1,803 research outputs found

    Controls and guidance research

    Get PDF
    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory

    Static and dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration

    Get PDF
    This work-in-progress presentation describes an ongoing research activity at the NASA Langley Research Center to develop analytical methods for the prediction of aerothermoelastic stability of hypersonic aircraft including active control systems. The objectives of this research include application of aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or response problems due to aerodynamic heating- namely flutter suppression and ride quality improvement. For this study, a generic hypersonic aircraft configuration was selected which incorporates wing flaps, ailerons and all-moveable fins to be used for active control purposes. The active control systems would use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces for improved structural dynamic response as the aircraft encounters atmospheric turbulence

    An overview of aeroelasticity studies for the National Aerospace Plane

    Get PDF
    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design

    Hypersonic Research Vehicle (HRV) real-time flight test support feasibility and requirements study. Part 2: Remote computation support for flight systems functions

    Get PDF
    The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations

    Active control of aerothermoelastic effects for a conceptual hypersonic aircraft

    Get PDF
    Procedures for and results of aeroservothermoelastic studies are described. The objectives of these studies were to develop the necessary procedures for performing an aeroelastic analysis of an aerodynamically heated vehicle and to analyze a configuration in the classical cold state and in a hot state. Major tasks include the development of the structural and aerodynamic models, open loop analyses, design of active control laws for improving dynamic responses and analyses of the closed loop vehicles. The analyses performed focused on flutter speed calculations, short period eigenvalue trends and statistical analyses of the vehicle response to controls and turbulence. Improving the ride quality of the vehicle and raising the flutter boundary of the aerodynamically-heated vehicle up to that of the cold vehicle were the objectives of the control law design investigations

    Trajectory optimization and guidance law development for national aerospace plane applications

    Get PDF
    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case

    3-D Simulation of Flexible Hypersonic Vehicles

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83653/1/AIAA-2010-8229-935.pd

    Aeroservoelasticity

    Get PDF
    Accomplishments and current research projects along four main thrusts in aeroservoelasticity at the NASA Langley Research Center are described. One activity focuses on enhancing the modelling and the analysis procedures to accurately predict aeroservoelastic interactions. In the area of modelling, improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise, low-order models for design and simulation tasks. Recent extensions in aerodynamic correction factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to Matched Filter Theory and Random Process Theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. In another activity, two research projects leading towards improved design capability are summarized. The first program involves the development of an integrated structure/control design capability; the second provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. Experimental validation of new theoretical developments is the third activity. As such, a short description of the Active Flexible Wing Project is presented, and recent wind-tunnel test accomplishments are summarized. Finally within the area of application, a study performed to assess the state-of-the-art of aeroelastic and aeroservoelastic analysis and design technology with respect to hot, hypersonic flight vehicles is reviewed
    • …
    corecore