11,826 research outputs found

    Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Freeway Traffic Systems

    Get PDF
    Large scale traffic systems require techniques able to: 1) deal with high amounts of data and heterogenous data coming from different types of sensors, 2) provide robustness in the presence of sparse sensor data, 3) incorporate different models that can deal with various traffic regimes, 4) cope with multimodal conditional probability density functions for the states. Often centralized architectures face challenges due to high communication demands. This paper develops new estimation techniques able to cope with these problems of large traffic network systems. These are Parallelized Particle Filters (PPFs) and a Parallelized Gaussian Sum Particle Filter (PGSPF) that are suitable for on-line traffic management. We show how complex probability density functions of the high dimensional trafc state can be decomposed into functions with simpler forms and the whole estimation problem solved in an efcient way. The proposed approach is general, with limited interactions which reduces the computational time and provides high estimation accuracy. The efciency of the PPFs and PGSPFs is evaluated in terms of accuracy, complexity and communication demands and compared with the case where all processing is centralized

    A non-Gaussian continuous state space model for asset degradation

    Get PDF
    The degradation model plays an essential role in asset life prediction and condition based maintenance. Various degradation models have been proposed. Within these models, the state space model has the ability to combine degradation data and failure event data. The state space model is also an effective approach to deal with the multiple observations and missing data issues. Using the state space degradation model, the deterioration process of assets is presented by a system state process which can be revealed by a sequence of observations. Current research largely assumes that the underlying system development process is discrete in time or states. Although some models have been developed to consider continuous time and space, these state space models are based on the Wiener process with the Gaussian assumption. This paper proposes a Gamma-based state space degradation model in order to remove the Gaussian assumption. Both condition monitoring observations and failure events are considered in the model so as to improve the accuracy of asset life prediction. A simulation study is carried out to illustrate the application procedure of the proposed model

    Analysis of error propagation in particle filters with approximation

    Full text link
    This paper examines the impact of approximation steps that become necessary when particle filters are implemented on resource-constrained platforms. We consider particle filters that perform intermittent approximation, either by subsampling the particles or by generating a parametric approximation. For such algorithms, we derive time-uniform bounds on the weak-sense LpL_p error and present associated exponential inequalities. We motivate the theoretical analysis by considering the leader node particle filter and present numerical experiments exploring its performance and the relationship to the error bounds.Comment: Published in at http://dx.doi.org/10.1214/11-AAP760 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore