide the AND-combination of complex exponentials, which is required for the exploitation of intrinsic dimensionality. Using frequency design methods, we obtain a generalized class of quadratic Volterra operators that are selective to intrinsically 2-D signals. These operators can be adapted to the requirements of the signal processing task. For example, one can control the “curvature tuning” by adjusting the width of the stopband for intrinsically 1-D signals, or the operators can be provided in isotropic and in orientation-selective versions. We first derive the quadratic Volterra kernel involved in the computation of Gaussian curvature and then present examples of operators with other arrangements of stop and passbands. Some of the resulting operators show a close relationship to the end-stopped and dot-responsive neurons of the mammalian visual corte
    corecore