8,128 research outputs found

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies

    Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction

    Get PDF
    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly affects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    A Transfer Operator Methodology for Optimal Sensor Placement Accounting for Uncertainty

    Get PDF
    Sensors in buildings are used for a wide variety of applications such as monitoring air quality, contaminants, indoor temperature, and relative humidity. These are used for accessing and ensuring indoor air quality, and also for ensuring safety in the event of chemical and biological attacks. It follows that optimal placement of sensors become important to accurately monitor contaminant levels in the indoor environment. However, contaminant transport inside the indoor environment is governed by the indoor flow conditions which are affected by various uncertainties associated with the building systems including occupancy and boundary fluxes. Therefore, it is important to account for all associated uncertainties while designing the sensor layout. The transfer operator based framework provides an effective way to identify optimal placement of sensors. Previous work has been limited to sensor placements under deterministic scenarios. In this work we extend the transfer operator based approach for optimal sensor placement while accounting for building systems uncertainties. The methodology provides a probabilistic metric to gauge coverage under uncertain conditions. We illustrate the capabilities of the framework with examples exhibiting boundary flux uncertainty

    Robust Nonlinear Estimation and Control Applications using Synthetic Jet Actuators

    Get PDF
    Limit cycle oscillations (LCO), also known as utter, cause significant challenges in flight control of small unmanned aerial vehicles (SUAVs), and could potentially lead to structural damage and catastrophic failures. LCO can be described as vibrational motions in the rocking, pitching and plunging displacements of an aircraft wing. To address this, the use of synthetic jet actuators (SJAs) in UAV flight control systems is becoming popular as a practical alternative and to mechanical deflection surfaces. Synthetic jet actuators are promising tools for LCO suppression systems in small UAVs due to their small size, ease of operation, and low cost. Uncertainties inherent in the dynamics of the synthetic jet actuators present significant challenges in the synthetic jet actuator-based control design. Specifically, the input-output characteristic (voltage-virtual deflection angle relationship) of the synthetic jet actuators is nonlinear and contains parametric uncertainty. Further control design challenges exist in situations where multiple actuators lose effectiveness. This dissertation focuses on the suppression of limit cycle oscillations on small unmanned air vehicles using synthetic jet actuators. A brief description on how wind gust affects aircraft tracking control is presented. It shows an extension to a paper by adding the wind gust model to the system while also varying the uncertain synthetic jet actuator parameters using a Monte Carlo method. Next, a robust nonlinear control method is presented, which achieves simultaneous aircraft tracking control and limit cycle oscillation suppression using these synthetic jet actuators and a robust controller. Following that, a nonlinear LCO regulation method is presented, which uses a bank of dynamic filters to eliminate the need for pitching and plunging LCO rate measurements. Finally, an alternative method of LCO regulation control is presented, which utilizes a sliding mode observer in lieu of a bank of filters to estimate the pitching and plunging LCO rates

    Integral sliding mode fault tolerant control allocation for a class of affine nonlinear system

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from the literature. Good simulation results show the efficacy of the scheme

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Robust Control and Fault Detection Filter Design for Aircraft Pitch Axis

    Get PDF
    This paper presents a robust control and fault detection filter design for linearized longitudinal dynamics of F-16 aircraft. The control design is based on mu; synthesis method which guarantees the robust performance requirements and takes the structured uncertainty into consideration. In case of F-16 aircraft, it is assumed that an elevator failure and a sensor failure occur during the system operation. To ensure the safety of aircraft control system a fault detection and isolation (FDI) filter is designed. The fault detection filter design based on geometric approach relies on the use of (C,A) invariant subspaces which makes possible the decoupling of different types of failure. Typically, the FDI filter design approach is elaborated for open loop model and it is applied in the closed loop. In this paper the FDI filter designed for aircraft control system will be analyzed for a closed loop system
    corecore