344 research outputs found

    Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks

    Get PDF
    Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. Present article introduces two neuro-fuzzy and artificial neural network algorithms as an aid for psychologists and psychiatrists to diagnose and treat depression. Methods: Neuro-fuzzy has been carried out using data evaluated by psychiatrists and scholars in Tabriz city with the convenience sampling method. Sixty-five patients were studied from whom 40 patients were taught feed forward, back propagation by artificial neural network algorithm and 14 patients were tested. An inductive neuro-fuzzy intervention created neuro-fuzzy rules to decide about depression diagnosis. Results: The proposed neuro-fuzzy model created better classifications. Reaching maximum accuracy of 13.97is appropriate in diagnosis prediction. The results of the present study indicated that neuro-fuzzy is more powerful than artificial neural network with accuracy 76.88. Conclusion: Findings of the research showed the depression scores of beck inventory can be predicted and explained with the accuracy of 87 using EEG in F4 and alpha peak frequency. It can be said that such accuracy in predicting can’t be obtained by any regression or route analysis method. The research can be the first step to predict and even identify depression using taking the data directly from the brain. So, there is no need for inventory and even a specialist diagnosis

    System identification and control of smart structures: PANFIS modeling method and dissipativity analysis of LQR controllers

    Get PDF
    Maintaining an efficient and reliable infrastructure requires continuous monitoring and control. In order to accomplish these tasks, algorithms are needed to process large sets of data and for modeling based on these processed data sets. For this reason, computationally efficient and accurate modeling algorithms along with data compression techniques and optimal yet practical control methods are in demand. These tools can help model structures and improve their performance. In this thesis, these two aspects are addressed separately. A principal component analysis based adaptive neuro-fuzzy inference system is proposed for fast and accurate modeling of time-dependent behavior of a structure integrated with a smart damper. Since a smart damper can only dissipate energy from structures, a challenge is to evaluate the dissipativity of optimal control methods for smart dampers to decide if the optimal controller can be realized using the smart damper. Therefore, a generalized deterministic definition for dissipativity is proposed and a commonly used controller, LQR is proved to be dissipative. Examples are provided to illustrate the effectiveness of the proposed modeling algorithm and evaluating the dissipativity of LQR control method. These examples illustrate the effectiveness of the proposed modeling algorithm and dissipativity of LQR controller

    A WANFIS Model for Use in System Identification and Structural Control of Civil Engineering Structures

    Get PDF
    With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events

    A study on neural network based system identification with application to heating, ventilating and air conditioning (hvac)system

    Get PDF
    Recent efforts to incorporate aspects of artificial intelligence into the design and operation of automatic control systems have focused attention on techniques such as fuzzy logic, artificial neural networks, and expert systems. Although LMS algorithm has been considered to be a popular method of system identification but it has been seen in many situations that accurate system identification is not achieved by employing this technique. On the other hand, artificial neural network (ANN) has been chosen as a suitable alternative approach to nonlinear system identification due to its good function approximation capabilities i.e. ANNs are capable of generating complex mapping between input and output spaces. Thus, ANNs can be employed for modeling of complex dynamical systems with reasonable degree of accuracy. The use of computers for direct digital control highlights the recent trend toward more effective and efficient heating, ventilating, and air-conditioning (HVAC) control methodologies. The HVAC field has stressed the importance of self learning in building control systems and has encouraged further studies in the integration of optimal control and other advanced techniques into the formulation of such systems. In this thesis we describe the functional link artificial neural network (FLANN), Multi-Layer Perceptron (MLP) with Back propagation (BP) and MLP with modified BP called the emotional BP and Neuro fuzzy approaches for the HVAC System Identification. The thesis describes different architectures together with learning algorithms to build neural network based nonlinear system identification schemes such as Multi-Layer Perceptron (MLP) neural network, Functional Link Artificial Neural Network (FLANN) and ANFIS structures. In the case of MLP used as an identifier, different structures with regard to hidden layer selection and nodes in each layer have been considered. It may be noted that difficulty lies in choosing the number of hidden layers for achieving a correct topology of MLP neural identifier. To overcome this, in the FLANN identifier hidden layers are not required whereas the input is expanded by using trigonometric polynomials i.e. with cos(nπu) and sin(nπu), for n=0,1,2,…. The above ANN structures MLP, FLANN and Neuro-fuzzy (ANFIS Model) have been extensively studied

    Study on the Extent of the Impact of Data Set Type on the Performance of ANFIS for Controlling the Speed of DC Motor

    Get PDF
    This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) for tracking SEDC motor speed in order to optimize the parameters of the transient speed response by finding out the perfect training data provider for the ANFIS. The controller was adjusted using PI, PD and PIPD to generate data sets to configure the ANFIS rules. The performance of the ANFIS controllers using these the different data sets was investigated. The efficiencies of the three controllers were compared to each other, where the PI, PD, and PIPD configurations were replaced by ANFIS to enhance the dynamic action of the controller. The performance of the proposed configurations was tested under different operating situations. Matlab's Simulink toolbox was used to implement the designed controllers. The resultant responses proved that the ANFIS based on the PIPD dataset performed better than the ANFIS based on the PI and PD data sets. Moreover, the suggested controller showed a rapid dynamic response and delivered better performance under various operating conditions

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Formal Detection of Attentional Tunneling in Human Operator-Automation Interactions

    Get PDF
    The allocation of visual attention is a key factor for the humans when operating complex systems under time pressure with multiple information sources. In some situations, attentional tunneling is likely to appear and leads to excessive focus and poor decision making. In this study, we propose a formal approach to detect the occurrence of such an attentional impairment that is based on machine learning techniques. An experiment was conducted to provoke attentional tunneling during which psycho-physiological and oculomotor data from 23 participants were collected. Data from 18 participants were used to train an adaptive neuro-fuzzy inference system (ANFIS). From a machine learning point of view, the classification performance of the trained ANFIS proved the validity of this approach. Furthermore, the resulting classification rules were consistent with the attentional tunneling literature. Finally, the classifier was robust to detect attentional tunneling when performing over test data from four participants
    corecore