322 research outputs found

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    Robust integral action of port-Hamiltonian systems

    Full text link
    Interconnection and damping assignment, passivity-based control (IDA-PBC) has proven to be a successful control technique for the stabilisation of many nonlinear systems. In this paper, we propose a method to robustify a system which has been stabilised using IDA-PBC with respect to constant, matched disturbances via the addition of integral action. The proposed controller extends previous work on the topic by being robust against the damping of the system, a quantity which may not be known in many applications.Comment: 5 pages, 1 figure, accepted to LHMNLC201

    Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots

    Full text link
    In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop. A fractional proportional-integral-derivative filter is used to achieve finite-time convergence for position tracking errors at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact phases. Simulation studies on two types of biped robots (i.e., two-link walker and RABBIT biped robot) demonstrate the proposed controller's tracking performance and disturbance rejection capability

    Tuning of Passivity-Based Controllers for Mechanical Systems

    Get PDF
    This article describes several approaches for tuning the parameters of a class of passivity-based controllers for standard nonlinear mechanical systems. In particular, we are interested in tuning controllers that preserve the mechanical system structure in the closed loop. To this end, first, we provide tuning rules for stabilization, i.e., the rate of convergence (exponential stability) and stability margin (input-to-state stability). Then, we provide guidelines to remove the overshoot. In addition, we propose a methodology to tune the gyroscopic-related parameters. We also provide remarks on the damping phenomenon to facilitate the practical implementation of our approaches. We conclude this article with experimental results obtained from applying our tuning rules to a fully actuated and an underactuated mechanical system
    corecore