20 research outputs found

    Investigation of high bit rate optical transmission systems employing a channel data rate of 40 Gb/s

    Get PDF
    Das Ziel dieser Doktorarbeit war eine detaillierte Untersuchung von hoch bit ratigen optischen Übertragungssystemen mit einer Kanaldatenrate von 40 Gbit/s, die als wavelength division multiplexing (WDM) Systeme realisiert sind. Die Erkenntnisse, die durch umfangreiche numerische Untersuchungen gewonnen worden sind, wurden für die Erarbeitung von Designkriterien für die Übertragungssysteme der nächsten Generation verwendet. Der Schwerpunkt der Arbeit liegt dabei an 40 Gbit/s basierten WDM Systemen mit amplitudenmodulierten optischen Signalen. Nach einer umfangreichen Beschreibung der Funktionsweise und des Standes der Technik von Systemkomponenten, die in optischen Übertragungssystemen zum Einsatz kommen, wurden die Übertragungseffekte (z.B. chromatische Dispersion, Kerr-Effekt) erklärt und beschrieben, die eine störungsfreie Übertragung von optischen Pulsen in Übertragungsstrecken beeinträchtigen. Wegen der Fokussierung der Arbeit auf amplitudenmodulierte Systeme, wurden Erzeugungsmethoden und Spektraleneigenschaften von zahlreichen amplitude-shift-keying (ASK) basierten Modulationsformaten erklärt. Die untersuchten Modulationsformate wurden in drei Gruppen unterteilt: Non-return-to-zero (NRZ) basierende Formate, Return-to-zero (RZ) basierende Formate und neue Modulationsformate. Zu der Gruppe von NRZ basierten Modulationsformaten gehören konventionelles NRZ und Duobinary Modulation. In der Gruppe von RZ basierten Formaten wurden konventionelles RZ, Carrier-suppressed RZ (CSRZ) und Single-side-band RZ (SSB-RZ) eingeführt. Die Gruppe der neuen Formate beinhaltet Modulationsformate, die vom Autor im Rahmen der Arbeit vorgeschlagen und weiterentwickelt worden sind: Alternate-chirped NRZ (alCNRZ), Novel-chirped RZ (nCRZ), Alternate-polarized NRZ (alPNRZ) und Alternate-polarized RZ (alPRZ). Die Anforderungen, die bei der Entwicklung von neuen Modulationsformaten berücksichtigt worden sind, waren die Verbesserung der nichtlinearen Übertragungseigenschaften (z.B. nichtlineare Toleranz) der Übertragungsstrecke und eine effizientere Ausnutzung der zur Verfügung stehenden Systembandbreite (z.B. Erhöhung der spektralen Effizienz), wobei die vorgeschlagenen Modulationsformate kompatibel mit herkömmlichen Systemkonfigurationen (z.B. Empfänger) sein sollten. Aufgrund numerischer Natur der Arbeit wurden diverse Auswertekriterien eingeführt, die eine genaue Evaluierung der Übertragungsqualität ermöglichen und im Rahmen der Arbeit verwendet worden sind. Die Vor- und Nachteile der Auswertekriterien wie Bitfehlerrate (BER), Q-Faktor, optischer Signalrauschabstand (OSNR) und Augendiagramme wurden erläutert, und ein Vergleich zwischen allen Kriterien ist gemacht worden. Die 40 Gbit/s basierten numerischen Untersuchungen wurden für Einkanal- und Mehrkanalübertragungssysteme durchgeführt. Dabei wurde im Mehrkanalfall zwischen WDM-Systemen mit einer spektralen Effizienz von 0.4 bit/s/Hz und effizienteren dense WDM (DWDM) Systemen mit einer spektralen Effizienz von 0.8 bit/s/Hz unterschieden. Das Ziel dieser Untersuchungen war eine 40 Gbit/s Systemoptimierung durch Bestimmung von optimalen Übertragungsfasern, optimalen Dispersionskompensationsschemen und optimalen Leistungsbereichen, in denen die zukünftigen Systeme betrieben werden sollen. Dabei wurden alle Untersuchungen unter Berücksichtigung von unterschiedlichen Modulationsformaten durchgeführt, um einen Vergleich zwischen den Modulationsformaten gewährleisten zu können. Die Ergebnisse der Einkanaluntersuchungen haben gezeigt, dass NRZ basierten Modulationsformate durch eine hohe Dispersionstoleranz (ca. ±50 ps/nm) und eine niedrige nichtlineare Toleranz charakterisiert sind, was eine Beschränkung der maximaler Übertragungslänge verursacht. Die wichtigsten Störeffekte stellen in diesem Fall Selbstphasenmodulation (SPM) und die Interaktion zwischen SPM und chromatischer Dispersion dar. Die RZ basierten Verfahren zeichnen sich durch eine reduzierte Dispersionstoleranz (ca. ±25 ps/nm) aus, aber ermöglichen wegen erhöhter nichtlinearer Toleranz eine Verbesserung der maximalen Übertragungslänge verglichen zu NRZ Formaten. Die limitierenden Effekte in einer RZ basierten Übertragung sind Intrakanaleffekte (z.B. Intrakanalkreuzphasenmodulation IXPM), die bei höheren Signalleistungen von SPM begleitet sind. Die wichtigste Eigenschaft der neuen Modulationsverfahren ist die große nichtlineare Toleranz, die besonders bei alternierend polarisierten Modulationsverfahren (z.B. alPNRZ, alPRZ) zur Geltung kommt. Es wurde gezeigt, dass in allen untersuchten Fällen die Übertragungsqualität von eine mittleren Faserdispersion (ca. 4-8 ps/nm·km) profitiert und dass Dispersionskompensationsschemen mit einem bestimmten Prozent (variiert von Format zu Format) der Vorkompensation das Optimum darstellen. Die Mehrkanaluntersuchungen haben gezeigt, dass solange die spektrale Effizienz eines 40 Gbit/s basierten WDM systems klein (£ 0.4 bit/s/Hz) ist, die Einkanaleffekte (z.B. SPM, IXPM) die dominierenden Effekten sind. Demzufolge haben WDM und Einkanalsysteme ähnliche optimale Systemparameter, was ein einfaches System- und Kapazitätsupgrade ermöglichen würde. Des weiteren wurde gezeigt, dass für die Realisierung von DWDM Systemen eine schmalbandige optische Filterung sowohl am Sender als auch am Empfänger notwendig ist, deren Folge die Zerstörung der RZ Pulsform ist, wodurch die untersuchten RZ und NRZ basierten Modulationsformate identische Übertragungseigenschaften in DWDM Systemen aufweisen. Eine ähnliche Tendenz wurde auch bei manchen neuen Formaten (z.B. alCNRZ) beobachtet, was mit einem breiten Signalspektrum zu erklären ist. Auf der anderen Seite zeigten alternierend polarisierte Modulationsverfahren (z.B. alPNRZ) auch in DWDM Systemen eine Verbesserung hinsichtlich Filtertoleranz und Toleranz zu Mehrkanaleffekten (z.B. XPM), und empfählen sich als optimaler Kandidat für die zukünftigen 40 Gbit/s Systeme. Es wurde gezeigt, dass der optimale Fasertyp für eine DWDM Übertragung weitgehend unabhängig vom Modulationsformat ist und dass Faser eine möglichst hohe Dispersion besitzen sollen, um eine Unterdrückung der Mehrkanaleffekte ermöglichen zu können. Um zu erkennen, wie eine weitere Verbesserung der Übertragungseigenschaften in 40 Gbit/s Systemen ermöglicht werden könnte, wurden Verfahren wie orthogonal polarisierte Kanäle sowie phase shift keying (PSK) basierte Modulationsformate (z.B. DPSK, DQPSK) untersucht. Es wurde gezeigt, dass die orthogonale Polarisation zwischen den Kanälen als eine Verbesserungsmethode auf eine Übertragungslänge von ca. 200 km begrenzt ist. PSK-Formate ermöglichen eine Verbesserung der Übertragungseigenschaften der Strecke, wobei die notwendigen komplizierten Sender- und Empfängerrealisierungen vom Nachteil sein könnten.The focus of this work was set on 40 Gb/s based optical transmission systems with a varying number of channels and various spectral efficiencies in order to investigate the potential of 40 Gb/s technologies for the implementation in the next generation optical transmission networks. The results of this work can be used as design guidelines enabling a better understanding of propagation limitations in high bit rate transmission systems and give useful insights needed for the capacity upgrade of existing transmission lines. Using conventional amplitude-shift-keying (ASK) based modulation formats and by the author proposed novel modulation formats, the optimization of the system settings is performed in 40 Gb/s based single channel, wavelength division multiplex (WDM) and dense WDM (DWDM) transmission lines, in order to enable a comparison between different modulation formats in terms of the total transmission distance and the maximum achievable spectral efficiency. The signal generation and dominant transmission characteristics of various conventional non return-to-zero (NRZ), return-to-zero (RZ), duobinary, single side band RZ (SSB-RZ), carrier suppressed RZ (CSRZ) - and novel modulation formats alternate chirped NRZ (alCNRZ), novel chirped RZ (nCRZ), alternate polarized (N)RZ (alP(N)RZ) were introduced. The idea behind the development of novel modulation formats was the performance improvement of the existing transmission lines with possibly low signal generation complexity, employing conventional ASK-based receiver configuration for the signal detection. Dividing all modulation formats in two groups NRZ- and RZ-based - their tolerances to linear and nonlinear transmission disturbances are investigated in single channel transmission, indicating that an implementation of NRZ-based modulation formats provides a better dispersion tolerance, but suffers from strong nonlinear limitations. The use of novel NRZ-based formats enables a significant improvement of nonlinear transmission characteristics at the cost of a slightly increased transmitter complexity. RZ-based formats are characterized by an increased sensitivity to residual dispersion and a significant nonlinear tolerance. It is shown that an additional phase or polarization modulation of RZ pulses enables more compact signal spectra and a further improvement of nonlinear transmission robustness, thus enlarging the maximum transmission distance. Strong intra-channel limitations were indicated as the dominant transmission limitation especially in RZ-based formats characterized by strong interactions of consecutive pulses within the bit stream, due to the fast broadening of short optical pulses at 40 Gb/s. This effect is accompanied by self-phase modulation (SPM) group velocity dispersion (GVD) interplay, which becomes evident in both format groups at larger channel powers. It is shown that the dominance of intra-channel effects requires implementation of transmission fibers with moderate dispersion values. Furthermore, it was shown, that as long as intra-channel effects dominate transmission performance, the best dispersion compensation scheme is characterized by a small amount of dispersion pre-compensation, due to suppression of interactions between adjacent pulses. Thereby, right amount of dispersion pre-compensation is dependent on the modulation format in use, because of the interplay between the pulse internal chirp induced during modulation and the local dispersion in transmission line. The importance of pre-compensation increases in long-haul transmission lines employing dispersion compensation on a span-by-span basis, because of constructive superposition of intrachannel cross-phase modulation (IXPM) contributions in each span. The modulation formats employing polarization switching between consecutive pulses were identified as best solution for the performance enhancement in 40 Gb/s single channel based transmission lines. The 40 Gb/s based WDM systems with spectral efficiency of 0.4 bit/s/Hz showed identical transmission behavior as in single channel transmission for all modulation formats, which can be explained by the dominance of single-channel effects in 40 Gb/s systems with a channel spacing of 100 GHz. This leads to the conclusion that a system upgrade from single channel to WDM at 40 Gb/s channel data rate can be made using identical transmission infrastructure. As in the single channel case, RZ-based formats indicated a significant robustness to nonlinear propagation effects, which could be further improved by the use of novel modulation formats. Basically, RZ-based modulation formats outperform the NRZ-based ones in 40 Gb/s single channel and WDM transmissions, and transmission advantages of RZ based formats become even more evident with an increased transmission distance. It was shown that an increase of spectral efficiency to 0.8 bit/s/Hz in 40 Gb/s based DWDM systems results in increased pulse distortions, because of the reduced tolerance to implemented narrow-band filtering and larger impact of multi-channel nonlinearities (particularly XPM). The differences between RZ- and NRZ-based modulation formats vanish in DWDM transmissions, because of the distortion of RZ pulse shape due to narrow-band filtering needed at the transmitter side. It was shown that transmission performance of DWDM systems could profit from implementation of transmission fibers with a large chromatic dispersion, due to suppression of multi-channel effects independently of the modulation format in use. Accordingly, already deployed fibers (e.g. G.652) can be further used in next generation of DWDM transmission systems. Furthermore, considering concatenation of identical spans in a DWDM transmission line, it was observed that XPM-induced impacts superpose constructively from span to span independently of the implemented dispersion compensation scheme, resulting in an transmission penalty, which is in high power regime proportional to number of concatenated spans. This behavior enables together with already know transmission rules (e.g. Pmax) an efficient estimation of the maximum transmission performance and maximum transmission distance in 40 Gb/s DWDM systems. This work is completed by representation of some promising technologies, e.g. polarization orthogonality between the channels or phase-shift-keying (PSK) based modulation formats, which enable a further increase of spectral efficiency (beyond 0.8 bit/s/Hz) and an enhanced maximum transmission distance. The investigations of PSK-based modulation formats showed that not all recently proposed PSK-based system could compete with ASK-based formats for implementation in DWDM systems. Differential quadrature PSK (DQPSK) based modulation formats were identified as a potential candidate for the implementation in future spectrally efficient DWDM systems

    Investigation of the limiting fibre nonlinearities and their suppression in 40Gbit/s optical transmission systems.

    Get PDF
    This thesis investigates the fundamental limitations to optical transmission at a bit-rate of 40Gbit/s. The signal distortion due to nonlinear effects, noise and dispersion are analysed and techniques for their suppression through dispersion management and optimum choice of modulation format are demonstrated. The high launch powers required for overcoming noise from the amplifiers result in an increase in fibre nonlinearities. Transmission at 40Gbit/s favours the RZ modulation format. However, RZ signals were found to be limited by intra-channel cross phase modulation (IXPM) and intra-channel four-wave-mixing (IFWM). These intra-channel nonlinear effects take place as a result of nonlinear interaction between overlapping pulses of the same wavelength channel. Minimising such pulse overlap by controlling the dispersion-induced pulse broadening during propagation in the fibre was investigated by reducing the fibre local dispersion and by pre-compensating the signal at the transmitter. Dispersion compensation using higher-order-mode devices with high nonlinear tolerance was also investigated, enabling transmission over in-line pre-compensated amplifier spans. In the second part of this thesis, the nonlinear tolerance of the RZ modulation format was increased by use of alternate-polarisation and alternate-phase between adjacent pulses. These techniques were found to improve the transmission performance by approximately 50% and required simple modifications to the transmitter only. These advanced RZ signals were found to be compatible with dispersion management techniques. However, the optimum pre-compensation at the transmitter was found to be dependent on the modulation format and dominant intra-channel effect. A novel modulation format combining alternate-polarisation and phase simultaneously was demonstrated for maximum nonlinear suppression without the use of dispersion management. Finally, a new experimental technique was demonstrated for the investigation of dispersion tolerance. It was found that the choice of optimum modulation format requires a trade-off between nonlinear tolerance and dispersion tolerance. The results of this work can be applied to optimise the design rules of future optical networks

    Symmetry & nonlinear compensation in fiber-optic transmissions

    Get PDF
    This thesis presents methods and practical implementations for compensating or suppressing signal distortions induced by fiber nonlinearity in long-distance transmissions. Our methods take advantage of the availability and already wide deployment of dispersion-compensating fibers with various choices of dispersions and dispersion slopes. The basic principle behind the methods is to choose suitable fibers and to arrange them properly into transmission lines manifesting scaled symmetries. Based on the nonlinear Schrodinger equation which describes the nonlinear and dispersive signal propagation in optical fibers, we have shown analytically that a scaled symmetry renders the nonlinear signal distortion by the first part of a transmission line to be largely undone by the second part, when an optical phase conjugator is installed in the middle of the line. Without a phase conjugator, the most detrimental nonlinear interactions among pulses within a wavelength channel may be significantly suppressed in a scaled symmetric line. We have identified two types of scaled symmetries: mirror and translation. Although mirror-symmetric systems have been discussed by other authors before, our own proposals and designs using high-dispersion fibers in conjunction with distributive Raman or erbium-doped amplification could make practical transmission systems manifesting nearly perfect mirror symmetries in the scaled sense and hence excellent nonlinear compensations. Firstly noted and investigated thoroughly by us, the concept of scaled translation symmetries in transmission lines may well spur the adoption of nonlinear compensation methods in practical transmission systems, since distributive amplifiers are no longer necessary for translation symmetries. To support our mathematical analyses, extensive computer simulations have been carried out to validate the effectiveness of our proposed systems, most of which assume practical system setups and parameters and could therefore serve as paradigms for real system designs

    On the benefits of phase shift keying to optical telecommunication systems

    Get PDF
    Les avantages de la modulation de phase vis-à-vis la modulation d’intensité pour les réseaux optiques sont claires et accepté par la communauté scientifique des télécommunications optiques. Surtout, la modulation de phase montre une meilleure sensibilité au bruit, ainsi qu’une plus grande tolérance aux effets non-linéaires que la modulation d’intensité. Nous présentons dans cette thése un étude qui vise à développer les avantages de la modulation de phase. Nous attaquons d’abord la complexité du récepteur en détection directe, en proposant une nouvelle configuration dont la complexité est comparable à celle du récepteur pour la modulation d’intensité traditionnel, mais avec des meilleures performances. Cette solution pourrait convenir pour les réseaux métropolitains (et même d’accès) à haut débit binaire. Nous passons ensuite à l’examen de la possibilité d’utiliser des amplificateur à semi-conducteur (SOA) au lieu des amplificateurs à fibre dopée à l’erbium pour fournir amplification optique aux signaux modulés en phase. Les non-linéarité des SOA sont étudiées, et un compensateur simple et très efficace est proposé. Les avantages des amplificateurs à semi-conducteur par rapport à ceux à fibre sont bien connus. Surtout, la méthode que nous proposons permettrait l’integrabilité des SOA avec d’autres composants de réseau (par exemple, le récepteur nommé cidessus), menant à des solutions technologiques de petite taille et efficaces d’un point de vue énergétique. Il y a deux types de systèmes pour signaux modulés en phase: basé sur la détection directe, ou sur les récepteurs cohérents. Dans le dernière partie de ce travail, nous nous concentrons sur cette dernière catégorie, et nous comparons deux solutions possibles pour la mise à niveau des réseaux terrestres actuel. Nous comparons deux configurations dont les performances sont très comparables en termes de sensibilité au bruit, mais nous montrons comment la meilleure tolérance aux effets non linéaires (en particuliers dans les systèmes à débit mixte) fait que une solution soit bien plus efficace que l’autre.The advantages of phase modulation (PM) vis-à-vis intensity modulation for optical networks are accepted by the optical telecommunication community. PM exhibits a higher noise sensitivity than intensity modulation, and it is more tolerant to the effects of fiber nonlinearity. In this thesis we examine the challenges and the benefits of working with different aspects of phase modulation. Our first contribution tackles the complexity of the direct detection noncoherent receiver for differentially encoded quadrature phase shift keying. We examine a novel configuration whose complexity is comparable to that of traditional receivers for intensity modulation, yet outperforming it. We show that under severe nonlinear impairments, our proposed receiver works almost as well as the conventional receiver, with the advantage of being much less complex. We also show that the proposed receiver is tolerant to chromatic dispersion, and to detuning of the carrier frequency. This solution might be suitable for high-bit rates metro (and even access) networks. Our second contribution deals with the challenges of using semiconductor optical amplifiers (SOAs) instead of typical erbium doped fiber amplifiers (EDFAs) to provide amplification to phase modulated signals. SOAs nonlinearities are investigated, and we propose a simple and very effective feed-forward compensator. Above all, the method we propose would permit the integrability of SOAs with other network components (for example, the aforementioned receiver) achieving small size, power efficient sub-systems. Phase modulation paves the way to high spectral efficiency, especially when paired with digital coherent receivers. With the digital coherent receiver, the degree of freedom offered by polarization can be exploited to increase the channel bit rate without increasing its spectral occupancy. In the last part of this work we focus on polarization multiplexed signaling paired with coherent reception and digital signal processing. Our third contribution provides insight on the strategies for upgrading current terrestrial core networks to high bit rates. This is a particularly challenging scenario, as phase modulation has to coexist with previously installed intensity modulated channels. We compare two configurations which have received much attention in the literature. These solutions show comparable performance in terms of back-to-back noise sensitivity, and yet are not equivalent. We show how the superior tolerance to nonlinear fiber propagation (and particularly to cross phase modulation induced by the presence of intensity modulated channels) makes one of them much more effective than the other

    Cost-Effective Spectrally-Efficient Optical Transceiver Architectures for Metropolitan and Regional Links

    Get PDF
    The work presented herein explores cost-effective optical transceiver architectures for access, metropolitan and regional links. The primary requirement in such links is cost-effectiveness and secondly, spectral efficiency. The bandwidth/data demand is driven by data-intensive Internet applications, such as cloud-based services and video-on-demand, and is rapidly increasing in access and metro links. Therefore, cost-effective optical transceiver architectures offering high information spectral densities (ISDs > 1(b/s)/Hz) need to be implemented over metropolitan distances. Then, a key question for each link length and application is whether coherent- or direct (non-coherent) detection technology offers the best cost and performance trade-off. The performance and complexity limits of both technologies have been studied. Single polarization direct detection transceivers have been reviewed, focusing on their achievable ISDs and reach. It is concluded that subcarrier modulation (SCM) technique combined with single sideband (SSB) and high-order quadrature amplitude modulation (QAM) signaling, enabled by digital signal processing (DSP) based optical transceivers, must be implemented in order to exceed an ISD of 1 (b/s)/Hz in direct-detection links. The complexity can be shifted from the optical to the electrical domain using such transceivers, and hence, the cost can be minimized. In this regard, a detailed performance comparison of two spectrally-efficient direct detection SCM techniques, namely Nyquist-SCM and OFDM, is presented by means of simulations. It is found out that Nyquist-SCM format offers the transmission distances more than double that of OFDM due to its higher resilience to signal-signal beating interference. Following this, dispersion-precompensated SSB 4- and 16-QAM Nyquist-SCM signal formats were experimentally demonstrated using in-phase and quadrature (IQ)-modulators at net optical ISDs of 1.2 and 2 (b/s)/Hz over 800 km and 323 km of standard single-mode fibre (SSMF), respectively. These demonstrations represent record net optical ISDs over such distances among the reported single polarization wavelength division multiplexed (WDM) systems. Furthermore, since the cost-effectiveness is crucial, the optical complexity of Nyquist-SCM transmitters can be significantly reduced by using low-cost modulators and high-linewidth lasers. A comprehensive theoretical study on SSB signal generation using IQ- and dual-drive Mach-Zehnder modulators (DD-MZMs) was carried out to assess their performance for WDM direct detection links. This was followed by an experimental demonstration of WDM transmission over 242 km of SSMF with a net optical ISD of 1.5 (b/s)/Hz, the highest achieved ISD using a DD-MZM-based transmitter. Following the assessment of direct detection technology using various transmitter designs, cost-effective simplified coherent receiver architectures for access and metro networks have been investigated. The optical complexity of the conventional (polarization- and phase-diverse) coherent receiver is significantly simplified, i.e., consisting of a single 3 dB coupler and balanced photodetector, utilizing heterodyne reception and Alamouti polarization-time block coding. Although the achievable net optical ISD is halved compared to a conventional coherent receiver due to Alamouti coding, its receiver sensitivity provides significant gain over a direct detection receiver at M-ary QAM formats where M ≥16

    Performance improvement of SS-WDM passive optical networks using semiconductor optical amplifiers: Modeling and experiment

    Get PDF
    Les sources incohérentes sont proposées comme alternatives aux lasers stabilisés en longueur d'onde pour réduire le coût des réseaux optiques passifs utilisant le multiplexage par longueur d'onde découpée dans le spectre (SS-WDM PONs). À cause de leur nature incohérente, ces sources génèrent au récepteur un large bruit d'intensité. Ce bruit limite l'efficacité spectrale et/ou le taux binaire pouvant être achevé. Cette thèse étudie l'utilisation des amplificateurs optique à semi-conducteur SOAs pour nettoyer le bruit d'intensité. De plus, lors de cette thèse, nous explorons les outils numériques et expérimentaux qui nous permettent d'analyser les performances des SOAs dans le cadre de systèmes de communication multi-canaux, incluant le SS-WDM. Nous présentons des modèles mathématiques pour le bruit d'intensité, ce bruit étant celui qui limite les performances des systèmes de communication utilisant des sources incohérentes. Nous discutons les dynamiques complexes des SOAs et présentons les équations qui gouvernent l'évolution des porteurs de charges dans ces amplificateurs. Nous identifions et soulignons l'effet des paramètres les plus importants, qui affectent le processus ainsi que la dynamique de nettoyage du bruit d'intensité. Nous passons en revue, les différentes techniques de nettoyage de bruit avec les SOAs, qui ont démontré les meilleurs résultats connus. De plus, nous effectuons une revue de littérature poussée pour ce qui a attrait au problème de post-filtrage lorsque le SOA est placé au transmetteur, avant la modulation. Notre première contribution pendant ce travail de recherche est de démontrer, en utilisant l'intermodulation de gain d'un SOA au récepteur pour convertir le signal incohérent en laser cohérent, une amélioration significative du taux d'erreur binaire BER. Cette méthode est spectralement efficace, d'autant plus qu'elle ne souffre point la limitation occasionnée par le post-filtrage au récepteur. En contre partie elle nécessite un ample budget de puissance qui doit assurer une saturation suffisante de l'amplificateur au récepteur. Une source laser est aussi nécessaire au récepteur. Ceci est un inconvénient, même si une telle source n'ait pas besoin d'une quelconque stabilisation. Pour contourner le problème causé par le post-filtrage quand le SOA est au transmetteur, nous proposons un nouveau récepteur pour les systèmes de communication WDM, qui permet de mieux garder le nettoyage de bruit, et ce malgré le filtrage optique au récepteur. La nouvelle méthode consiste en un détecteur balancé utilisé au récepteur: d'un bord, tous les canaux sont détectés sans distinction. De l'autre, le signal désiré est bloqué pendant que tous les autres canaux sont détectés. Avec cette méthode, il est facile de saturer l'amplificateur pour une meilleure suppression de bruit tout en évitant en grande partie la dégradation causé par le post-filtrage. Nous avons expérimentalement démontré un système WDM dense de 8 x 10 Gbps avec une source incohérente et un SOA en saturation. Une autre contribution originale de ce travail est le développement d'un outil de simulation pour les SOAs qui est numériquement plus efficace et léger que les modèles connus à ce jour. Nous avons donc développé un modèle théorique simple, pouvant être implémenté par diagramme block, dans le but de simuler les performances des hens de communications WDM. Notre modèle démontre une bonne concordance avec les résultats expérimentaux ainsi qu'une diminution de temps de calcul de l'ordre de 20 fois. Finalement, lors de la dernière partie de ces travaux, nous nous sommes occupés de mesurer, de façon précise, le temps de recouvrement du gain dans un SOA. Le temps de recouvrement des porteurs dans un SOA est un des paramètres les plus importants qui sont à l'origine du phénomène de nettoyage de bruit et qui régissent le comportement ainsi que les dynamiques de l'amplificateur. Nous avons étudié en particulier, la dépendance de ce temps de recouvrement r de la longueur d'onde. Pour le SOA utilisé lors de notre étude expérimentale, nous avons démontré que r dépendait de la longueur d'onde de façon similaire au spectre de gain. Ces mesures ont été possibles grâce au développement d'un nouveau dispositif de mesure pompe/sonde, qui permettait de mesurer le recouvrement du gain pour une pompe et une sonde à la même longueur d'onde et ayant le même état de polarisation

    Optical post chromatic dispersion compensation in an optical fiber communication system

    Get PDF

    Cost-effective Information and Communication Technology (ICT) infrastructure for Tanziania

    Get PDF
    The research conducted an Information and Communication Technology (ICT) field survey, the results revealed that Tanzania is still lagging behind in the ICT sector due to the lack of an internationally connected terrestrial ICT infrastructure; Internet connectivity to the rest of the world is via expensive satellite links, thus leaving the majority of the population unable to access the Internet services due to its high cost. Therefore, an ICT backbone infrastructure is designed that exploits optical DWDM network technology, which un-locks bandwidth bottlenecks and provides higher capacity which will provide ICT services such as Internet, voice, videos and other multimedia interactions at an affordable cost to the majority of the people who live in the urban and rural areas of Tanzania. The research analyses and compares the performance, and system impairments, in a DWDM system at data transmission rates of 2.5 Gb/s and 10 Gb/s per wavelength channel. The simulation results show that a data transmission rate of 2.5 Gb/s can be successfully transmitted over a greater distance than 10 Gb/s with minimum system impairments. Also operating at the lower data rate delivers a good system performance for the required ICT services. A forty-channel DWDM system will provide a bandwidth of 100 Gb/s. A cost analysis demonstrates the economic worth of incorporating existing optical fibre installations into an optical DWDM network for the creation of an affordable ICT backbone infrastructure; this approach is compared with building a completely new optical fibre DWDM network or a SONET/SDH network. The results show that the ICT backbone infrastructure built with existing SSMF DWDM network technology is a good investment, in terms of profitability, even if the Internet charges are reduced to half current rates. The case for building a completely new optical fibre DWDM network or a SONET/SDH network is difficult to justify using current financial data
    corecore