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Abstract

The development of output feedback controller design for AUV is considered in
this thesis. The development is carried out in PCH framework. Firstly, the AUV
dynamics are transformed into PCH formulation. Then the feedback controllers
based on dissipation of the closed loop system are designed. The L2 disturbance
attenuation controller and its adaptive scheme are then elaborated. Necessary
and sufficient conditions to guaranty stability are stated. Robustness of the con-
troller to parameter uncertainties is studied by assuming uncertainties in both in-
ertia and damping matrices. The general design approach is applied to develop
a PCH-based control design for AUV for trajectory tracking and L2 disturbance
attenuation. The simulation shows that the designed controller is robust with
respect to uncertainty in inertia and damping matrices respectively. The L2 dis-
turbance attenuation controller and its adaptive scheme are able to attenuate the
exogenous disturbance effect.

In addition, the thesis also presents an extension of PCH based controller design
to the underactuated case. An absence of some actuating forces create inability
to track the position and attitude at the same time. The development of underac-
tuated controller design for AUV is developed as an extension of fully actuated
controller design. Necessary and sufficient conditions to guaranty stability for
the underactuated condition are developed. Simulation results show the abil-
ity of the proposed design to drive the underactuated AUV in three dimensions
trajectory.

In the last part of the thesis, two observer designs are developed. The first one
is based on PCH error passivation and the second is based on Lyapunov design.
The separation principle is presented to complete the stability proof. The PCH
observers are designed for AUV equipped with both Inertial Navigation System
(INS) sensor and depth sensor. The simulation results show that the controller-
observer arrangement is able to track the desired trajectory with some small drift
on the horizontal inertial position. The Lyapunov-based observer is designed for
AUV equipped with beacon inertial measurement. Uniform Global Exponential
Stability (UGES) is achieved for this observer. These stability results are stronger
when compared to similar results in the literature. Finally, using the cascaded-
system theory, we are able to establish the stability conditions for AUV controller-
observer closed-loop system.
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Arabic Abstract

الأطروحة. هذه في AUV تحكم وحدة تصميم عن الناتج الفعل ردود تطوير ويعتبر
.PCH صياغة في AUV ديناميات تحويل يتم أولا، .PCH إطار في تطوير ويتم

المغلقة. الدائرة للنظام تبديد أساس على الفعل ردود التحكم وحدات تصميم تم ثم
وذكر التكيف. على لها ومخطط تحكم L2 اضطراب تخفيف ذلك بعد ووضع
لعدم تحكم وحدة من قوة تدرس الاستقرار. لكفالة والكافية الضرورية الشروط
يتم التخميد. والمصفوفات الجمود من كل في اليقين عدم بافتراض المعلمة اليقين
و AUV مسار لتتبع ومقره PCH سيطرة تصميم لوضع العام التصميم نهج تطبيق
يتعلق فيما قوي تصميم تحكم وحدة أن المحاكاة وتبين الاضطرابات. تخفيف L2

تحكم L2 اضطراب توهين التوالي. على التخميد والمصفوفات الجمود في اليقين عدم
الخارجية. الاضطرابات تأثير من التخفيف على قادرة هي التكيف على لها ومخطط

إلى يستند تحكم PCH للتصميم امتدادا أيضا أطروحة يقدم ذلك، إلى بالإضافة
متابعة على القدرة عدم خلق المشغلات القوى بعض وجود عدم .underactuated حالة
underactuated للتحكم تصميم تطوير تطوير تم نفسه. الوقت في والموقف الموقف
والكافية اللازمة الشروط وضع يتم تماما. دفعتها تحكم للتصميم امتدادا AUV
التصميم قدرة تظهر المحاكاة نتائج .underactuated حالة لاستقرار لضمان

الثلاثة. الأبعاد مسار في underactuated AUV لدفع المقترح

في واحد أول ويستند اثنين. المراقب تصاميم وضعت الرسالة، من الأخير الجزء في
لاستكمال فصل مبدأ ويرد يابونوف. تصميم على الثاني ويقوم PCH خطأ التخميل
سواء حد على مجهزة AUV ل PCH المراقبين هذه صممت وقد الاستقرار. إثبات
الترتيب أن تبين المحاكاة نتائج عمق. واستشعار والتجنيس الهجرة دائرة استشعار
على صغيرة الانجراف بعض مع المطلوب مسار تتبع على قادرة هي تحكم-مراقب
مجهزة لاوط ومقرها يابونوف المراقب تصميم تم أفقي. الذاتي بالقصور موقف
لهذا UGES العالمية أسي موحدة الاستقرار ويتحقق الذاتي. بالقصور منارة قياس
الأدب. في مماثلة نتائج مع بالمقارنة أقوى لبنان في استقرار النتائج هذه المراقب.
الظروف تهيئة على قادرون ونحن نظام، تتالي نظرية باستخدام وذلك أخيرا،

المراقب. التحكم، وحدة مغلقة حلقة AUV النظام لاستقرار
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Chapter 1

Introduction

The world of autonomous vehicle has seen a remarkable development over the

last decades. The idea of having a self-driven device that can perform various

tasks without human intervention is appealing from both industrial and theo-

retical point of view. This thesis considers nonlinear output feedback control of an

Autonomous Underwater Vehicle (AUV). In this work, we propose nonlinear

control algorithms that can be implemented in a real AUV system.

1.1 Motivation

The unmanned vehicles, either remotely operated or autonomous, eliminate the

need for human physical presence and hence reduce the accidental risk and save

life. Remotely operated unmanned vehicles rely on remote operator station to

control and navigate the vehicle. Autonomous vehicles are independent of hu-

man operator. These vehicles rely on the built-in machine intelligence and the

1



on-board embedded control system. The design of the control system represents

challenging problems in the development of autonomous unmanned vehicles,

due to the high-dimensional sensory data, the computation-intensive processing

and the real-time execution constraints. The problem is even more complex for

underwater autonomous unmanned vehicles due to power and communication

limitations imposed by the working environment.

An AUV is an unmanned untethered underwater vehicle that carries its own

power source and relies on an on-board computer and built-in machine intelli-

gence to execute a mission consisting of a series of preprogrammed instructions

(potentially) modifiable on-line by data or information gathered by the vehicle

sensors. An AUV can be launched from simpler, smaller ships (compared to

Remotely Operated Vehicles (ROV)), or even docks or piers, since there is no

umbilical cable. This also enables AUV operation at significant distance from a

support ship or platform. The operational cost is further reduced since a human

operator is not needed.

On the other hand, the absence of a human operator dictates that AUV operations

are limited by the vehicle control system, the computing and sensing capabilities.

The lack of an umbilical cable limits the AUV to its own power source, thus re-

ducing feasible missions durations. As a result of these limitations, power, nav-

igation and mission management are three technologies which are considered

critical for the future use of AUV. Indeed, advances in these technologies are

necessary for AUV designers to meet objectives such as flexible communication,

efficient solution to temporal planning and resource allocation, information inte-

gration and recognition in the process of multi-sensor operation, planning for a

given task and adaptation to system and environmental changes.
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During the last decades, AUV applications became increasingly popular for com-

mercial use in the ocean industry and scientific research communities around the

world. Oil companies for example nowadays have put more efforts to move the

surface oil drilling platforms to seabed. In order to extract more oil and gas from

the reservoirs, the oil installations are placed closer to the sources. Several differ-

ent installations are placed on sea bed and they are connected to onshore facilities

with pipelines. This entails an increased demand for subsea equipment that can

carry out surveillance and maintenance work as seabed installations are in peri-

odical need of surveillance and repair work. As the use of deep ocean divers is

no longer an option, it follows that this work must be caried out automatically

by AUV, or by ROV. Another application of AUV is the scanning and inspec-

tion of pipe lines. One of the most essential tasks in this operation and also for

surveillance of seabed installations is accurate positioning.

AUV dynamic equations are often easily described using the Euler-Lagrange

equation, using six Degrees of Freedom (DOF) velocity equation in body fixed

axes. It is well known that Euler-Lagrange dynamic equations can be highly non-

linear and particularly for AUV, some parameters like squared drag and Coriolis

are proportional to the squared vehicle velocity. These facts present a challenge in

control design and in estimation since the traditional methods for linear systems

might be very difficult to apply and the results might be far from satisfactory.

Many nonlinear control design for nonlinear Euler Lagrange system, particularly

for AUV have been proposed. For instance, there have been sliding mode, feed-

back linearization and passivity-based control. The main obstacle stems from the

fact that, all these techniques require the knowledge of inertial position, angle

and velocity, which generally are not being all measured.
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Among these three, the most difficult to obtain is the inertial position. This hap-

pens since, in under water, the attenuation of radio wave in the sea water is

very high and hence the use of Global Positioning Systems (GPS) based naviga-

tion is impossible. Therefore, determination of the position in three dimensions

with sufficient accuracy and update rate is still one of the biggest challenges in

the development of underwater vehicle technology. Position measurements are

usually obtained by means of acoustic systems. The accuracy of these measure-

ments, however, is generally not to the sub meter level required for inspection.

The data collection has also a low data rate, high data loss and sometimes very

high measurement noise. In addition, for some operation conditions, the use of

beacon based measurement is not possible, i.e. like exploration under ice covered

surfaces, or a wide operational area.

In recent years, we have witnessed an impressive evolution in the sonar tech-

nology which has resulted in implementable solutions for high accuracy online

relative positioning systems for underwater vehicles[85]. For this to be possi-

ble, the distance between the vehicle and the target is limited. Unfortunately, in

many cases, for instance when scanning a pipeline, the scanned data would have

limited value without a clear understanding of its location in the global frame.

This brings us back to the challenges pertaining to the poor quality of acoustic

measurements[85].

Motivated by such challenges, we will investigate, in this thesis, the possibility

of using only strap down Inertial Navigation System (INS) measurement with

help of the nonlinear model of AUV to get an estimation of the inertial position.

INS offers high data rate and a considerably low noise measurement. The only

drawback is that the INS is an autonomous system that is not corrected by veloc-

4



ity or position measurement and the position measurement are taken from two

fold integration of the acceleration measurement which makes INS inertial posi-

tion error goes unbounded. In this thesis, we shall investigate how the nonlinear

model can help to reduce the growth or, if possible, eliminate the position error

of INS measurement.

In addition to that, we consider the problem of underactuated AUV. Several con-

trol designs of fully actuated AUV have been reported in the literature. While

the reported design schemes seem to be straight forward and simple, yet, they

assume that the vehicle has complete actuation force to move in six degrees of

freedom. In real implementation, like several other mechanical devices, many

AUV types have less actuation force than the total degrees of freedom. An AUV

with actuation forces less than the total degrees of freedom is called underactuated

AUV. The presence of this restriction may lead to poor position tracking which

may lead to instability.

All theoretical developments was carried based on dissipativity theorems. Among

the emerging techniques that appeared in the last decade was the Interconnec-

tion and Damping Assignment (IDA) - Port Controlled Hamiltonian (PCH). PCH

is a generalization of the Euler-Lagrange systems written in a pair of canonical

equations. In recent years, PCH has been developed and well investigated, see

[76, 74, 97]. The Hamiltonian function, as originally defined in classical mechan-

ics, acts as the total energy the system has at a certain time. At present, there are

two research fields in PCH. The first is on application of energy based Lyapunov

function method, either in control design, observer design, or both and the sec-

ond is on the realization of general nonlinear systems in PCH, see [99, 16, 62].

There are numerous applications of the PCH, such as, applications in power sys-

5



tems, [90, 91, 98], multiple generator power systems with steam valve [57], nu-

clear reactor [18, 19], mechatronic actuator modelling[41] and dynamic position-

ing of ship [70]. The work on PCH based control design of underwater vehicle

has been considered also in [7], where they considered the problem of stabiliza-

tion of classes of relative equilibria for underactuated underwater vehicle using

Kirchoff’s equations representation and neglecting hydrodynamic drag and dis-

sipative forces. In our work, we will present the PCH realization of AUV consid-

ering hydrodynamic and dissipative forces, where the dynamic equation of AUV

is based on [24], which is based on Quasi Euler Lagrange Equation (QELE). This

dynamic equation is considered more realistic because it considers the restoring

force and hydrodynamic drag.

To summarize, our approach uses the framework of PCH in which the AUV dy-

namics are transformed into PCH. Based on this transformed model, the con-

troller design, including the underactuated conditions, observer design and sep-

aration principle are developed.

1.2 Problem Formulations and Objectives

In our developments of nonlinear output feedback of AUV using PCH approach,

the following tasks are completed.

1. The representation of the AUV dynamics in PCH form.

2. The design of an initial stabilization controller based on dissipativity for-

malism.

3. The design of a robust L2 control.
6



4. The design of an adaptive robust L2 control.

5. The design of an underactuated controller.

6. The design of an observer.

7. Analysis of stability of the observer-based controller design.

1.3 Thesis Organization

The thesis is organized as follows

Chapter 2 summarizes the previous developments in nonlinear observer, model-based

control and output feedback design of AUV.

Chapter 3 contains the preliminaries materials to understand the topics of the thesis. It

contains the AUV kinematics, dynamics, properties and assumptions used

throughout the thesis. In addition, preliminary background in normed

space, stability and dissipativity theorem, as well as the AUV model prop-

erties are presented.

Chapter 4 presents the main developments of this thesis. This chapter summarizes

the previous results of IDA-PCH technique. It also contains the procedure

to transform the AUV dynamics into PCH. The L2 disturbance attenuation

in the general framework of PCH systems is then developed which consti-

tutes an extension of the previous work in the literature. Subsequently, the

adaptive scheme of L2 disturbance attenuation is presented. The proposed

technique is then applied for the AUV systems and the stability analysis

of the closed loop system and the robustness against the exogenous dis-
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turbances and parameter uncertainty are studied. The simulation results

demonstrating the performance of the controller are presented in the last

section of the chapter.

Chapter 5 proposes a design methodology to construct nonlinear trajectory tracking

control in both two and three dimensions for underactuated AUV. Although

the design is implemented for AUV that has four degrees of freedom actu-

ation forces, generally, it can be implemented as well for the one that has

only three degrees of freedom, i.e. surge, pitch and sway actuation forces

only. In addition, we present the stability analysis and robustness of the

proposed underactuated trajectory tracking control design. The simulation

results are presented to demonstrate the performance of the controller, as

well as the comparison between the proposed controller design and the un-

deractuated AUV controller design available in literature.

Chapter 6 contains the development of a nonlinear observer design for a class of PCH

systems. The separation principle is presented for the class of PCH system.

The nonlinear observer design is then applied to AUV for INS based sen-

sory measurement suite. This chapter also contains an alternative observer

design covering the case where the inertial position and angle measure-

ment are available. The proposed AUV observer is closely related to the

one proposed in [83]. The separation principle for the particular case of

AUV is presented as well. Finally, the simulation results are presented in

the last section of the chapter.

Chapter 7 presents a general conclusion and possible extension of the present work.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter covers the control design and system analysis backgrounds neces-

sary for all theoretical developments and simulation in this thesis. In section 2.2

we give an introduction on rigid body kinematics. Autonomous Underwater Ve-

hicle (AUV) dynamics are covered in section 2.3. Normed space, function space,

nonlinear stability analysis and dissipativity theorem are covered in sections 2.5,

2.6 and 2.7 respectively. The last section presents the AUV model properties that

is used in the simulations .

2.2 Vehicle Kinematics

In order to describe the motion of an AUV in Six Degrees of Freedom (DOF),

generalized coordinates are required to represent the position of center gravity
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and the attitude of the vehicle in space. These six different motion components

are defined as, surge, sway, heave, yaw, pitch, roll. Hence, the general motion of an

AUV in 6 DOF can be described by the following vectors

η =
[

η⊤
1 ,η

⊤
2

]⊤
η1 = [x, y, z]⊤ η2 = [φ, θ, ψ]⊤

ν =
[

ν⊤
1 ,ν

⊤
2

]⊤
ν1 = [u, v, w]⊤ ν2 = [p, q, r]⊤

τ =
[

τ⊤
1 , τ

⊤
2

]⊤
τ1 = [X, Y, Z]⊤ τ2 = [K,L,M ]⊤ (2.1)

Where η denotes the position and attitude vector in the earth fixed frame, ν de-

notes the body fixed linear and angular velocity vector and τ is used to describe

the forces and moments acting on the vehicle in the body fixed frame. If the avail-

able measurements are relative to the body fixed frame, using the Euler-Rotation

theorem, we can transform the measurements to the earth fixed position. The

earth fixed coordinate is obtained by integration of the earth-fixed transformed

linear velocity, which is given by

η̇1 = J1(η2)ν1 (2.2)

where J1(η2) is a translational rotation transformation matrix which is a function

of the Euler angles, roll φ, pitch θ and yaw ψ, given by

J1(η2) =













cψcθ −sψcφ + cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sφsθsψ −cψsφ + sψcφsθ

−sθ cθsφ cφcθ













(2.3)

The body fixed angular velocity vector ν2 and the Earth fixed angular velocity
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(Euler rate) vector η2 are related through a rotation transformation matrix J2(η2)

according to

η̇2 = J2(η2)ν2 (2.4)

where J2(η2) is given by

J2(η2) =













1 sφtθ cφtθ

0 cφ −sφ

0
cφ

cθ

cφ

cθ













(2.5)

Where, c(.) = cos, s(.) = sin and t(.) = tan.

2.3 AUV Dynamics

Dynamics of underwater vehicles including hydrodynamic parameter uncertain-

ties are highly nonlinear, coupled and time varying. Several models for AUV

dynamics are available in the literatures [24]. From mechanical analysis point

of view, the derivation of AUV equation motions can be done using both New-

ton’s approach (free body diagram), or Lagrange approach. Both modelling ap-

proaches lead to the same equation of motion using body fixed velocities expres-

sion given by

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (2.6)
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where

M ∈ R
6×6 =Inertia matrix including added mass.

C(ν) ∈ R
6×6 =Matrix of Coriolis and centripetal term

including added mass.

D(ν) ∈ R
6×6 =Damping matrix

g(η) ∈ R
6 =Vector of gravitational forces and moments.

τ ∈ R
6 =Control Inputs.

The inertia matrix, M is the sum of the rigid body inertia matrix MRB and the hy-

drodynamic virtual inertia (added mass) MA. As the vehicle moves underwater,

additional forces and moment coefficients have to be added to account for the ef-

fective mass of the fluid surrounding the vehicle. These coefficients are referred

to as added (virtual) mass and includes added moments of inertia and cross cou-

pling terms such as force coefficients which are generated due to the linear and

angular accelerations.

The added mass concept is usually misunderstood to be finite amount of water

surrounding the vehicle, such that the vehicle and the fluid represent a new sys-

tem with larger mass than the mass of the original system. However, as pointed

in [24], this is not true, since vehicle motion will force the whole fluid to oscillate

with different fluid particles amplitudes in phase with the harmonic motion of

the vehicle. The added mass should be considered as the total of pressure in-

duced forces and moments due to a forced harmonic motion of the body which

is proportional to the acceleration of the body. For completely immersed vehicle,

the added mass coefficients can be reasonably assumed symmetric and frequency
12



independent[24]. For some special shapes, the added mass can be obtained ana-

lytically, see [24] for more details.

Based on the kinetic energy of the fluid,TA = 1

2
νMAν

⊤, the added mass forces

and moments can be derived using Kirchhoff’s equations [88]. Then, the added

mass forces and moments can be seen as the sum of the hydrodynamic inertia

forces and moments MA and the hydrodynamic Coriolis and centripetal forces

and moments C.

Definition 2.1 (Rigid Body Inertia). [24] The rigid body inertia matrix MRB pa-

rameter is unique and satisfies

MRB = M⊤
RB; ṀRB = 0 (2.7)

where

MRB =







mI3×3 −mS(rg)

mS(rg) I0






(2.8)

Here I3×3 is the identity matrix, I0 = I⊤0 > 0 is the inertia tensor with respect to

the body fixed frame origin and S(rg) ∈ SS(3)is 3 × 3 Skew Symmetric Matrix

given by

S(λ) =













0 −λ3 λ2

λ3 0 −λ1
−λ2 λ1 0













(2.9)

Definition 2.2 (Coriolis and Centripetal Matrix). [24] Let M > 0 be a 6× 6 inertia

matrix defined by

M =







M11 M12

M21 M22






(2.10)
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The Coriolis and centripetal matrix is given by

C(ν) =







03×3 −S(M11ν1 +M12ν2)

−S(M11ν1 +M12ν2) −S(M21ν1 +M22ν2)






(2.11)

Definition 2.3 (Added Mass). MA is a 6×6 added mass inertia matrix defined as

MA ,

































Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

































(2.12)

where X, Y, Z,K,M,N are linear forces and torques applied to the vehicle. For

instance, the hydrodynamic added mass force YA along the y-axis due to an ac-

celeration u̇ in the x direction is written as

YA = Yu̇u̇, where Yu̇ ,
∂Y

∂u̇
(2.13)

In an ideal fluid, the hydrodynamics damping matrix, D, is real, non-symmetrical

and strictly positive. With rough assumptions such as a symmetric vehicle and

non-coupled motion, D can be simplified to a diagonal matrix D(ν) = diag(d1,i+

d2,i|νi|), i = 1, · · ·6 where d1 is a linear damping coefficient and d2 is a quadratic

(drag) damping coefficient. In the hydrodynamic terminology, the gravitational

and buoyant forces g(η) are called restoring forces. The gravitational forces act

through the center of gravity while the buoyant forces act through the center of
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buoyancy. Environmental disturbances due to waves, wind and ocean currents

and their mathematical expressions are discussed in details in [24].

All the above hydrodynamics parameters can be analytically expressed under

some ideal hypothesis [71] includes: the fluid has constant and uniform den-

sity, it is incompressible, inviscid, irrotational, unbounded and of infinite extent

except for the body itself. As mentioned in [4], the first hypothesis may not be al-

ways fulfilled as when navigating at sea near a river’s mouth, due to local salinity

changes, but it can be considered valid in the most common missions of Remotely

Operated Vehicles (ROV) that operate in a very limited area. On the contrary, the

fluid may always be assumed incompressible with a very high degree of accu-

racy. If the vehicle under question is open-frame with no sharp edges or lifting

surfaces and operates at slow speeds, the null viscosity and irrotational hypoth-

esis may be considered valid, while the last one regarding unboundedness may

be critical when navigating near the sea bottom, the sea surface or near any other

separating surface, but it is commonly supposed to be satisfied in standard op-

erating conditions. The resulting motion equation are coupled and nonlinear.

Coupling is due to off-diagonal added mass and drag components. However

at low speed operations, these components can be neglected which will give an

uncoupled model. This approximation relies on the following :

• the off-diagonal elements of the added mass matrix of a rigid body having

three symmetry planes are identically null,

• the off-diagonal elements of such positive definite matrix are much smaller

than their diagonal counterparts (see [24], p. 37) and

• the hydrodynamic damping coupling is negligible at low speed.
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However, for AUV operated at high speed, off diagonal added mass and drag

component cannot be neglected.

2.4 Properties and Assumptions

In this section we present several properties and assumptions that will be used

in the next chapter. First, we recall again the AUV equation of motion mentioned

before

η̇ = J(η2)ν (2.14)

Mν̇ +C(ν)ν +D(ν)ν + g(η2) = τ + J(η2)
−1b (2.15)

ḃ = −T−1b+Bn (2.16)

y = η + υn (2.17)

Notes, we have added the bias b into the equations. Biases will contain all un-

modelled disturbance and noise coming from the surrounding environment. As

mentioned in [28], biases are assumed to be slowly time varying and can be mod-

eled by first order Markov chain. T is a constant diagonal positive definite matrix

and B is a diagonal magnitude scaling of the noise n. The plant dynamics then

are transformed into inertial frame coordinates

M∗(η)ν̇e +C∗(ν,η)νe +D∗(ν,η)νe + g∗(η2) = J(η2)
−⊤τ + b (2.18)
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where (·)⊤ stands for matrix transpose and

M∗(η) , J(η2)
−⊤MJ(η2)

−1

C∗(ν,η) , J(η2)
−⊤
[

C(ν)−MJ(η2)
−1J̇(η2)

]

J(η2)
−1

D∗(η) , J(η2)
−⊤D(ν)J(η2)

−1

g∗(η2) , J(η2)
−⊤g(η2)

νe , J(η2)ν

The following properties and assumptions are assumed to be valid for the AUV

type of interest, [83],[28]

Assumption 2.1. The operating conditions of the AUV that are strictly inside the

following region

−π/2 < θmin ≤ θ ≤ θmax < π/2

−π/2 < φmin ≤ φ ≤ φmax < π/2

Property 2.1. The matrix (Ṁ∗ − 2C∗) is skew symmetric, i.e.

x⊤
[

Ṁ∗ − 2C∗
]

x = 0, ∀x ∈ R
n

In body fixed frame the Coriolis and centripetal matrix is skew symmetric as

well, i.e.,

x⊤C(ν)x = 0, ∀x ∈ R
n

Property 2.2. The Coriolis and centripetal matrix is linearly dependent on ν, i.e.
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for all η,x,y, z ∈ R
6, the following expression is true

C∗(x+ αy,η)z = C∗(x,η)z+ αC∗(y,η)z

∃ C∗
M > 0 such that, ‖C∗(x,η)‖ ≤ C∗

M‖x‖

This condition is valid as well if the Coriolis and centripetal are represented in

the body-fixed frame.

Property 2.3. The damping is dissipative, hence, we have

x⊤D∗(ν,η)x > 0 , ∀x,ν,η

Moreover, the damping can be divided into linear and nonlinear terms, i.e. D∗(ν,η) =

D∗
l (η) +D∗

nl(ν,η), which satisfies

0 < D∗
lmin ≤ D∗

l (η) ≤ D∗
lmax

0 < D∗
nlmin ≤ D∗

nl(ν,η) ≤ D∗
nlmax

Also under assumption 2.1, we have

δmD
∗
nlmin‖x‖ ≤ D∗

nlmin‖J−1(η2)x‖

The quadratic drag is considered to satisfy property 2.2 as well. This condition is

valid if the drag matrices are represented in the body-fixed frame.

Property 2.4. The mass matrix M∗(η) in inertial frame is positive symmetric, for

all angle satisfying assumption 2.1, i.e.

0 <M∗
min <M∗(η) ≤ M∗

max
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This condition is valid also if the mass is represented in the body-fixed frame M.

Property 2.5. The rotation matrix J(η2) ∈ R6 satisfies the following

1. J1(η2) is orthogonal, hence, ‖J1(η2)x‖ = ‖x‖ for all x ∈ R3

2. Under assumption 2.1,

‖J2(η2)x‖ = σJ‖x‖

‖J2(η2)
−1x‖ =

√
3‖x‖

where 0 < σJ <∞, ∀x ∈ R3 − {0}.

Assumption 2.2. The velocity vector defined in the body-fixed frame ν, is bounded

by νmax, i.e.

νmax = sup
t

‖ν(t)‖

Assumption 2.3. Both bias driven noise n and measurement noise υn are both as-

sumed to be zero mean Gaussian white noise and both n and υn are not included

in the Lyapunov analysis since they are considered negligible.

Assumption 2.4. The true value of the rotation matrix J(η2) is nearly equal to the

value of the rotation matrix as a function of the angle measurement J(y2). This

is a good assumption, since noise is assumed small and it is white Gaussian, i.e.

J(η2) ≃ J(y2)
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2.5 Normed and Function Space

In this section, we briefly review the notation and definitions of normed spaces,

Lp norms and properties of the signals. For a more complete presentation, the

reader is referred to [42] or any monograph or text book on functional analysis,

[51, 66, 73]. Let E be a linear space over the field K (typically K is R or the

complex field C). The function ρ(·), ρ : E → R+ is a norm on E if and only if:

1. x ∈ E and x 6= 0 ⇒ ρ(x) > 0, ρ(0) = 0

2. ρ(αx) = |α|ρ(x), ∀α ∈ K, ∀x ∈ E

3. ρ(x+ y) ≤ ρ(x) + ρ(y), ∀x,y ∈ E (triangle inequality)

The linear space E which has the norm operation ρ for all x ∈ E is called normed

space. We have seen the notion of normed space, next, we consider "function

space", specifically, spaces where the vector or elements of space are functions of

time. The most important spaces of this kind in control applications are the so-

called Lp spaces. In the following definition we consider a function u : R+ → Rq,

i.e. u is of the form

u =



















u1(t)

u2(t)

· · ·

uq(t)



















Definition 2.4 (The Space L2). The Space L2 consists of all piecewise continuous

function u : R+ → Rq satisfying

‖u‖L2
,

√

∫ ∞

0

[|u1|2 + |u2|2 + · · ·+ |uq|2] dt <∞ (2.19)
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The norm ‖u‖L2
defined in this equation is the so called L2 norm of the function

u.

Definition 2.5 (The Space L∞). The Space L∞ consists of all piecewise continuous

function u : R+ → Rq satisfying

‖u‖L∞
, sup

t∈R+

‖u(t)‖∞ <∞ (2.20)

The reader should not confuse the two different norms used in equation (2.20).

Indeed, the norm ‖u‖L∞
is the L∞ norm of the function u, whereas ‖u(t)‖∞ rep-

resents the infinity norm of the vector u(t) in Rq.

Both L2 and L∞ are special cases of the so called Lp spaces. Given p : 1 ≤ p <∞,

the Lp consist of all piecewise continuous functions u : R+ → Rq satisfying

‖u‖Lp
, p

√

∫ ∞

0

[|u1|p + |u2|p + · · ·+ |uq|p] dt <∞ (2.21)

2.6 Stability Theorem

Here we recall some basic stability theorems for autonomous systems which are

taken from [64]. For more details, the readers are referred to standard nonlinear

control books such as [64],[31],[42].

Theorem 2.1 (Lyapunov Stability Theorem). Let x = 0 be an equilibrium point of

ẋ = f(x), f : D → Rn and let V : D → R be a continuously differentiable function

such that

1. V (0) = 0
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2. V (x) > 0,x ∈ D − {0}

3. V̇ (x) ≤ 0,x ∈ D − {0}

thus x = 0 is Lyapunov stable.

Theorem 2.2 (Asymptotic Stability Theorem). Under the conditions of theorem 2.1,

if V (·) is such that

1. V (0) = 0

2. V (x) > 0,x ∈ D − {0}

3. V̇ (x) < 0,x ∈ D − {0}

thus x = 0 is Asymptotically stable.

Definition 2.6 (Radially unbounded function). Let V : D → R be a continuously

differentiable function. Then V (x) is said to be radially unbounded if

V (x) → ∞ as‖x‖ → ∞ (2.22)

Theorem 2.3 (Global Asymptotic Stability Theorem). In addition to the conditions

of theorem 2.2, if V (x) is radially unbounded, then x = 0 is globally asymptotically

stable.

Theorem 2.4 (Exponential Stability Theorem). Suppose that all conditions of theorem

2.2 are satisfied and in addition assume that there exist positive constantsK1, K2, K3 and

p such that

K1‖x‖p ≤ V (x) ≤ K2‖x‖p

V̇ (x) ≤ −K3‖x‖p
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Then the origin is exponentially stable. Moreover, if the conditions hold globally, the

x = 0 is globally exponentially stable.

Definition 2.7 (Invariant Set). A set M is said to be an invariant set with respect

to the dynamical system ẋ = f(x), f : D → Rn, if

x(0) ∈ M ⇒ x(t) ∈ M, ∀t ∈ R
+

Definition 2.8 (Limit Set). Let x(t) be a trajectory of the dynamical system ẋ =

f(x), f : D → Rn. The set N is called the limit set (or positive limit set) of x(t) if

for any p ∈ N there exist a sequence of times {tn} ∈ [0,∞} such that

x(tn) → p as tn → ∞

or equivalently

lim
n→∞

‖x(tn)− p‖ = 0

Theorem 2.5 (Invariant Set Stability Theorem). Let x = 0 be an equilibrium point

of ẋ = f(x), f : D → Rn and let V : D → R be a continuously differentiable function

such that

1. V (0) = 0

2. V (x) > 0,x ∈ D − {0}

3. V̇ (x) ≤ 0,x ∈ D − {0}

4. V̇ (x) does not vanish identically along any trajectory in R, other than the equilib-

rium point

thus x = 0 is asymptotically stable.
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2.7 Dissipativity Theory

In this section, we describe a basic idea of dissipativity, which is summarized

from [15]. Dissipativity theory gives a framework for the design and analysis of

control systems using an input-output description based on energy-related con-

siderations. Before introducing precise mathematical definitions, we will refer

to such input-output properties as dissipative properties Systems with dissipa-

tive properties will be termed dissipative systems. When modeling dissipative

systems it may be useful to develop the state-space or input-output models so

that they reflect the dissipativity of the system and thereby ensure that the dis-

sipativity of the model is invariant with respect to model parameters and to the

mathematical representation used in the model.

Models for use in controller design and analysis are usually derived from the

basic laws of physics (electrical systems, dynamics, thermodynamics). Then a

controller can be designed based on these models. An important problem in

controller design is the issue of robustness which relates to how the closed loop

system will perform when the physical system differs either in structure or in

parameters from the design model. For a system where the basic laws of physics

imply dissipative properties, it makes sense to define the model so that it pos-

sesses the same dissipative properties regardless of the numerical values of the

physical parameters. If a controller is designed so that stability relies on the dissi-

pative properties only, the closed-loop system will be stable whatever the values

of the physical parameters. Even a change of the system’s order will be tolerated

provided it does not destroy the dissipativity. Parallel interconnections and feed-

back interconnections of dissipative systems inherit the dissipative properties of

24



the connected subsystems and this simplifies the analysis by the manipulation of

block diagrams. It also provides guidelines on how to design control systems.

There is another aspect of dissipativity which is very useful in practical appli-

cations. It turns out that dissipativity considerations are helpful as a guide for

the choice of a suitable variable for output feedback. This is helpful for selecting

where to place sensors for feedback control.

Example 2.1 (System with Mass Spring and Damper). [15] Consider a one-dimensional

simple mechanical system with a mass, a spring and a damper. The equation of

motion is

mẍ(t) +Dẋ(t) +Kx(t) = F (t), x(0) = x0, x(0) = x0

where m is the mass, D is the damper constant, K is the spring stiffness, x is the

position of the mass and F is the force acting on the mass. The energy of the

system is

V (x, ẋ) =
1

2
mẋ2 +

1

2
Kx2

The time derivative of the energy when the system moves is

d

dt
V (x, ẋ) = mẍẋ+Kẋx

Inserting the equation of motion we get

d

dt
V (x, ẋ) = F (t)ẋ(t)−Dẋ2(t)

Integration of this equation from t = 0 to t = T gives

V [x(T ), x(T )] = V [x(0), x(0)] +

∫ T

0

F (t)ẋ(t)dt−
∫ T

0

Dẋ2(t)dt
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This means that the energy at time t = T is the initial energy plus the energy

supplied to the system by the control force F minus the energy dissipated by the

damper. Note that if the input force F is zero and if there is no damping, then

the energy V (·) of the system is constant. Here D ≥ 0 and V [x(0), x(0)] > 0 and

it follows that the integral of the force F and the velocity v = ẋ satisfies

∫ T

0

F (t)v(t)dt ≥ −V [x(0), x(0)] (2.23)

The physical interpretation of this inequality is seen from the equivalent inequal-

ity

−
∫ T

0

F (t)v(t)dt ≤ V [x(0), x(0)] (2.24)

which shows that the energy −
∫ T

0
F (t)x(t)dt that can be extracted from ÌĞ the

system is less than or equal to the initial energy stored in the system. We will

show later that (2.23) implies that the system with input F and output v is pas-

sive. The Laplace transform of the equation of motion is

(

ms2 +Ds+K
)

x(s) = F (s)

which leads to the transfer function

v

F
=

s

ms2 +Ds+K

It is seen that the transfer function is stable and that for s = jω the phase of the

transfer function has absolute value less or equal to 90◦ , that is,

∣

∣

∣
∠
v

F
(jω)

∣

∣

∣
≤ 90◦ ⇒ Re

[ v

F
(jω)

]

≥ 0 (2.25)
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for all ω ∈ [−∞,+∞]. We will see in the following that these properties of the

transfer function are consequences of the condition (2.23) and that they are im-

portant in controller design.

There are several definitions of dissipativity that will be used later on the de-

velopment. For our set of definitions, we consider a causal nonlinear system

(Σ) : u(t) → y(t);u(t) ∈ Lpe,y(t) ∈ Lpe , represented by the following input-

affine state-space representation :

Σ































ẋ = f(x) + g(x)u

y = h(x) + l(x)u

x(0) = x0

(2.26)

Let us call w(t) = w(u(t),y(t)) the Supply Rate and be such that for all admissible

u(t) and x(0) and for all t ∈ R+

∫ t

0

|w(u(s),y(s))|ds < +∞ (2.27)

Then the following the definitions are given

Definition 2.9 (Dissipative System). The system (Σ) is said to be dissipative if

there exists a so-called storage function V (x) ≥ 0 such that the following dissi-

pation inequality holds:

V (x(t)) ≤ V (x(0)) +

∫ t

0

w(u(s),y(s))ds (2.28)

along all possible trajectories of (Σ)starting at x(0), for all x(0), t ≥ 0 (said differ-

ently: for all admissible controllers u(·) that drive the state from x(0) to x(0) on
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the interval [0, t]).

Definition 2.10. The system (Σ) is dissipative with respect to the supply rate

w(u(t),y(t)) if for all admissible u(·) and all t1 ≥ t0 one has

∫ t1

t0

w(u(s),y(s))ds ≥ 0 (2.29)

with x(t0) = 0 and along trajectories of (Σ).

Definition 2.11. The system (Σ) is said dissipative with respect to the supply rate

w(u(t),y(t)) if there exists a locally bounded non-negative function V : Rn → R

such that

V (x) ≥ sup
t≥0,u∈U

{

V (x)−
∫ t

0

w(u(s),y(s))ds : x(0) = x

}

(2.30)

Definition 2.12 (Available Storage). The available storage Va(·) of the system (Σ)

is given by

0 ≤ Va(x) = sup
x=x0,u,t≥0

−
{
∫ t

0

w(u(s),y(s))ds

}

(2.31)

where Va(·) is the maximum amount of energy which can be extracted from the

system with initial state x = x0.

2.8 Introduction to MARES

The AUV model selected in this thesis for simulation purposes is a torpedo shaped

1.5m long AUV, called Modular Autonomous Robot for Environment Sampling

(MARES) [21, 22, 23], see figure 2.1. MARES can dive up to 100m deep and unlike

similar-sized systems has vertical thrusters to allow for purely vertical motion in
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Figure 2.1: MARES vehicle

the water column. Forward velocity can be independently defined, from 0 to

about 1.5 m/s. MARES is selected since it has an affine input behaviour that

makes the application of previous development straight forward. The following

tables list some of MARES properties that are used in simulations. Notice that,

MARES has decoupled quadratic drag without linear drag. The hydrodynamic

drag matrix of MARES is given by

D(ν) , −

































Xu|u||u| 0 0 0 Xq|q||q| 0

0 Yv|v||v| 0 Yp|p||p| 0 Yr|r||r|

0 0 Zw|w||w| 0 Zq|q||q| 0

0 Kv|v||v| 0 Kp|p||p| 0 0

Mu|u||u| 0 Mw|w||w| 0 Mq|q||q| 0

0 Nv|v||v| 0 0 0 Nr|r||r|

































(2.32)

From table 2.3,2.4 and 2.5, we can see that MARES inertia matrix and hydrody-

namic damping are symmetric.
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Properties Value
Length 1.5 m
Diameter 20 cm
Weight in air 32 kg
Depth rating 100 m
Propulsion 2 horizontal + 2 vertical thrusters
Horizontal velocity 0-1.5 m/s, variable
Energy Li-Ion batteries, 600 Wh
Autonomy/Range about 10 hrs / 40 km

Table 2.1: MARES general characteristic

Properties Value [m] Description
[xcg, ycg, zcg] [0, 0, 0] Center of gravity
[xcb, ycb, zcb] [0, 0, 4.40.10−3] Center of buoyancy

Table 2.2: MARES location of center of gravity and buoyancy

Properties Value [kg.m2]
Ixx 1.55.10−1

Iyy 4.73.100

Izz 4.73.100

Table 2.3: MARES moment inertia

Properties Value Unit
Xu̇ −1.74.100 kg
Yv̇ −4.28.101 kg
Zẇ −4.12.101 kg
Kṗ −8.61.10−3 kg.m2

Mq̇ −6.07.100 kg.m2

Nṙ −6.40.100 kg.m2

Xq̇ −3.05.10−2 kg.m
Yṗ 3.05.10−2 kg.m
Kv̇ 3.05.10−2 kg.m
Mu̇ −3.05.10−2 kg.m
Yṙ 1.13.10−1 kg.m
Zq̇ −1.23.10−1 kg.m
Mẇ −1.23.10−1 kg.m
Nv̇ 1.13.10−1 kg.m

Table 2.4: MARES added mass
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Properties Value Unit
Xu|u| −4.05.100 kg.m−1

Yv|v| −1.16.102 kg.m−1

Zw|w| −1.16.101 kg.m−1

Kp|p| −7.02.10−4 kg.m2

Mq|q| −1.56.101 kg.m2

Nr|r| −1.25.101 kg.m2

Xq|q| −4.84.10−2 kg.m
Yp|p| −4.84.10−2 kg.m
Kv|v| −2.11.10−1 kg
Mu|u| 2.11.10−2 kg
Yr|r| 1.83.100 kg.m
Zq|q| −5.95.100 kg.m
Mw|w| −8.26.100 kg
Nv|v| 2.13.100 kg

Table 2.5: MARES drag coefficient

2.9 Conclusions

In this chapter, we have covered several basic definitions and preliminaries used

in the thesis. Next chapter will cover the literature review for AUV control and

observer designs.
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Chapter 3

Literature Review

3.1 Introduction

The research activities in the Autonomous Underwater Vehicle (AUV) area are

generally covering modelling, observer design, control design as well as instru-

mentation and sensing. The navigation, guidance and control problem contains

several challenging issues mainly imposed by the vehicle working environment.

In this chapter, we aim to give a brief review on each of these aspects and present

the different approaches. We will review nonlinear observer design, model-based

control design and underactuated control design for AUVs. The general archi-

tecture of an AUV control system can be seen in the figure 3.1.
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Figure 3.1: Observer, controller and navigation design for under actuated AUV

3.2 Nonlinear Observer Design of AUV

An observer filters available measurements to provide online estimates of the

states within a system. Filtering and state estimation are important tasks in AUV

control systems. In general, either only inertial position and angle are measured

by means of beacon and gyro, or if using Doppler Velocity/Inertial Measurement

Unit (IMU), only relative velocities and accelerations are measured. But unfor-

tunately, all of these are required at the same time for designing control law, in

addition with stationary (or slowly) varying disturbances due to wind, ocean

current and nonlinear wave effects. Therefore, estimates of these signals must be

computed from the measured position and heading of the vehicle through a state

observer. Furthermore, in case of temporary sensor failure (dead-reckoning), an

observer must be able to adequately predict the motion of the ship such that the

control operation can continue for a period of time.

To date, the development and implementation of model-based state estimators

for underwater vehicle navigation has primarily focused on applying the Kalman

Filter (KF), Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) to a

kinematic model. Additional work has investigated using Simultaneous Local-
33



ization and Mapping (SLAM), trajectory-based observers [38]. Ribas et al. [87],

reported the experimental implementation of a dynamic model-based EKF. An

extended discussion on the application of state estimators to underwater vehi-

cle navigation is presented in [44]. In [45], decoupled single DOF AUV dynamic

observers are proposed employing an experimentally validated vehicle model,

whose parameters can be adaptively identified, to estimate the full state of the

vehicle. Recently, [39] used dual UKF approach to deal with the simultaneous

problem of state estimation and identification of small ROV. Although it is only

capable to capture 4 Degrees of Freedom (DOF) decoupled movements of the ve-

hicle, it is able to estimate the inertia and the damping parameters adaptively at

the same time with the state estimations.

In [1], an observer-controller scheme is proposed for an Euler-Lagrange system

not including the Coriolis and centripetal term, but including a nonlinear damp-

ing term. The author assumed that the nonlinear damping term satisfies the

monotone damping property, which in general is not satisfied in marine sys-

tems. For appropriate choices of the output injection terms, the error dynamics

was shown to be globally uniformly asymptotically stable.

In [94], another observer-controller scheme is proposed for a different class of

Euler-Lagrange systems. It is assumed that only linear damping is included and

a rather special form of the Coriolis and centripetal term is considered there.

Notice that in general in marine systems the Coriolis and centripetal term is not

of this form.

In underwater applications, the ocean current has severe influence on the vehicle

performance. The current influence is difficult to predict even though measure-

ments of both vehicle and water velocities are available. Therefore, a common
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approach is to model the disturbance as a constant, or slowly varying bias, see

[105], [26]. A drawback of this method is that the hydrodynamic properties of the

vehicle are not properly accounted for when modeling the current loads. Other

reported methods involve using kinematics and filtering techniques to obtain an

estimate of the current velocity. Examples of this can be seen in, e.g., [5], [3] and

[10], in which velocity feedback of some kind is required.

In [85], a modeling approach first introduced in [82] and more thoroughly de-

scribed in [84] are employed. A 3 DOF model in surge, sway and heave is derived

to serve as a foundation for current observer design. This is a current-induced

vessel model that can be interpreted as a third-order filter with constants ob-

tained based on the vehicle parameters. The goal is to provide an estimate of the

current velocity and thereby estimate the influence of the current loads on the

vehicle. See figure 3.2

Figure 3.2: Cascaded nonlinear observer design of AUV
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With this approach, the key hydrodynamic properties are taken into account

when estimating the effect of the environmental disturbances, since the estimated

current velocity is explicitly used in the calculation of the nonlinear hydrody-

namic damping and Coriolis forces. Furthermore, since only the orientation and

in particular the position, which can be affected by severe noise, are measured, a

higher order model is preferred in order to avoid large jumps and oscillations in

the current estimate. Successful experimental results of this observer concept can

be found in [86] which report the design of a three DOF current-induced vessel

model coworking with a complete nonlinear six DOF vehicle model. An output

controller has not yet been tested with the observers in [86].

The problem of nonlinear observer design for AUV is in some aspect, has sim-

ilarity with the design of nonlinear observer for dynamic positioning system.

The first appearance for nonlinear observer design using linear dynamic error

has been long time proposed by Fossen, [28]. Later, this work was extended in

[35] for weather position control optimization. The problem of output feedback

design for dynamic positioning systems using acceleration feedback have been

proposed in [58].

Up to now, observer and observer-controller designs are mainly based on Lya-

punov and passivity theories. A recent theory, which might be useful for ob-

server design, is contraction theory [59]. The contraction theory basically is the

extension of Krasovskii stability criterion for autonomous nonlinear systems. In

[37], the contraction theory was applied for the design of Uniformly Globally

Exponentially Stable (UGES) nonlinear observers for ships. The observer copies

the ship dynamics and takes the earth-fixed measurements as observer feedback.

Hence, the observer is analysed using contraction theory and the same result as
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in Fosen et.al work on the Lyapunov-based nonlinear controller [27], UGES of

the observer is obtained.

A region of the state space is called a contraction region with respect to a uni-

formly positive definite matrix Ψ(x, t) = ΘT (x, t)Θ(x, t) where Θ(x, t) stands for

a differential coordinate transformation matrix, if equivalently

F =

(

Θ̇ +Θ
∂

∂x

)

Θ−1

or
(

∂

∂x

)T

Ψ + Ψ̇+Ψ
∂

∂x

are negative definite. In [37], the authors claim that when using contraction

theory, the designer gets a clearer insight of what is being accomplished. Lya-

punov based techniques start often with "define a candidate Lyapunov func-

tion......" without any further information regarding the interpretability of the

chosen function. The authors claim is that by making use of transformation ma-

trices, the designer gets a clearer insight of what has been done in geometrical

terms. In particular, the uniform definiteness of the Jacobian imposed by con-

traction theory simply translates into an angle between the relative displacement

δx and the relative virtual velocity δẋ. This angle norm must be greater than 90

degrees (such an interpretation still holds for linear systems where δx and δẋ can

be replaced by x and ẋ).

Furthermore, the contraction analysis also gives a smooth transition from linear-

state space control designs to nonlinear ones and thus may be of interest for en-

gineering and educating purposes. In addition, [37] claims that studying the

possibly state and time-dependent eigenvalues of the Jacobian also helps to esti-
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mate of the rate of decay. The authors claim that, Lyapunov functions lack these

properties, mainly because of the underlying energy concept, which is less used

in linear control theory.

For wider literature survey on Nonlinear Observer design of AUV, readers are

referred to [100],[45].

3.3 Model Based Feedback Control for AUV

There are some reported results on Model Based Feedback Control (MBFC) of

AUVs in the literature. In [32], a state feedback controller is proposed for track-

ing of the NPS ARIES AUV. The NPS ARIES is an underactuated slender-body

AUV intended for orientation tracking while maintaining some forward speed.

This kind of streamlined AUVs should be distinguished from open box-framed

vehicles. These are low-speed vehicles, usually fully actuated and with hydro-

dynamic and stability properties that may vary significantly. The model is lin-

earized around a constant forward velocity and decoupled into three separate

systems: surge, horizontal steering (sway and yaw) and the diving system (heave

and pitch). Sliding-mode controllers and observers [17] are proposed to solve the

tracking problem. Experimental results, reported in [63], demonstrate successful

controller performance.

In [96] and [105], velocity measurements are available for feedback. Successful

tracking results of a MBFC derived using the back-stepping theory is presented

in [2]. The vehicle, an open-frame hovercraft, is described by a three DOF hori-

zontal model without nonlinear damping. These results have in common that the
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velocity is available for feedback and all, except [2], assume that the destabilizing

Coriolis forces are dominated by the hydrodynamic damping. Comparing with

low-speed applications for ships, e.g., dynamic positioning [60], this is a common

approach for control plant modeling. Moreover, the hydrodynamic properties of

a box shaped vehicle indicate that the damping is dominant and that the hydro-

dynamic Coriolis forces are negligible. However, for slender-body vehicles with

some forward speed, this assumption is not realistic.

Recent work presented in [85] shows the success application of the model based

output feedback design for torpedo shaped AUV. The AUV has relatively small

weight compared to the nominal speed which implies that the dynamics are

speed dominant and that the nonlinear characteristics of the hydrodynamics be-

come decisive. Moreover it does not carry any velocity or IMU. The available

measurements are only beacon based position and attitude of the vehicle from a

gyro/inclinometer.

Some higher class vehicles may have speed measurements obtained by using

Doppler Velocity Log (DVL) [43] or integrating accelerations measured by the

IMU. However, the DVL can only generate accurate velocity measurements pro-

vided that the distance to the seafloor is within a certain boundary. Furthermore,

IMUs are subject to drift in the derived velocity when integrating faulty acceler-

ation measurements.
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3.4 Underactuated Control of AUV

Control design of fully-actuated AUV have been offered extensively in the litera-

ture. In such studies, the design assumes that the vehicle has complete actuation

forces, allowing six DOF movement. In real implementations, similar to many

other mechanical devices, AUV often has less actuation forces than needed to

have a total degrees of freedom movements and control for each observed out-

put. Systems having such characteristics are called underactuated systems. In ad-

dition, even in the case of a fully actuated system, unplanned failure may reduce

the number of actuators and change the structure of the system to an underac-

tuated one. Irrespective of the system being originally underactuated or losing

actuation due to a failure, such situation may lead to poor position tracking and

instability.

In the last two decades, many underactuated designs have been proposed in the

literature for general mechanical devices. Most of the work on the underactu-

ated designs are formulated within the Lagrangian mechanics framework, see

[9, 12, 13]. In particular, [54, 53, 55, 52, 56] proposed an underactuated design for

underwater vehicle using the Lagrangian formalism. A state-feedback controller

guaranteeing asymptotic stability of the equilibrium point has been studied by

[80]. In [81], a time-varying control scheme to achieve global exponential stabi-

lization of the equilibrium was proposed.

Recently, [7] extended the work of [56] and [101] in stabilizing control of the un-

deractuated underwater vehicle by considering the problem of stabilization of

classes of relative equilibria associated with the underactuated Kirchhoff’s equa-

tions written in Port Controlled Hamiltonian (PCH) formalism. The proposed
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controller has been designed using passivity theory. However, the study in [7]

neglected hydrodynamic drag and dissipative forces.

There are three different problems in AUV motion control. The first problem is

related to point stabilization, which is concerned with steering the vehicle to a

single desired position and attitude. The second is the trajectory tracking prob-

lem which requires a vehicle to track a time-described path curvature. The last

problem is related to path following control which aims at forcing a vehicle to

reduce tracking error ideally to zero and makes it follow a desired spatial path

without any specific time-based performance specifications. Based on a previous

work [20], [50] considered a kinematic model with three degrees of freedom for

AUV to design a nonlinear control for path tracking.

The work in [2] and its further development in [3] address the issue of posi-

tion tracking for general underactuated autonomous vehicle for both two and

three dimensions. The proposed control algorithms are based on integrator back-

stepping (see for instance design[49],[89]). Although the controller was success-

fully implemented in a particular type of AUV, the work assumes that the vehi-

cle has its center of gravity coinciding with the origin of the body frame and the

added mass related to translational motion and added mass related to rotational

motion are decoupled. In addition, the authors assume that the damping force

acting for translational motion is an affine function to the angular body velocity .

This assumption restricts the class of AUV to the one characterized by the decou-

pled quadratic drag . Although this assumption can be considered valid for most

slender type AUV at low speed, the coupled term cannot be neglected at higher

speed. In addition, the desired trajectory has to have a smooth third derivative,

which restricts the trajectory selections. The designed control also suffers from
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the cancellation of non-linearities coming from the Coriolis and drag forces and

computation of the derivative of restoring force and drag forces where the possi-

bility of discontinuity are present.

Recently, [68] assumes that both buoyancy and gravitational forces are equal to

zero or cancel each other in the nonactuated body frame. Such assumption is a

consequence of having the center of gravity lying below the center of buoyancy.

Such condition is necessary for a stable submersible body. Further more, [68]

assumes that the damping terms of the nonactuated part is sufficiently larger

than their inertia when both are presented in the inertial frame. In addition,

the controller design was carried without considering the nonactuated roll angle

dynamics based on the assumption that the restoring effects allow to self-stabilize

effectively.

In this section we briefly present the work of [2, 3]. Later on, we will tackle

several issues of their design in our underactuated AUV designs. We will modify

the notations in [2, 3] development to follow our previous notations so the reader

can easily grasp the meaning. Consider the following kinematic relations

η̇1 = J1(η2)ν1 (3.1)

J̇1(η2) = J1(η2)S(ν2) (3.2)

Here, underactuated vehicles are considered having dynamic equations of mo-

tion of the following form

M1ν̇1 = −S(ν2)M1ν1 + f1(ν1,η1,η2) + g1u1 (3.3)

M2ν̇2 = −S(ν1)M1ν1 − S(ν2)M2ν2 + f2(ν1,ν2,η1,η2) +G2u2 (3.4)
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Where M1,M2 ∈ R
3×3 are top left and lower right block of total inertia matrix M,

u1 ∈ R,u2 ∈ R3 denote the control inputs, which act upon the system through a

constant nonzero vector g1 ∈ R3 and a constant nonsingular matrix G2 ∈ R3×3, re-

spectively; the terms −S(ν2)M1ν1 in (3.3) and the −S(ν1)M1ν1 −S(ν2)M2ν2 ma-

trix in (3.4) are the Coriolis terms and the functions f1, f2 ∈ C1,represent all the re-

maining forces and torques acting on the body. After defining the dynamic equa-

tions, Control-Lyapunov functions are introduced iteratively borrowing from the

techniques of backstepping [49].

1. Coordinate Transformation : Consider the global diffeomorphic coordinate

transformation

e , J⊤
1 (η1 − η1,d) (3.5)

which expresses the tracking error η1 − η1,din the body-fixed frame. The

dynamic equation of the body-fixed tracking error is given by

ė = −S(ν2)e + ν1 − J⊤
1 η̇1,d (3.6)

2. Convergence of e : Define the control-Lyapunov function

V1 =
1

2
e⊤e (3.7)

and computing its time derivative to obtain

V̇1 = e⊤
[

ν1 − J⊤
1 η̇1,d

]

(3.8)

ν1 is regarded as a virtual control that one would use to make V̇1 negative.

This could be achieved, by setting ν1 equal to J⊤
1 η̇1,d − keM

−1
1 e, for some

43



positive constant ke. To accomplish this, we introduce the error variable

z1 = ν1 − J⊤
1 η̇1,d + keM

−1
1 e (3.9)

that we would like to drive to zero and re-write (3.8) as

V̇1 = −e⊤keM
−1
1 e + e⊤z1 (3.10)

3. Backstepping for z1: After straightforward algebraic manipulations, the dy-

namic equation of the error z1 can be written as

M1ż1 = S(M1z1) + Γ(·) + g1u1 + h(·) (3.11)

where

Γ , S(M1J
⊤
1 η̇1,d)−M1S(J

⊤
1 η̇1,d)

h = f1 −M1J
⊤
1 η̈1,d + kez1 − k2eM

−1
1 e

It turns out that it will not always be possible to drive z1 to zero. We need

to explore the coupling of the translation dynamics with the rotational in-

puts.To this effect, we will drive z1 to a constant design vector δ ∈ R
3. To

achieve this, we define ϕ , z1 − δ as new error variable that will be driven

to zero and consider the augmented control-Lyapunov function

V2 = V1 +
1

2
ϕ⊤M2

1ϕ (3.12)

44



The time derivative of V2 can be written as

V̇2 = −kee⊤M−1
1 e + e⊤δ +ϕ⊤ (M1B(·)ζ +M1h(·) + e) (3.13)

where

B ,

[

g1 S(M1δ) + Γ

]

(3.14)

ζ , col(u1,ν2) ∈ R
4 (3.15)

It can be shown [3] that B can always be made full-rank by choosing suit-

able δ. One can now regard ζ as a virtual control (actually its first com-

ponent is already a "real" control) that one would like to use to make V̇2

negative. This could be achieved by setting ζ equal to

α , B⊤
(

BB⊤
)−1 [−h−M−1

1 e−M−1
1 Kϕϕ

]

(3.16)

where Kϕ ∈ R3×3 is a symmetric positive definite matrix. To accomplish

this we set u1 to be equal to the first entry of α,

u1 =

[

1 01×3

]

α (3.17)

and introduce the error variable

z2 , ν2 −
[

03×1 I3

]

α (3.18)

that one would like to set to zero. Now, (3.13) can be rewritten with u1 given
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by (3.17) as

V̇2 = −kee⊤M−1
1 e+ e⊤δ − ϕ⊤Kϕϕ+−ϕ⊤M1 [S(M1δ) + Γ] z2 (3.19)

4. Backstepping for z2: Now consider a thrid control Lyapunov function given

by

V3 , V2 +
1

2
z⊤2 M2z2 (3.20)

Computing its time derivative, one obtains

V̇3 = −kee⊤M−1
1 e+ e⊤δ − ϕ⊤Kϕϕ+ z⊤2 (G2u2 + β) (3.21)

where

β = −S(ν1)M1ν1 −S(ν2)M2ν2 + f2 −
[

1 01×3

]

α̇+
(

Γ⊤ − S(M1δ)
)

M1ϕ

If u2 is chosen as

u2 = −G−1
2 β −Kz2z2 (3.22)

where Kz2 ∈ R3×3 is a symmetric positive definite matrix, the time deriva-

tive of V3 becomes

V̇3 = −kee⊤M−1
1 e+ e⊤δ − ϕ⊤Kϕϕ− z⊤2 Kz2z2 (3.23)

Note that although V̇3 is not necessarily always negative, this will be suf-

ficient to prove boundedness and convergence to a neighbourhood of the

origin.
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3.5 Conclusions

In this chapter we have reviewed some main results in nonlinear observer of un-

der water vehicle, model based control design and the underactuated control of

AUV. We will complete the literature review by adding at the beginning of every

chapter an additional introduction that also contains some literature regarding

the proposed design. We think this arrangement is more effective to keep the

reading smooth.

47



Chapter 4

Controller Design

4.1 Introduction

In this chapter, first we will transform the Autonomous Underwater Vehicle

(AUV) dynamic into Port Controlled Hamiltonian (PCH) form. Next, we will

develop a general passivity-based control design for PCH. Based on this con-

troller, an L2 disturbance attenuation controller is presented. Furthermore, the

adaptive scheme of the developed L2 disturbance attenuation controller is elab-

orated. The three proposed control design are then simulated using the Modular

Autonomous Robot for Environment Sampling (MARES) AUV model to evalu-

ate their performance. We also present the analysis of stability in the presence of

both parameter uncertainty and exogenous disturbance. In addition, we estimate

the rate of convergence of the state dynamics to equilibrium. In the next chapter,

we will address the case of the underactuated AUV within the PCH framework.

The contribution of this chapter are
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1. Representation of AUV dynamic in PCH formalism.

2. Extension of Shen’s et.al work [91] in the design of an L2 disturbances at-

tenuation controller in the PCH form.

3. Design of a passivity-based controller for AUV in PCH form.

4. Analysis of the AUV’s PCH system stability

4.2 Port Controlled Hamiltonian of Autonomous Un-

derwater Vehicle

The objective of this section is to represent AUV equations of motion in the PCH

realization. To do this, we transform the second order Lagrangian system into

Hamiltonian using Legendre transformation. The motivation stems from the fact

that, constructing the dynamic equations in PCH offers many advantages, such

as

1. The Hamiltonian function in many systems (not only mechanical ones) can

act as a Lyapunov function or energy storage function crucial in dissipativ-

ity formalism.

2. Representing the nonlinear dynamics of a system in the PCH form provides

a convenient structure that can be exploited when dealing with L2 distur-

bance rejection. This is a major benefit compared to the usual practice in

solving disturbance rejection problems where it uses Hamilton Jacobi Issac

(HJI) inequality which is recognized as a bottle neck in nonlinear optimiza-

tion problems. Despite the fact that many studies already proposed several
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approaches to overcome the difficulty of solving HJI in several special cases,

finding a general solution is still an open problems. As will be seen in sec-

tion 4.4. Using straight forward manipulation of PCH structure will avoid

computing the HJI [102, 65].

We begin our formulation with the definition of PCH form and then show the

transformation of the AUV dynamics given in the previous chapter, into PCH

form. In general, the PCH form with dissipation can be described by

ẋ = [J (x)−R(x)]∇H(x) +G(x)u

y = G(x)⊤∇H(x) (4.1)

where the state is x(t) ∈ D ⊆ Rn, and D is an open set. The input is u(t) ∈ U ⊆ Rm

and the output is y(t) ∈ Y ⊆ Rl. The Hamiltonian function is given by H : D →

R. The function J (x) = −J ⊤(x) an antisymmetric interconnection matrix, and

the damping matrix R(x) : D → Sn, are both semi positive definite in D, i.e.

R(x) ≥ 0, ∀x ∈ D. It is assumed also that the function [J (x)−R(x)]∇H(x) is

Lipschitz continuous in D. G : D → Rm×n is the input affine matrix.

Recall from the previous chapter, eq. (2.6), that ,

ν̇ = M−1
[

τ − g(η)− (C(ν) +D(ν))ν + J−1(η)b
]

ν̇ = M−1
[

τ − g(η)− D̄(ν)ν + J−1(η)b
]

(4.2)

η̇ = J(η) (4.3)

50



Let H be the Hamiltonian and p the momentum of the AUV, such that H =

1

2
ν⊤Mν, p ≡ Mν and q ≡ η. The dynamics of the system can be rewritten as a

function of H and p as follows

∂H
∂q

= 01×6

∂H
∂p

= ν⊤

∇H(x) =

[

∂H
∂q

∂H
∂p

]⊤

Where x =
[

η⊤p⊤
]⊤ is the new state vector. The AUV equations of motion can

be transformed in the following PCH form







η̇

ṗ






=







0 J

−J⊤ −D̄






∇H(x) +







0

I







[

τ − g(η) + J−1(η)b
]

J (x) ≡







0 J

−J⊤ 0







R(x) ≡







0 0

0 D̄







G =







0

I






(4.4)

with u = τ and slowly varying disturbance b, which represents the lumped

term from other ocean current and other external non-control forces. In the next

section, we will develop the stabilizing controller of the AUV’s PCH system (4.4).

The essence of our contribution in the control design is the idea that the design
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of an L2 disturbance rejection controller can be constructed as an additional term

into the stabilizing controller that shapes the Hamiltonian.

4.3 Stabilizing Controller Through Reshaping of The

Hamiltonian

The design of the proposed stabilizing controller exploits the advantages of hav-

ing the system described in PCH structure. In addition, the approach can be seen

as a passivation of the open loop PCH system. Indeed, the interconnection and

the damping matrix functions of the open loop system is shaped to preserve the

PCH structure of the closed loop system. Moreover, passivity-based control de-

sign for PCH systems is extremely appealing for the control action has a clear

physical energy interpretation which can considerably simplify the controller’s

implementation.

To proceed with the formulation of the stabilizing controller [31], consider the

PCH system given by (4.1) and let φ : D → U and define u(t) = φ(x(t)), t ≥ 0,

such that the closed loop system has the form

ẋ = [J (x)−R(x)]∇H(x) +G(x)φ(x(t)

Theorem 4.1 states that under proper selection of φ(x), the closed loop system

can be rewritten in the following PCH form

ẋ = [Js(x)−Rs(x)]∇Hs(x) (4.5)
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where Hs : D → U is a shaped Hamiltonian function for the closed loop system

(4.5), Js : D → Rn×n is a shaped interconnection matrix function for the closed

loop system with Js(x) = −J ⊤
s (x), and Rs(x) : D → Sn is a shaped dissipation

matrix function for the closed loop system and satisfies Rs(x) ≥ 0, x ∈ D.

Theorem 4.1. Consider the nonlinear PCH given by (4.1). Assume there exists a func-

tion φ : D → U ,Hs,Hc : D → R,Js,Ja : D → Rn×n,Rs,Ra : D → Rn×n, such that

Hs(x) = H(x) +Hc(x) is continuously differentiable, Js = Ja + J = −J ⊤
s ,Rs(x) =

R(x) +Ra(x),Rs = R⊤
s ≥ 0,x ∈ D and let the equilibrium solution x(t) ≡ xe of the

closed loop system eq (4.5) and

∂Hc

∂xe

= −∂H
∂xe

(4.6)

∂2Hc

∂2xe

> −∂2H
∂2xe

(4.7)

[Js(x)−Rs(x)]∇Hc(x) = − [Ja(x)−Ra(x)]∇H(x)

+G(x)φ(x) (4.8)

Then the equilibrium point xe of closed loop system (4.5) is Lyapunov stable. If in ad-

dition, Dc ⊆ D is compact positively invariant set with respect to (4.5) and the largest

invariant set contained in N , {x ∈ Dc : (∇Hs)
⊤Rs(x)∇Hs = 0} is M = xe, then xe

is locally asymptotically stable and Dc is a subset of the domain of attraction of eq (4.5).

Proof. Condition (4.8) implies that with feedback controller u(t) = φ(x(t)) the

closed loop system has a Hamiltonian structure given by (4.5). Furthermore, it

follows from (4.6) and (4.7) that the energy function Hs has a local minimum at

x = xe. Hence, x = xe is an equilibrium point of the closed loop system. Next,

consider the Lyapunov function candidate for the closed loop system (4.5) given

by V (x) = Hs(x)−Hs(xe). Now the corresponding Lyapunov derivative of V (x)
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along the closed loop state trajectories x(t), t ≥ 0 is given by

V̇ (x) = Ḣs = −∇H⊤
s Rs∇Hs ≤ 0, t ≥ 0 (4.9)

Thus, it follows from Lyapunov stability theorem, that the solution x = xe, is

Lyapunov stable. Asymptotic stability of the closed loop system follows imme-

diately from LaSalle’s invariant sets principle [42].

Remark 4.1. Using simple manipulation, one can see that the matching condition

in (4.8), is equivalent to (4.5).

4.4 L2 Disturbance Attenuation

In the literature, several studies addressed L2 disturbance attenuation of PCH

systems, (see for eaxmple [29, 90, 91, 103, 57]). The industrial application of the

mentioned technique has been in power systems, [90, 91, 98, 57] and nuclear re-

actors [18, 19]. The technique presented in this chapter is an extension of [91].

The approach target a relaxation of G(x) selection by allowing the disturbance

to have different input gain matrix G2. Such relaxation has been considered in

previous work [57] where the derivation was for adaptive control case. In the

present case, model (4.1) is modified to include the effect of an additive distur-

bance as follows

ẋ = [J (x)−R(x)]∇H(x) +G1(x)u+G2(x)w (4.10)
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where w ∈ R
m is a bounded unknown disturbance such that the state trajectory

x(t) remains in D for any initial state x(0) ∈ D. The L2 disturbance attenuation

assumes a

• given desired equilibrium point xe ∈ D,

• given penalty signal z = q(x), where q(xe) = 0 and

• given disturbance attenuation level γ.

The objective is to find a state feedback control law u = φ(x) and a positive

definite storage function V (x) with respect to the equilibrium state xe, such that

for the closed loop configuration of (4.10) under a state feedback control law, the

γ-dissipation inequality given by

V̇ (x) +Q(x) ≤ 1

2

(

γ2‖w‖2 − ‖z‖2
)

(4.11)

holds along all trajectories within D, where Q(x),Q(xe) ≡ 0 is a non-negative

definite function. As pointed out in [11], the γ-dissipation inequality (4.11) guar-

anties the following performances

P 1. L2 gain from the disturbance w to the penalty signals z is less than the given

level, γ;

P 2. When w = 0, xe is a Lyapunov stable equilibrium of unperturbed systems

in D. Furthermore, xe asymptotically stable provided that

Q(x) +
1

2
‖q(x)‖2 = 0 ⇒ x = xe; (4.12)

P 3. If w is square integrable then x is uniformly bounded.
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For the perturbed system (4.10) and according to Theorem 4.1, there exists a feed-

back law u = φ1(x) which preserves the Hamiltonian structure of the closed loop

system. Using Theorem 4.1, the best approach is to incorporate an additional

term into u = φ1(x) to provide the controller with the means to attenuate the

unknown disturbance. Therefore, let the penalty signal be described as follows

z = h(x)G⊤
1 (x)∇H(x) (4.13)

where, h(x) is a weighting matrix such that h(xe) ≡ 0. In such case the L2 distur-

bance attenuation can be achieved by injecting new damping term into (4.10), i.e.

under a proper selection of a feedback law, the Hamiltonian Hs can serve as the

storage function for the closed loop system.

Theorem 4.2. Consider the system (4.10). For any given γ > 0, the L2 disturbance

attenuation objective can be achieved using the following feedback control law

u = φ1(x) + φ2(x) (4.14)

φ2(x) = −1

2

[

1

γ2
I+ h⊤(x)h(x)

]

G⊤
1 (x)∇Hs(x) (4.15)

where φ1(x) satisfies Theorem 4.1

Before starting the proof, we state the following property

Property 4.1 (Vector inner product inequality). For given a a and b ∈ Rn, the

following inequalities apply

a⊤b = −1

2

(

(a− b)⊤(a− b)− (a⊤a+ b⊤b)
)

a⊤b ≤ 1

2

(

a⊤a+ b⊤b
)
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Proof. Note that under the feedback control (4.14), the closed loop system with

the modified Hamiltonian function Hs can be represented by

ẋ = [Js(x)−Rs(x)]∇Hs +G1(x)φ2(x) +G2(x)w (4.16)

z = h(x)G1(x)∇H(x) (4.17)

and

Ḣs = −(∇Hs(x))
⊤Rs∇Hs(x) + (∇Hs(x))

⊤G1(x)φ2(x)

+ (∇Hs(x))
⊤G2(x)w (4.18)

Next, we select φ2(x) as follows

φ2(x) ≡ K1(x)G
⊤
1 (x)∇Hs(x) (4.19)

K1(x) = −1

2

[

1

γ2
I+ h⊤(x)h(x)

]

(4.20)

Using property 4.1 for last the term of (4.18), we obtain

a ≡ 1

γ
G⊤

2 (x)∇Hs(x)

b ≡ γw

a⊤a =
1

γ2
(∇Hs(x))

⊤G2(x)G
⊤
2 (x)∇Hs(x)

b⊤b = γ2w⊤w
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Finally, Ḣs is obtained as follows

Ḣs ≤ −(∇Hs(x))
⊤ (R∗

s)∇Hs(x) + γ2w⊤w

R∗
s ≡ R∗∗

s +
1

2
G1(x)h

⊤(x)h(x)G⊤
1 (4.21)

R∗∗
s ≡ Rs +

1

2γ2
(

G1(x)G
⊤
1 (x)−G2(x)G

⊤
2 (x)

)

Note that (∇H⊤
s

(

G1h
⊤hG⊤

1

)

(∇Hs) = z⊤z and hence

Ḣs ≤ −(∇Hs(x))
⊤R∗∗

s ∇Hs(x) +
1

2

[

γ2‖w‖2 − ‖z‖2
]

Ḣs + (∇Hs(x))
⊤R∗∗

s ∇Hs(x) ≤
1

2

[

γ2‖w‖2 − ‖z‖2
]

If Rs can be selected big enough such that R∗∗
s ≥ 0, Ḣs then satisfies the γ-

dissipation inequality (4.11),

Ḣs +Q(x) ≤ 1

2

(

γ2‖w‖2 − ‖z‖2
)

(4.22)

Comparing equation (4.22) with (4.11), one can see that the shaped Hamiltonian

function Hs acts as a storage function for closed loop system.

Remark 4.2. The approach of shaping Hamiltonian is composed of two stages.

In the first stage we calculate the feedback φ1(x) which shapes the energy and

adds damping such that the unforced system when w = 0 is stable around the

equilibrium point xe. In the second stage, we use Theorem 4.2 in order to render

the closed loop system γ-dissipative by injecting additional damping as follows

Rs → R∗
s (4.23)

58



which defines the additional feedback φ2(x). In addition, φ2(x) has lie derivative

of Lyapunov function against G, (LGV ), i.e. it is of the form k(x)LGHs. The

relation between the disturbance attenuation level γ and the gain k(x) is given in

Theorem 4.2.

Remark 4.3. The closed loop system with controller (4.14) ensures both the per-

formance P 1,P 3 and the stability of the equilibrium point. In order to achieve

asymptotic stability, the weighting matrix h(x) ,the structure of the matrix Rs and

the shaped Hamiltonian Hs should be selected such that (4.12) is satisfied, i.e.

(∇Hs(x))
⊤R∗

s(∇Hs(x)) =0

⇒ x =xe,

given that Hs has a strictly isolated minimum at xe. This technical assumption

is locally satisfied if R∗
s in (4.21) has a full rank which in turn, depends on the

degree of freedom available for damping injection and disturbance attenuation

performance. This is essentially determined through the rank of G1(x),G2(x)

and h(x).

4.5 Adaptive L2 Disturbance Attenuation

This section present the adaptive control version of L2 disturbance attenuation

developed in the previous section. We assume that the PCH system can have

some parameter uncertainties. Our work is an extension of [57]. We relax G(x)

restriction to allow the input and the disturbance matrix to have some uncer-

tainties, i.e. Gi(x, ǫ). We will start with the model given in eq. (4.1) and add
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disturbance and parameter uncertainties,

ẋ = [J (x, ǫ)−R(x, ǫ)]∇H(x, ǫ) +G1(x, ǫ)u+G2(x, ǫ)w (4.24)

u consists of two part similar to the last section, φ1(x) for stabilizing and φ2(x) for

disturbance attenuation. Since the parameter uncertainty ǫ is present, to stabilize

the system in (4.24), φ1 has to be function of x and ǫ. This is impossible due to the

fact that the unknown perturbation ǫ introduces a term ∆φ1(x, ǫ) that should be

considered in the closed loop analysis. Using the matching condition developed

in sec 4.3,the controlled system will be

ẋ = [Js(x, ǫ)−Rs(x, ǫ)]∇Hs(x, ǫ)−G1(x, ǫ)∆φ1(x, ǫ)

+G1(x, ǫ)φ2(x) +G2(x, ǫ)w (4.25)

Furthermore, for simplicity reasons we also assume that ∇Hs(x, ǫ) is separable,

i.e.

∇Hs(x, ǫ) ≡ ∇Hs(x) + ∆Hs(x, ǫ)

The unknown parameter θ is a linear function of the perturbations ǫ. Both dis-

turbance attenuation control input φ2 and the unknown parameter estimate θ̂ are

assumed to satisfy the following equalities

φ2(x) = K1(x)∇Hs(x) + L1(x)θ̂ (4.26)

˙̂
θ = K2(x)∇Hs(x) (4.27)
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Thus, we may note that φ2(x) has an additional term related to unknown pa-

rameter estimate θ̂. This term is considered as the third stage of our controller

design.

In the remaining of this chapter, we will omit x and ǫ from our notation and

place small ǫ below any matrix or vector to indicate that it is a function of x and

ǫ. Other matrices without small ǫ are function of x. The Q matrix and the identity

matrix I are both constant and independent of x and ǫ.

Theorem 4.3. Consider the system (4.25) with the penalty signal (4.13). Assume that

there exists a function Φ(x) such that,

[Js,ǫ −Rs,ǫ] ∆Hs,ǫ −G1,ǫ∆φ1,ǫ = G1,ǫΦ
⊤θ (4.28)

for all x. Then For any given γ > 0 and unknown bounded ǫ, the adaptive L2 disturbance

attenuation can be achieved by the following control law

φ2 = −1

2

[

1

γ2
I+ hh⊤

]

G⊤
1 ∇Hs −Φ⊤θ̂

˙̂
θ =

(

G1Φ
⊤Q
)⊤ ∇Hs

Proof. Using the assumption in (4.28), we can write (4.25) as

ẋ = [Js,ǫ −Rs,ǫ]∇Hs +G1,ǫΦ
⊤θ +G1,ǫ(K1∇Hs + L1θ̂) +G2,ǫw

ẋ = [Js,ǫ −Rs,ǫ]∇Hs +G1,ǫ

(

Φ⊤θ + L1θ̂
)

+G1,ǫK1∇Hs +G2,ǫw
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where,

K1 = −1

2
k1G

⊤
1 (4.29)

k1 =
1

γ2
I+ hh⊤ (4.30)

If we select L1 = −Φ⊤ then we obtain

ẋ = [Js,ǫ −Rs,ǫ]∇Hs +G1,ǫ

(

Φ⊤θ̃
)

+G1K1∇Hs +G2,ǫw

At this stage, we define another shaped Hamiltonian function where we add a term

of weighted quadratic unknown parameter estimation error as follows

Hr = Hs +
1

2
θ̃⊤Q−1θ̃ (4.31)

The partial derivative of Hr with respect to x and θ̂ is given by

∇Hr,x ≡ ∇Hs (4.32)

∇Hr,θ̂ = −Q−1θ̃ (4.33)

Furthermore, we augment the system state x with the unknown parameter θ to

have the augmented state X which obeys the following dynamic equation

Ẋ =







Js,ǫ −Rs,ǫ +G1K1 −G1Φ
⊤Q

K2 0






∇Hr +







G2,ǫ

0






w +







∆G1,ǫ

0






Φ⊤θ̃ (4.34)

Where G1,ǫ = G1 + ∆G1,ǫ. Examining the last term in the right hand side of

eq. (4.34), we can see that Φ⊤θ̃ is acting as a fictitious additional disturbance to the
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system. For that reason, we redefine three terms as follows

G3,ǫ ≡ ∆G1,ǫ

w2 ≡ Φθ̃

w1 ≡ w

To preserve the anti-symmetric properties of the first matrix in (4.34), we select

K2 =
(

G1Φ
⊤Q
)⊤

Let G = −G1Φ
⊤Q, we rewrite (4.34) in more compact form as

Ẋ =













Js,ǫ G

−G⊤ 0






−







Rs,ǫ −G1,ǫK1 0

0 0












∇Hr +







G2,ǫ

0






w1 +







G3,ǫ

0






w2

(4.35)

The time derivative of the shaped Hamiltonian Ḣr is then evaluated along the

trajectory. Deploying the anti-symmetric properties of the matrix in (4.35), the

time derivative of the shaped Hamiltonian Ḣr can be expressed as

Ḣr = −(∇Hs)
⊤ (Rs −G1,ǫK1)∇Hs + (∇Hs)

⊤G2,ǫw1 + (∇Hs)
⊤G3,ǫw2 (4.36)
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Recall that from (4.29), K1 can be rewritten as follows

K1 ≡ −1

2
k1G

⊤
1

K1 ≡ −1

2
k1G

⊤
1,ǫ − k1∆G⊤

1,ǫ

k1(x) ≡
[

1

γ2
I+ hh⊤

]

Using property 4.1, it follows that

Ḣr ≤ −(∇Hs)
⊤ (R∗

s)∇Hs + γ2w⊤
1 w1 + γ2w⊤

2 w2

R∗
s = R∗∗

s +
1

2
G1,ǫhh

⊤G⊤
1,ǫ

R∗∗
s ≡ Rs,ǫ +

1

2γ2
(

G1,ǫG
⊤
1,ǫ −G2,ǫG

⊤
2,ǫ −G3,ǫG

⊤
3,ǫ

)

+ µǫ

µǫ ≡ −1

2

(

G1,ǫk1∆G⊤
1,ǫ

)

Since (∇Hs)
⊤
(

G1,ǫh
⊤hG⊤

1,ǫ

)

(∇Hs) = z⊤z, we get

Ḣr + (∇Hs)
⊤R∗∗

s ∇Hs ≤
1

2

[

γ2(‖w1‖2 + ‖w2‖2)− ‖z‖2
]

Remark 4.4. As stated in [8], J , R, H and often G are functions of θ. Therefore,

θ̂ is not required to converge to any particular equilibrium, but merely remains

bounded. However, in many cases it is possible to establish also the global sta-

bility of the equilibrium {x, θ̂} = {xd, θ} as can be shown in the next remark.

Remark 4.5. In case w1 = 0, the estimation errors of the unknown parameter θ̂

converge to zero. This is due to the fact that if the controlled system without ex-

ogenous disturbances and parameter uncertainties is asymptotically stable and
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xd is strictly isolated minimum of Hs with ∇Hs|x=xd
= 0, then from the aug-

mented equation (4.36) and La Salle invariant set theorem, we conclude that the

largest invariant set is contained in

N , {X ∈ Dc : (∇Hs)
⊤
(

R−
s G1,ǫK1

)

∇Hs + (∇Hs)
⊤G3,ǫw2 = 0} (4.37)

which is equal to {X ∈ Dc : x = xd}. In addition to that, if G1,ǫΦ
⊤ is non

singular, and using the fact that for every X ∈ N , ẋ = G1,ǫΦ
⊤θ̃ = 0, if and only

if θ̃ = 0 , then it follows that the largest invariant set contained in N is given

byM = {xd, θ
∗}.

Remark 4.6. From the matching condition (4.28), the adaptive scheme presented

in this section is restricted to systems having the dimension of the unknown pa-

rameters θ equal to the number of the input variables.

The following example illustrates how the estimation error of the unknown pa-

rameter will converge to zero

Example 4.1. Consider the following second order system which already stabi-

lized using φ1, where ∆φ1 = 0







x1

x2






=







0 1

−1 −1













x1 − (ǫ1 + ǫ2)

x2 + ǫ1






+







1 0

0 1






φ2 (4.38)

The corresponding Hamiltonian is given below

Hs =
1

2

(

x21 + x22
)

− (ǫ1 + ǫ2)x1 + ǫ1x2 (4.39)
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From the matching condition we have







0 1

−1 −1













−(ǫ1 + ǫ2)

ǫ1






=







1 0

0 1






Φ⊤θ (4.40)

if we select θ =

[

ǫ1 ǫ2

]⊤

, then Φ⊤ is equals to the identity matrix and con-

sequently the condition in remark 4.5 is satisfied. Since our purpose is just to

show the convergence of the unknown parameter estimation errors, we select

K1 = 0 for the simulation without the presence of exogenous disturbances. The

simualtion results indicate that the nominal model has the origin as its asymp-

totic equilibrium point. By means of the state feedback φ2 = −Φ⊤θ̂, the unknown

parameter vector converges to its true value and makes the system behaves like

the nominal model. The effect of parameter uncertainties is cancelled by the feed-

back φ2. The simulation results use ǫ1 = 0.2, ǫ2 = 0.1, Q = I and x(0) =

[

1 1

]⊤

.

Figure 4.1 hints that the estimations of the unknown parameter vector converges

to its true value and the asymptotic stability behaviour of the nominal model is

preserved as well.
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Figure 4.1: Simulation result of example 4.1
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4.6 PCH Based Control Design for AUV

In this section, we apply the two steps of PCH-based control design to the AUV

model. To obtain a general solution for a wider class of AUV, we ignore the issue

related to force and torque allocation from the actuator. For instance, we do not

take into account the problem of thruster nonlinear behaviour and whether the

vehicle is fully-actuated or underactuated. Therefore, we assume that there is a

sufficient actuator effort available to perform the control actions as needed. The

underactuated AUV control design will be developed in the next chapter.

4.6.1 Stabilizing Controller: First Stage

For trajectory tracking purpose, we will apply theorem 4.1 for AUV dynamics.

For the time being, we will ignore the exogenous disturbance and we will con-

sider it in the next subsection. For trajectory tracking design, we define the equi-

librium point xd ≡
[

η⊤
d , 0
]

. Next, adapting the approach presented in [70], we

select the shaped Hamiltonian function to be the combination of the kinetic energy

and weighted quadratic trajectory tracking error as follows,

Hs =
1

2
ν⊤Mν +

1

2
η̃⊤Q̂η̃

Hs =
1

2
p⊤M−1p+

1

2
η̃⊤Q̂η̃ (4.41)
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, where η̃ = η − ηd. Next we select

Ja = 0

Ra =







0 0

0 Da






(4.42)

where Da is an additional damping term. From (4.41), we have

∂Hs

∂p
= ν⊤ ,

∂Hc

∂p
= 0

∂Hs

∂η
= η̃⊤Q̂ ,

∂Hc

∂η
= η̃⊤Q̂ (4.43)

Using Theorem 4.1, the matching condition (considering the gravity and buoy-

ancy term g(η) as well) becomes

Gφ(x) = Gg(η) + [Js(x)−Rs(x)]∇Hc(x) + [Ja(x)−Ra(x)]∇H(x)






0

I






φ(x) =







0

I






g(η) +







0

−Daν − J⊤Q̂η







φ(x) = g(η)− J⊤Q̂η̃ −Daν

φ(x) = g(η)−K∇Hs (4.44)

K ≡
[

J⊤ Da

]

(4.45)

Up to here the Lyapunov stability condition is proven by invoking the theorem

4.1. Furthermore, To prove the asymptotic stability, the following conditions are

required:

C 1. D̄+Da = Ds > 0, i.e strictly positive definite. From antisymmetric proper-
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ties of Coriolis (properties 2.2) and dissipativity properties of AUV drag

(properties 2.3), Da can be selected as semi-positive definite matrix and

hence, different from [68], Da doesn’t have to cancel the nonlinearity in

the Coriolis and AUV’s drag. Thus, such design gives more robust closed

loop response, since the cancellation of Coriolis and drag in real applica-

tion may require high amplitude of actuator forces and drive the closed

loop unstable in case of high uncertainties or dynamic mismatch.

C 2. Q̂ is selected such that J⊤Q̂ is non-singular.

From (4.43), invariant set of system (4.1) is contained in the set

N , {x ∈ Dc : (∇Hs)
⊤Rs(x)∇Hs = 0}

which can be reduced in our case to {x ∈ Dc : ν̃ = 0}. Since for every x ∈ N

and under condition C2, ˙̃p = J⊤Q̂η̃ = 0 if and only if η̃ = 0 , it follows that the

largest invariant set contained in N is given by the singleton M = {0}. Further-

more since the shaped Hamiltonian is radially unbounded, then the equilibrium

solution x(t) ≡ 0 of the closed loop system equation (4.5) is Uniformly Globally

Asymptotically Stable (UGAS).

4.6.2 Determining The Rate of Convergence

Our analysis in the previous subsection tells nothing about the rate of conver-

gence. We are only able to deduce the asymptotic stability properties of the origin

using LaSalle theorem, which are less strong compared to the exponential stabil-

ity ones. There are two ways to estimate the convergence rate. The first way is to
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determine the convergence rate using a manipulation in the shaped Hamiltonian

function (4.41) and the second is to choose a Lyapunov function other than the

shaped Hamiltonian.

Convergence Rate using shaped Hamiltonian

Recall that the shaped Hamiltonian and its time derivative are given respectively

by

Hs =
1

2
ν⊤Mν +

1

2
η̃⊤Q̂η̃

Ḣs = −ν⊤Dsν

Hs and Ḣs are both bounded as follows

λmin(M)‖ν‖2 + λmin(Q̂)‖η̃‖2 ≤ 2Hs ≤ λmax(M)‖ν‖2 + λmax(Q̂)‖η̃‖2

Ḣs ≤ −λmin(Ds)‖ν‖2

since ‖ν‖2 ≥ 2Hs − λmax(Q̂)‖η̃‖2
2λmax(M)

, we have

Ḣs ≤ −λmin(Ds)

λmax(M)
Hs + ξ

where

ξ =
λmax(Q̂)λmin(Ds)

2λmax(M)
‖η̃‖2
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Writing σ =
λmin(Ds)

λmax(M)
, the upper bound of the shaped Hamiltonian may be given

by

Hs(t) ≤ Hs(0) exp

(

−σt +
∫ t

0

ξ

Hs

dτ

)

(4.46)

From the definition of shaped Hamiltonian,
∫ t

0

ξ

Hs
dτ is a function of Q̃. The state

evolution along the time can be roughly bounded by

‖x(t)‖ ≤
√

√

√

√

Hs(0)

min
(

λmin(M), λmin(Q̂)
) exp

(

−σ
2
t+

∫ t

0

ξ

2Hs

dτ

)

(4.47)

Convergence rate of system using other Lyapunov functions

Consider the following Lyapunov function V defined as

V = Hs + Vc (4.48)

Where Vc is an additional coupling term that we add to ensure the exponential

stability properties. Since Hs contains no coupled term between η̃ and ν and Ḣs

is only quadratic function of ν, the coupled term Vc might help us to get V̇ also a

quadratic function in both η̃ and ν. With this in mind, we select also

Vc =
1

2

[

η̃⊤Sν + ν⊤S⊤η̃
]

(4.49)

Where S is unknown matrix that can be a constant matrix or function of η2, i.e.

S(η2). In this case The Lyapunov function can be written in quadratic form as
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below

V =
1

2

[

η̃⊤ ν⊤

]







Q̂ S

S⊤ M













η̃

ν






(4.50)

V =

[

η̃⊤ ν⊤

]

P̄







η̃

ν






(4.51)

Given the above equation, we evaluate the time derivative of the Lyapunov func-

tion along the trajectory as below

V̇ = ∇xH⊤
s ẋ+∇xV⊤

c ẋ (4.52)

The first term of the above equation is the shaped Hamiltonian time derivative

and

∇xV⊤
c =

∂Vc

∂x
∂Vc

∂x
=

[

∂Vc

∂η

∂Vc

∂p

]

∂Vc

∂η
= ν⊤

(

S⊤ +
∂S⊤

∂η2

η̃2

)

= ν⊤S̄⊤

∂Vc

∂p
= η̃⊤SM−1

Combining the time derivative of the Hamiltonian given in (4.43) and the time
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derivative of Vc, we obtain the time derivative of Lyapunov function as

V̇ = −
[

η̃⊤ ν⊤

]







SM−1J⊤Q̂
1

2
SM−1Ds

1

2
(SM−1Ds)

⊤
Ds − S̄⊤J













η̃

ν






(4.53)

V̇ = −
[

η̃⊤ ν⊤

]

Q̄







η̃

ν






(4.54)

The presence of S, follows from the fact that the closed-loop of the AUV dy-

namics is Uniformly Locally Exponentially Stable (ULES), with the following

explanations. Consider that the Jacobian of the AUV dynamics at the desired

equilibrium point xd = {ηd, 0} is given by

f = [Js −Rs]∇xHs

A =
∂f

∂x

∣

∣

∣

∣

x=xd

A =







0 J(ηd,2)M
−1

−J(ηd,2)
⊤Q̂ −DsM

−1







The eigenvalues of A are the solution of the following second order matrix de-

terminant equations

det

[

s2I+ sDsM
−1 + J(ηd,2)

⊤Q̂J(ηd,2)M
−1

]

= 0 (4.55)

It can be easily proven that the eigenvalues of A are always in the left hand side

of the imaginary axis, provided that the pitch angle of the AUV is not equal to

π/2. The eigenvalues will be distributed inside a region (−λmax(DsM
−1), 0) and

separated into two groups, the faster eigenvalues are mostly related to velocity
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and the slower are related to position. In the special case of diagonal Ds,M and

Q̂ and the pitch angle is zero (horizontal plane mission), we have six independent

second order equations of eigenvalues as given below

λi = −ds,imi

2
± 1

2

√

(ds,imi)2 − 4qimi (4.56)

Where ds,i,mi and qi are the ith diagonal element of Ds,M−1 and Q̂. λi will equal

to zero if qi is zero, otherwise it always less than zero.

Following theorem 4.6 in [42], the origin of the nonlinear AUV dynamics is an

exponentially stable equilibrium point, or more precisely ULES and by Converse

Lyapunov Theorem, there exist S such that P̄ and Q̄ are positive definite. The

minimum rate of convergence of the Lyapunov function V is then given by

V(t) = V(0)e−σt (4.57)

where σ =
2λmin(Q̄)

λmax(P̄)
. The state evolution along the time is bounded by

‖x(t)‖ ≤
√

V(0)
λmin(P̄)

exp−σ
2
t (4.58)

Note that, although the closed loop system is UGAS as seen in the previous sec-

tion, it is also ULES with different rate of convergence. σ will vary depending on

the Euler angle of the AUV. In addition, while the existence of S is guaranteed,

finding the right choice of S is also challenging. One initial guess that one can

make, is to select S = ρ J−⊤, since in the matrix Q̄ the only non-constant matrix

involved is J. The parameter ρ is selected as a gain to tune the behaviour of P̄ and

Q̄, based on selected controller parameter Q̂ and Ds. Putting ρ too big might lead
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to semi or non-definite behaviour, i.e. presence of zero or negative eigenvalue in

P̄ and Q̄. While selecting ρ too small might defy the purpose of introducing Vc

and may lead to a conservative convergence rate.

4.6.3 Stability Analysis of Stabilizing Controller in The Pres-

ence of Parameter Uncertainties and Exogenous Disturbance

In this subsection we study the stability of the controller in the presence of pa-

rameter uncertainty and exogenous disturbances. Suppose that the AUV’s inertia

matrix can be written as Mǫ = M + ∆Mǫ, where M0 is the nominal value of in-

ertia matrix and ∆Mǫ is it’s perturbation from nominal value due to added mass

for instance. The Hamiltonian of the system along with the stabilizing controller

can be expressed as follows

Hs,ǫ =
1

2
p⊤M−1

ǫ p+
1

2
η̃⊤Q̂η̃ (4.59)

Since the Hamiltonian of the perturbed system is related to M−1
ǫ , we need to state

the following lemma to write M−1
ǫ = M−1 +∆M.

Lemma 4.1 (Inverse of Sum of Matrices). Given A and B, where A and A + B are

invertible, them

(A+B)−1 = A−1 +X

where

X = −(I+A−1B)−1A−1BA−1
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Proof. To prove this, (A+B)−1 can be evaluated knowing only A−1 and B. Sup-

pose that we can express (A + B)−1 = A−1 + X, then X can be computed as

follows

(A+B)−1 = A−1 +X

(A−1 +X)(A+B) = I

A−1A+XA+A−1B+XB = I

X(A+B) = −A−1B

X = −A−1B(A+B)−1

X = −A−1B(A−1 +X)

(I+A−1B)X = −A−1BA−1

X = −(I+A−1B)−1A−1BA−1

This lemma is simplified version of the one presented by Ken Miller, 1981, see

[67]. Using Lemma 4.1, we have

∆M = −(I+M−1∆M)−1M−1 (∆M)M−1 (4.60)

The partial derivative of the Hamiltonian associated with the perturbed system

can be computed as

∇Hs,ǫ = ∇Hs =







Q̂η̃

(M−1 +∆M)p






(4.61)

If we assume that the body fixed velocity ν vector is measured, we can write
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ν = (M−1 +∆M)p. In addition, knowing that for AUV, Js,ǫ = Js = J and

Da = Ds − ˆ̄D, then from the matching condition we have

ẋ = [J −Rǫ]∇Hǫ +G1φ1,ǫ +G2w

ẋ =







0 J

−J⊤ −(Ds + (D̄ǫ − ˆ̄D))






∇Hs,ǫ +G2w

Next, we compute the time derivative of the Shaped Hamiltonian along a trajectory

as given below,

Ḣs = −∇H⊤
s,ǫ







0 J

−J⊤ (Ds + (D̄ǫ − ˆ̄D))






∇Hs,ǫ +∇H⊤

s,ǫG2w (4.62)

= −∇H⊤
s,ǫRs,ǫ∇Hs,ǫ +∇H⊤

s,ǫG2w (4.63)

(4.64)

Where Rs,ǫ is the desired damping matrix in the presence of the uncertainties.

Using properties 4.1, we have

Ḣs ≤ −∇H⊤
s,ǫ

[

Rs,ǫ −
1

2

(

G2G
⊤
2

)

]

∇Hs,ǫ +
1

2
‖w‖2

≤ −∇H⊤
s,ǫR∗

s,ǫ∇Hs,ǫ +
1

2
‖w‖2 (4.65)

From equation (4.65), we see that the closed loop system is still stable provided

78



that the following inequality is satisfied.

−∇H⊤
s,ǫR∗

s,ǫ∇Hs,ǫ +
1

2
‖w‖2 ≤ 0 (4.66)

For AUV dynamics in the PCH structure as given in eq. (4.4), eq. (4.66) is equiv-

alent to

ν⊤

(

Da + D̄ǫ −
1

2
J−1J−⊤

)

ν ≥ 1

2
‖w‖2 (4.67)

When there is no exogenous disturbance, the closed loop of perturbed system is

Lyapunov stable and furthermore, asymptotically stable using LaSalle theorem,

provided that Da+D̄ǫ ≥ 0. The uncertainties M contributed in ∇Hs,ǫ do not affect

the system stability. The remaining effects are only in D̄ǫ which is function of

the Coriolis and centripetal matrix C. Fortunately since Coriolis and centripetal

matrix C is always skew symmetric (property 2.2) and natural damping is also

always positive definite (property 2.3), the stability conditions for the perturbed

systems are preserved.

4.6.4 L2 Disturbance Attenuation Controller: Second Stage

Theorem 4.2 is directly applicable to our AUV PCH model. In AUV dynamics,

G2 is given by J−1 and R∗
s given by

R∗
s = Rs +

1

2γ2
(

G1(x)G
⊤
1 (x)−G2(x)G

⊤
2 (x)

)

+
1

2
G1(x)h

⊤(x)h(x)G⊤
1

R∗
s = Rs +

1

2γ2













0 0

0 I






−







0 0

0 J−1J−⊤












+

1

2
G1(x)h

⊤(x)h(x)G⊤
1 (4.68)
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In normal operational conditions, when the vehicle is moving in the horizontal

plane, the pitch θ = 0,hence, the value of J is orthogonal and J−1J−⊤ = I, hence

we have
1

2γ2
(

G1(x)G
⊤
1 (x)−G2(x)G

⊤
2 (x)

)

= 0.

The above equation means that the dissipativity of the closed loop system with

exogenous disturbance, exhibits the same dissipativity of the closed loop system

without exogenous disturbance. For penalty signal, we can select h(x) to be

h(x) = ν⊤Q̂ (4.69)

since h(xd) = 0. For a given desired disturbance attenuation level γ and using

direct substitution into (4.14) we get

φ2(x) =
1

2

(

1

γ2
I+ Q̂νν⊤Q̂

)

ν (4.70)

From equation (4.68) we can conclude that R∗
s will not be full rank. In such case,

we use La Salle invariance principle in a similar approach as described in the

previous subsections and under the same condition mentioned therein. The in-

variant set of system (4.10) is contained in N , {x ∈ Dc : (∇Hs)
⊤R∗

s(x)∇Hs = 0}

which is equal to {x ∈ Dc : ν = 0}. Since for every x ∈ N , ν̇ = J⊤Q̂η̃ = 0, if

and only if η̃ = 0 , it follows that the largest invariant set contained in N is given

byM = {xd}.
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4.6.5 Adaptive L2 Attenuation Controller: Third Stage

In this subsection, theorem 4.3 is applied to the AUV problem. We select Da such

that it has to cancels the natural damping of the AUV to give more decoupling

effect on the closed loop. We consider only uncertainties in system equation only

that occur in drag matrix D. This may happen due to imprecise parameters in D,

or higher order terms that are neglected during the modelling, see [24].

Suppose AUV drag matrix can be written as Dǫ = D + ∆Dǫ, where D0 is the

nominal value of the drag matrix and ∆Dǫ is its perturbation from nominal value.

Since for slender type of AUV with Y-Z and X-Z body symmetry, the diagonal

terms of the drag matrix are dominant, we assume that the perturbations occur

on the diagonal terms only, i.e. ∆Dǫ = diag{
[

ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6

]

}.

Next, we develop the matching conditions of the adaptive controller as stated in

theorem 4.3. Note that, since we consider only uncertainty in the drag matrix,

the shaped Hamiltonian Hs is the same in the nominal case and the perturbed

case and hence we can write

[Js,ǫ −Rs,ǫ]∆Hs,ǫ −G1,ǫ∆φ1,ǫ = G1,ǫΦ
⊤θ

0−G1,ǫ∆φ1,ǫ = G1,ǫΦ
⊤θ

∆Kǫ∇Hs = Φ⊤θ

∆Dǫν = = Φ⊤θ (4.71)

If we select θ =

[

ǫ1 ǫ2 ǫ3 ǫ4 ǫ5 ǫ6

]⊤

, with ∆Kǫ linear in θ,then we can write
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the last equation to obtain Φ⊤ as follows

∂ (∆Dǫν)

∂θ
= Φ⊤ (4.72)

Evaluating the equation (4.72) for AUV model, Φ⊤ will be

−

































|u| 0 0 0 0 0

0 |v| 0 0 0 0

0 0 |w| 0 0 0

0 0 0 |p| 0 0

0 0 0 0 |q| 0

0 0 0 0 0 |r|

































= −diag{|ν|} = Φ⊤ (4.73)

Substituting this in the controller equation φ2 as in theorem 4.3, the solution of

Adaptive L2 disturbance attenuation for fully actuated AUV with uncertainties in

the drag matrix is solved.

Remark 4.7. From remark 4.5 in section 4.5, we require G1,ǫΦ
⊤ to be non singu-

lar to achieve asymptotic stability of the desired augmented equilibrium point

{xd, θ
∗}. However, the matching condition for the AUV model shows that Φ⊤

can be singular if x = xd. This makes the stability of adaptive closed loop system

downgraded into Lyapunov stable conditions only and the estimation of the un-

known parameters might converge to the wrong values. Fortunately, the stability

of the desired position and velocity xd = {ηd, 0} is preserved.
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4.7 Simulation Results

In this section, we apply the controller design procedure presented in the previ-

ous section to MARES for trajectory tracking. We divide this section into three

subsections. First we design a stabilizing controller based on PCH structure of

AUV, applied to MARES. Next, the L2 disturbance attenuation is designed. Last,

an adaptive scheme of L2 disturbance attenuation is designed for MARES vehicle

with uncertainties in the drag matrix diagonal elements. Based on the controller

law design presented in subsection 4.6.1, to meet asymptotic stability require-

ment, Da has to be selected such that during the operation,
(

D̄+Da

)

> 0.

(a) XY circle trajectory (b) XZ circle trajectory

Figure 4.2: Trajectory simulation result

From figures 4.2a, 4.2b,4.3a and 4.3b, we see that the designed controller are able

to drive the AUV tracking the correct trajectory, even it is able to pass the critical

condition where the pitch angle equal to π/2.
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(a) XY circle Hamiltonian simulation result
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(b) XZ circle Hamiltonian simulation result

Figure 4.3: Hamiltonian

To show the effectiveness of the proposed design against parameter uncertain-

ties, here we show the simulation with 50%, 80% and 500% error on diagonal ele-

ment of added mass matrix MA and 5% error on drag matrix D. The simulations

are shown in figure 4.4 below. It can be seen that the selecting of Da makes the

AUV trajectory robust enough to encounter added mass and drag uncertainties.

4.7.1 L2 Disturbance Attenuation: Second Stage

Next we continue to apply the L2 disturbance attenuation design, where we add

the exogenous disturbance. Using the same controller as before, the simulation

results are given in figure 4.5 with shuttle space mark. As can be seen, the tra-

jectory is highly disturbed, although the AUV generally still follow the desired

trajectory. By means of the L2 disturbance attenuation controller, the disturbance

effect on the trajectory can be attenuated. The simulation result of L2 disturbance

attenuation controller is given in figure 4.5 with ’mig’ mark. One of the draw-

84



−100 −80 −60 −40 −20 0 20 40 60 80

−80

−60

−40

−20

0

20

40

60

80

 

X

 

50 % Error In MA

Desired Trajectory

500 % Error In MA

80 % Error In MA

Figure 4.4: XY circle simulation results with different uncertainties in M

backs of applying the L2 disturbance attenuation controller is that it makes the

AUV not follow the desired trajectory exactly. This happens due to the presence

of additional damping from the L2 disturbance attenuation. This is the common

trade off, between disturbance rejection and controller performance.

4.7.2 Adaptive L2 Attenuation Controller: Third Stage

In this subsection we will show the simulation of the designed adaptive L2 at-

tenuation controller. First, we will show the simulation result of the AUV system

having 5 % uncertainties in the drag matrix D without any exogenous distur-

bance and no uncertainty in the inertia matrix M. This simulation aims to show

the behaviour of the unknown parameters estimation. For this simulation, we

set φ2 = 0. Second simulation will carry all types of uncertainties and exogenous

disturbances as well, where we choose γ = 0.1. From both simulation results
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Figure 4.5: XY circle trajectory simulation results, L2 disturbance attenuation
with γ = 0.1

given in figure 4.6, we can see that the stability of the AUV is still preserved,

even when there is exogenous disturbances, except that the AUV becomes miss-

headed. Also from figure 4.7 and 4.8, we can see -as in our previous derivations-

that the unknown parameters tend to be bounded, although they are not con-

verging to the correct values, see remark 4.4.
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(a) Without external disturbance (b) With external disturbance

Figure 4.6: Adaptive scheme simulation trajectory
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Figure 4.7: Unknown parameter estimates - without exogenous disturbance
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Figure 4.8: Unknown parameter estimates - with exogenous disturbance
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4.8 Conclusions

In this chapter, we have established the passivity-based controller design for

AUV. We stated a PCH formulation of AUV dynamics. Then we proposed a

design of a nonlinear passivity-based controller for AUV PCH framework. Fur-

thermore, we presented an extension of [91] in L2 disturbance attenuation for

general PCH system, where we relaxed G(x) restriction to allow the disturbance

to have different input gain matrix G2. In addition to that, we also presented an

extension to [57], in the adaptive L2 disturbance attenuation. We relaxed G(x)

restriction, where the input and disturbance matrix are allowed to have some

uncertainties.

Rate of convergence analysis of the closed loop AUV system has been presented

as well. Furthermore, the stability analysis of the designed closed loop AUV

system in the presence of parameter uncertainties and exogenous disturbance is

elaborated.

Finally, we presented an application of the passivity-based control of AUV sys-

tem in the PCH framework, its L2 extension and adaptive L2 attenuation. Sim-

ulation results showed the robustness of the controller with respect to both pa-

rameter uncertainties and exogenous disturbances. All results presented were

developed for fully-actuated AUV. In the next chapter, we will extend the con-

troller design to cover the underactuated AUV.
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Chapter 5

Underactuated Controller Design

5.1 Introduction

In the previous chapter, we have shown the passivity-based controller design for

Autonomous Underwater Vehicle (AUV) in Port Controlled Hamiltonian (PCH)

framework. While the design seems straight forward and simple, it assumes that

the vehicle has a complete actuating force to move in six degrees of freedom.

In real implementation, similar to other mechanical devices, many AUVs have

less actuating forces than the total degrees of freedom. Such systems are called

underactuated. The presence of this restriction may lead to poor position tracking

and even to instability.

In this chapter,we address the problem of trajectory tracking for a class of AUV

having actuating forces over four degrees of freedom namely surge, heave, pitch

and sway motions. Unlike the previous designs which appeared in the literature,

we do not assume any restrictions on the nonactuated damping or assume that
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it has to be larger than the inertia. In addition, none of the nonactuated motions

is neglected. We analyze the dynamics of the AUV in full six degrees of freedom

within PCH framework as proposed and motivated in the previous chapter. Our

approach to address the underactuated conditions is based on the underactuated

PCH design presented in [30] and [75].

In summary, this chapter contributes to the literature by

1. proposing a detailed design method that constructs a nonlinear trajectory

tracking controller for both two and three-dimensional underactuated AUV.

Although the design is implemented in an AUV model that has four de-

grees of actuating forces, i.e heave, surge, pitch and sway, the analysis and

design are general and can also be implemented for those vehicles having

actuating forces only in three degrees of freedom, i.e surge, pitch and sway.

2. covering a broader AUV types compared to [2, 3], where in the proposed

design, we allow the AUV to have non zero z-axes of center of buoyancy.

In addition to that, we also allow the AUV to have a coupled quadratic

damping,

3. proposing a robust trajectory tracking with respect to the ocean currents.

Indeed, the proposed design allows the closed loop AUV system to have

a passive mapping of the ocean disturbance, as well as L2 Input to State

Stable (ISS) properties,

4. proposing a simple controller design that does not suffer from Coriolis and

nonlinear drag force cancellation which is different from the work in [2, 3,

68]. Consequently, without the cancellations, the controller is considerably

more robust to parameter uncertainties.
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5. relaxing the constraints of a smooth, time differentiable desired trajectory

restriction. Indeed, the desired trajectory does not need to be smooth and

is allowed to have piecewise continuous profile. This condition cannot be

handled in previous designs, such as in[2, 3] where the desired trajectory

has to be in C3.

5.2 Desired Attitude Determination

In the previous chapter, the desired attitude of the AUV can be determined at the

beginning, because AUV has enough actuating forces to move into the desired

position and attitude. However, for the underactuated AUV, the attitude cannot

be independently determined over the desired inertia position, due to the lack of

two actuating forces. The desired attitude has to be designed such that the AUV

heading is pointing to the desired position. The common approach to achieve this

design is to use inverse tangent rule, commonly known as Line of Sight (LOS),

[92, 25], as shown in figure 5.1

Figure 5.1: Line of Sight in two dimensions

The desired heading angle (yaw) and desired pitch angle are given by the follow-
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ing equations respectively

ψd = tan−1

(

∆y

∆x

)

(5.1)

θd = tan−1

(

−∆z
√

∆x2 +∆y2

)

(5.2)

Due to the lack of the actuating torque for rolling motion, the desired roll angle

φd is kept equal to the vehicle roll angle φ . Worth to mention that care should

be taken when computing the tan−1, since it is only valid in the range
(

−π
2
, π
2

)

.

Using a specialized function that uses ∆x and ∆y as input to handle tan−1, we can

extend the range to (0, 2π). However, since tan−1 has several discontinuities in

a range wider than (0, 2π), LOS system with switching algorithm and memories

has to be implemented (see for example [14]).

We propose the following attitude determination module as shown in figure 5.2

below

Figure 5.2: AUV desired attitude diagram

5.3 PCH Based Underactuated AUV Design

Underactuated conditions of AUV are addressed in this section using the ex-

tended version of the matching condition stated in theorem 4.1(eq. (4.8)). We
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begin by defining two sets formed by a transformation matrix T that separates

the body-fixed velocity into the actuated and nonactuated states respectively. The

transformation matrix is an orthogonal matrix and does not change the magni-

tude of the velocity vector, it only reorder its elements, where the actuated veloc-

ities reindexed first while the nonactuated are put last.

Note that, the separation of body-fixed velocities into actuated and nonactuated

modes is more appealing when compared to the separation of vehicle inertial

positions as considered in [68]. The reason behind the selection stems from the

fact that the Degrees of Freedom (DOF)’s are better seen in the vehicle body-fixed

frame and not in the inertial frame. For example, most AUV’s have only three

DOF actuators covering surge, pitch and yaw. The lack of actuation in heave and

sway does not mean that the vehicle cannot move in y and z axises of the iner-

tial frame. For the current study, we selected Modular Autonomous Robot for

Environment Sampling (MARES) AUV. MARES has only four thrusters. These

thrusters can produce a force on surge and heave and creates a torque in sway

and pitch angles respectively. Actuated body velocity are then given by u, w, q, r
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and the nonactuated velocities are v and p. Consequently we have

Tν = ν̂

T =

































1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

































(5.3)

ν̂ =

[

u w q r v p

]⊤

(5.4)

At the beginning following the original dynamics representation of MARES in

[21, 22, 23], we assume that g(η) has zeros on nonactuated motion,due to the

assumption that the roll angle is negligible. Then, in section 5.3.2 we will discuss

the case where g(η) has non zero component on nonactuated modes. g(η) is

generally given by [24]

g(η) =

































(W − B)sθ

−(W −B)cθsφ

−(W −B)cθcφ

−(yGW − yBB)cθcφ+ (zGW − zBB)cθsφ

(zGW − zBB)sθ + (xGW − xBB)cθcφ

−(xGW − xBB)cθsφ− (yGW − yBB)sθ

































(5.5)

Recall that the AUV dynamics under affine control characteristic can be expressed

96



as follows

Mν̇ + D̄(ν)ν + g(η) = Gu+ J−1b (5.6)

WhereG1 ∈ R6×4 is full column rank input gain matrix and u ∈ R4 is the input for

underactuated AUV. Using the separation based on the transformation matrix T

of the dynamic equation, (5.6) can be rewritten as

MT⊤ ˙̂ν + D̄(ν̂)T⊤ν̂ + g(η) = Gu+ J−1b (5.7)

Next, we define the transformed inertia M̂ = TMT⊤ and hence, we have the

dynamics of AUV, arranged in actuated and non actuated manner as below

˙̂ν = M̂−1
[

TGu+TJ⊤b−TD̄(ν̂)T⊤ν̂ +Tg(η)
]

˙̂ν = M̂−1

[

Ĝ1u+ Ĝ2b− ˆ̄D(ν̂)ν̂ + ĝ(η)
]

(5.8)

where Ĝ1 = TG, Ĝ2 = TJ−1, ˆ̄D(ν̂) = TD̄(ν̂)T⊤, ĝ(η) = Tg(η). The first four

rows of Ĝ1 are non-zero rows for the actuated body velocities, while the last two

rows are zeros for the nonactuated. For coordinate transformation, we have

η̇ = J(η2)ν

η̇ = J(η2)T
⊤ν̂

η̇ = Ĵ(η2)ν̂ (5.9)

Having the dynamics arranged in this manner, we rewrite the Hamiltonian as

follows

H =
1

2
ν̂⊤M̂ν̂ (5.10)
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Due to the orthogonality of T, the Hamiltonian in the transformed coordinates is

equal to the original Hamiltonian. For a given arranged body-fixed momentum

p̂ = M̂ν̂, the AUV dynamics in PCH form is given by







η̇

˙̂p






=







0 Ĵ

−Ĵ⊤ − ˆ̄D(ν̂)













∇ηH

∇p̂H






+







0

Ĝ1






u+







0

Ĝ2






b−







0

I






ĝ(η) (5.11)

Furthermore, for the trajectory tracking problem, we define the new shaped Hamil-

tonian in transformed body-fixed velocities as

Hs =
1

2
ν̂⊤M̂ν̂ +

1

2
η̃⊤Q̂η̃ (5.12)

Q̂ =







qposI3×3 0

0 qangI3×3






(5.13)

where qpos, qang > 0 are two positive scalars representing the weights selected for

the errors in inertial position and angle respectively.

According to the matching condition in theorem 4.1,







0 Ĵ

−Ĵ⊤ − ˆ̄D(ν̂)













∇ηH

∇p̂H






+







0

Ĝ1






u+







0

Ĝ2






b−







0

I






ĝ(η) =







0 Ĵ

−Ĵ⊤ −D̂s(ν̂)













∇ηHs

∇p̂Hs







(5.14)

From now on, for simplicity, we will omit η and ν from ĝ and ˆ̄D. The biases,

which represent the ocean current disturbances and other external forces will also

be ignored for the time being. Analysis of the AUV stability in the presence of

biases will be developed in the next section, see remark 5.1. Evaluating equation

(5.14), we obtain

Ĝ1u = ĝ −
[

D̂s − ˆ̄D
]

ν̂ − Ĵ⊤Q̂η̃ (5.15)
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If Ĝ1 is invertible, i.e., if the system is fully-actuated, then we may uniquely solve

for the control input u, given any Hs. However, in the underactuated case, Ĝ1 is

not invertible, but it is only full column rank and u can only influence the terms

in the range space of Ĝ1. This leads to the following set of constraint equations,

which must be satisfied for any choice of u

Ĝ⊥
1

(

ĝ −
[

D̂s − ˆ̄D
]

ν̂ − Ĵ⊤Q̂η̃
)

= 0 (5.16)

where Ĝ⊥
1 is a full rank left annihilator of Ĝ1, i.e. Ĝ⊥

1 Ĝ1 = 0. In the transformed

AUV dynamics, Ĝ1 =







Ĝ1,a

02×4






.

The left annihilator of Ĝ1 could be selected as Ĝ⊥
1 =

[

02×4I2×2

]

. From (5.16), the

last two entries in the vector ĝ −
[

D̂s − ˆ̄D
]

ν̂ − Ĵ⊤Q̂η̃ have to be equal to zeros.

ĝ will satisfy this condition, since it is assumed to have two zeros as the last two

entries and can be removed from the equation for its contribution is zero. The

remaining terms can be decomposed with respect to their dependency with the

body-fixed velocities and the inertial position errors as follows,

Ĝ⊥
1

[

D̂s − ˆ̄D
]

ν̂ =







0

0






(5.17)

Ĝ⊥
1

[

Ĵ⊤Q̂η̃
]

=







0

0






(5.18)

One can think that Ĵ⊤Q̂η̃ is the weighted position error represented in body-

fixed frame which is arranged by transformation matrix T into the actuated and
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nonactuated body-fixed frame position error
[

q̃⊤
a q̃⊤

u

]⊤

. Equation (5.18) hints

that the body-fixed frame position errors in the nonactuated coordinates are al-

ways zero. Consequently, at a certain direction, some position errors cannot be

reduced using the available control effort which is a consequence of having un-

deractuated restrictions. However, this restriction can be tackled using a proper

design of navigation module like LOS. In the next section, we will show that

the use of the navigation module will help the controller to achieve the stability

conditions for trajectory tracking problem.

On the other hand, equation (5.17) restricts the selection of additional drag D̂a to

be added in ˆ̄D on its lower block. The orthogonal transformation on Ds decom-

poses it into four blocks, namely, AA,NN,AN,NA, where N stand for nonactu-

ated, A for actuated, given as follows,

D̂s =







D̂s,AA D̂s,AN

D̂s,NA D̂s,NN







ˆ̄D =







ˆ̄DAA
ˆ̄DAN

ˆ̄DNA
ˆ̄DNN







D̂s,NA = D̂⊤
s,AU = − ˆ̄DNA

D̂a,NA = D̂⊤
a,AU = 02×4

D̂s,NN = − ˆ̄DNN

D̂a,NN = 02×2 (5.19)

Equation (5.19) shows that since underactuated condition is present, we cannot
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put extra damping term on the nonactuated body-fixed velocity and this means

that D̂a are zeros in its bottom part. This is a result from the actuators limitations,

which implies that we cannot manipulate the drag behaviour of the nonactuated

body-fixed velocities. However, since the natural damping properties of the AUV

are dissipative as mentioned in properties 2.3, at some degree we can rely on the

natural damping of AUV to keep the nonactuated body-fixed velocities bounded.

The stability analysis will be detailed in the following subsection.

5.3.1 Stability Analysis

Theorem 5.1. Using PCH formalism combined with LOS navigation, the underactu-

ated AUV is asymptotically stable.

The proof theorem will be done in two steps,

1. in the first step we show that when the restoring force has two zeros in the

nonactuated modes, the Uniformly Globally Asymptotically Stable (UGAS)

condition of the equilibrium point can be achieved. This statement is pre-

sented in proposition 5.1.

2. in the second step, we show that when the restoring force is not assumed

zero in the nonactuated modes, the UGAS condition of the equilibrium

point is preserved as well. This statement is presented in proposition 5.2.

We will begin with the first case analysis in this subsection. The second will be

presented in the following subsection.

We have shown some restrictions that are present in the underactuated condi-

tions of PCH AUV controller design. The stability of the closed loop system is
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evaluated by studying the value and sign of the time derivatives of the shaped

Hamiltonian Hs along the trajectory. Using the dynamics given on the right hand

side of (5.14), we obtain

Ḣs = −ν̂⊤ ˆ̄Dsν̂ + ν̂⊤Ĝ⊥Ĵ⊤Q̂η̃

Ḣs ≤ −ν̂⊤ ˆ̄Dsν̂ + ν̂⊤
u q̃u

Ḣs ≤ −ν̂⊤
a
ˆ̄Ds,aν̂a − ν̂⊤

u
ˆ̄Ds,uν̂u + ν̂⊤

u q̃u (5.20)

The term ν̂⊤
u q̃u in (5.20) prevents the closed loop system to converge to the de-

sired inertial position and zero velocities, due to the integration effect of the po-

sition reflected on q̃u. Generally

∥

∥

∥
ν̂⊤
u
ˆ̄Ds,uν̂u

∥

∥

∥
≤
∥

∥ν̂⊤
u q̃u

∥

∥ as t→ ∞

Evaluating q̃u when the attitude are equal to the desired attitude (ψ = ψd, θ =

θd, φd = φ), and the weighting matrix Q̂ given in (5.13), we have the following

q̃u =







qpos (a1x̃+ a2ỹ + a3z̃)

qangφ̃







a1 = − sin(ψ) cos(φ) + cos(ψ) sin(θ) sin(φ)

a2 = cos(ψ) cos(φ) + sin(φ) sin(θ) sin(ψ)

a3 = cos(θ) sin(φ)

where ai are the i-th element of the second column of J1 and φ̃ = 0. Substituting
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the values of ỹ and z̃ in term of x̃ using the equation (5.1), we have the following,

q̃u =







qposx̃
(

a1 + a2 tan(ψ)− a3
√

1 + tan(ψ)2 tan(θ)
)

qangφ̃







A straight forward trigonometric substitution confirms that the first element of

q̃u will always be equal to zero. By equation (5.20), the actuated part of body-

fixed velocities will be forced to zero by the controller, which is also true for q̃a .

Furthermore, by means of desired attitude computation as presented in (5.1), we

are able to force the error in position in sway direction to go to zero, provided

that the pitch and yaw angles of the vehicle reach the desired values with faster

dynamics. This will give ν̂⊤
u q̃u = 0 and the time derivative of the shaped Hamil-

tonian will be negative definite. Therefore the position error on sway axis will

asymptotically return to zero. This result can be summarized in proposition 5.1.

Proposition 5.1 (Stability of Underactuated AUV, where nonactuated entries of ĝ

are zeros). For a given underactuated AUV where nonactuated entries of ĝ are assumed

zeros, using desired attitude computation given by (5.1), asymptotic stability condition

of equilibrium point {xd, yd, zd, φ, θd, ψd, 0} given in theorem 4.1 is satisfied.

5.3.2 Rolling Motion Over Trajectory

In the last subsection, we have seen the stability analysis of underactuated AUV

trajectory tracking problem when the restoring forces are zeros in the nonactu-

ated modes. However, this condition is an over-simplification of real restoring

force [24] when roll angle is close to zero. When we take into account the real

restoring force, the ĝ can not be extracted from the underactuated constraint in
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eq. (5.16).

Proposition 5.2 (General stability condition for Underactuated AUV). Using de-

sired attitude computation given by (5.1), there exists an uniform ultimate bound defined

by manifold F described by

F , {x ∈ R
n : ν̂⊤D̂sν̂ ≤ (W − B) |v|+ λ|q|} (5.21)

where the ˙̄Hs is not strictly negative and all trajectories outside F are directed towards

it. Furthermore, the equilibrium point {xd, yd, zd, φ, θd, ψd 0} is asymptotically stable.

Proof. Assume that the following equation satisfies proposition 5.1

Ĝ⊥
[

ḡ −Daν̂ − Ĵ⊤Qη̃
]

= 0 (5.22)

where the restoring forces ĝ are decomposed into actuated restoring forces ḡ

which are cancelled by feedback and nonactuated restoring forces g̃ which still

remain. The remaining restoring forces on nonactuated motion g̃ are given be-

low (assuming that the center of gravity lies on the origin,center of buoyancy

horizontal axis xb,yb also equal to zero, [24]).

g̃(η) =













04×1

−(W − B) cos(θ) sin(φ)

−zbB cos(θ) sin(φ)













(5.23)

The rolling motion on the AUV due to the restoring forces behaves like the damped

inverted pendulum dynamics. Inspired by the analogy to the damped inverted

pendulum dynamics to analyse the stability of roll motion, we propose a modi-
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fied Lyapunov function as follows

H̄s = Hs + λ [1− cos(θ) cos(φ)] = Hs + H̄c (5.24)

where Hs given by (5.12). Evaluating the time derivative of H̄s along the trajec-

tory we have

˙̄Hs = −ν̂⊤D̂sν̂ + ν̂⊤g̃(η) +
∂H̄c

∂η
η̇

ν̂⊤g̃(η) = − [v (W −B) + pzbB] cos(θ) sin(φ)

∂H̄c

∂η
η̇ = λ

[

cos(θ) sin(φ)φ̇+ sin(θ) cos(φ)θ̇
]

φ̇ = p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r

θ̇ = cos(φ)q − sin(φ)r

∂H̄c

∂η
η̇ = λ [p cos(θ) sin(φ) + q sin(θ)]

if we select λ = zbB

˙̄Hs = −ν̂⊤D̂sν̂ − v (W − B) cos(θ) sin(φ) + λq sin(θ) (5.25)

˙̄Hs ≤ −ν̂⊤D̂sν̂ + (W − B) |v|+ λ|q| (5.26)

We can see from eq. (5.25) that, when the vehicle is moving in the horizontal

plane with φ = 0, θ = 0, the stability of the motion is guaranteed.

For general conditions, there exists a manifold F

F , {x ∈ R
n : ν̂⊤D̂sν̂ ≤ (W − B) |v|+ λ|q|} (5.27)
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where the ˙̄Hs is not strictly negative. Note that xd = {xd, yd, zd, φ, θd, ψd, 0} ∈ F .

Figure 5.3: Illustration of AUV trajectory and closed set F

Outside F , the trajectory will be pushed into F , because of the negative defi-

niteness of ˙̄Hs due to the dominance of ν̂⊤D̂sν̂ and hence the Lyapunov stability

condition is satisfied. Furthermore, inside F , the term

δ(νn,ηn) = −v (W −B) cos(θ) sin(φ) + λq sin(θ)

νn , [v q]⊤

ηn , [φ θ]⊤

is dominant and cannot be neglected. Indeed, inside F , ˙̄Hs can be positive. How-

ever, there exist a class KL function β, where |δ| ≤ β(νn, t) due to the damping in

v and q. Since the largest invariant set in F is the origin, invoking LaSalle Invari-

ant principle leads to the asymptotic stability of the origin. (See figure 5.3 for the
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illustration).

Except for hovering condition, most of the time the vehicle will be outside F and

hence, the stability condition will be similar to the previous case, where g̃ are

assumed to be zero.

This condition is similar to the one found in [81], where the exponential stabi-

lization of AUV can be achieved without using roll control torque, if the hydro-

dynamics restoring forces in roll motion are large enough. The same condition

also appeared in [3], where the Lyapunov time derivative of the closed loop AUV

system using the back-stepping design has a similar term due to null space of the

input matrix G.

Remark 5.1 (Disspativity of the closed loop). In the case that the effect of ocean

disturbances are considered as in equation (2.15), one can transform equation

(2.15) into actuated - nonactuated part as in the previous section. Then using the

similar convergence analysis mentioned in section 4.6.2, it is shown that using the

Lyapunov V and evaluating the time derivative along the trajectory, we obtain

V̇ ≤ −
[

η̃⊤ ν̂⊤

]

Q̄







η̃

ν̂






+

1

2
γ2b⊤b− 1

2
ȳ⊤ȳ (5.28)

ȳ ,
1

γ
Ĵ−⊤

[

M̂−1S⊤η̃ + ν̂
]

(5.29)

The input of dissipative mapping is equal to the disturbance b and the output is

given by ȳ. The last equation is exactly the L2 differential dissipation inequal-

ity, with the supply rate ̟ =
1

2
γ2b⊤b − 1

2
ȳ⊤ȳ. Providing the existence of S as

mentioned in section 4.6.2, it follows that the same inequality is necessary and
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sufficient condition for L2 ISS condition. This means that a squared integrally

bounded disturbance will only make a squared integrally bounded state distance

from the equilibrium point. (See for example [64], p 243). The parameter γ deter-

mines how small the disturbance effect will be seen in the output propagation.

5.4 Simulation Results

In this subsection, we present simulations of the underactuated controller design.

In the following simulations, the controller that we use has Da that does not

cancel the Coriolis and natural damping of the vehicle. Da is set to be constant to

give higher damping effects to make the system more robust. Ocean disturbances

are also assumed to be irrational here. The overall design of the controller and

navigation unit is shown in figure 5.4.

Figure 5.4: Controller and navigation design for underactuated AUV

5.4.1 Horizontal Plane Tracking

For horizontal plane tracking, we make a circlular trajectory with forward ve-

locity increasing from zero to a maximum value and then decreasing again to

zero. To give a picture about LOS algorithm work, we place an initial position

error. Trial and error shows that the best practice is to set qang more than ten
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times higher than qpos in (5.13). Trajectory simulation result is shown in figure

5.5. As we can see, the vehicle is first driven to the correct attitude at the begin-

ning and then goes to the initial point. Some of disturbance effect can be seen as

well, where the trajectory and attitude is a little bit disturbed. When the vehicle

nearly reaches the desired trajectory and the surge velocity increases, then the

disturbance effect is decreased, as we are expecting from eq. (5.28).

Due to the natural damping in roll body-fixed velocity and restoring force, the

roll angle of the vehicle is nearly zero, as seen in figure 5.7d. The depth of the

vehicle can also be maintained well at 25 m, as seen in figure 5.7c. The pitch

angle is slightly bigger than the roll angle since it is driven by LOS to keep up the

vehicle depth as seen also in figure 5.7e. Heading angle is shown in figure 5.7f,

where it is more disturbed compared to roll and pitch angle, as it is maintained

by LOS to converge to the desired attitude in the presence of disturbance and

initial position error.

Thrusters command are shown in figure 5.6. High forces are observed at the

starting period for the two thrusters at the rear end of the AUV due to the initial

position error. Afterwards the back thrusters force are almost less than 50 N. For

the thrusters present on the body, the forces are less compared to the two at the

rear. The forces required are less than 10 N, which is mainly to keep the vehicle

depth constant at 25 m.

5.4.2 Full Space Tracking

Using the same controller parameters as given in the previous subsection, this

simulation shows the ability of the designed controller to drive the MARES in
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Figure 5.5: Trajectory of underactuated MARES - horizontal tracking

three-dimensional tracks. Here, we require the AUV to follow spiral trajectory

which moves from sea surface to sea bottom. Figures 5.9,5.10, 5.12 and 5.11 show

the ability of the controller to handle even bigger disturbances, hence the vehicle

still tracks the desired trajectory.

Furthermore, as we can see from figure 5.10, the thrust forces nearly are very

much similar to the horizontal plane tracking thrust forces mentioned before.

The pitch angle almost settles near -0.06 rad as seen in figure 5.11e, whilst roll

angle is near zero as seen in figure 5.11d. From these two simulations, we can see

that the closed loop AUV is capable of tracking the desired trajectory with satis-

factory results, even in the presence of exogenous disturbance. In the following

section we shall make a comparison between our results with the result of the

back-stepping design technique developed in [2][3].
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Figure 5.6: Thruster command force for underactuated MARES - horizontal
tracking
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Figure 5.7: Inertial position and angle for underactuated MARES - horizontal
tracking
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Figure 5.8: Body-fixed velocity for underactuated MARES - horizontal tracking
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Figure 5.9: Trajectory of underactuated MARES - full space tracking
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Figure 5.10: Thruster command force for underactuated MARES - full space
tracking
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Figure 5.11: Inertial position and angle for underactuated MARES - full space
tracking
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Figure 5.12: Body-fixed velocity for underactuated MARES - full space tracking
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5.4.3 Full Space Tracking - Comparison

To show the appealing benefits of the proposed controller design, we present a

comparison with back-stepping design of underactuated AUV proposed in [2][3].

To support the fairness of comparison, we shall modify the MARES to three de-

grees of freedom forces, because the back-stepping design was developed for

three DOF underactuated vehicle. Added mass, drag forces, restoring forces and

the amount of exogenous disturbances are kept the same as in the previous sim-

ulation.

As seen from figure 5.13, although the back-stepping design is not designed to

handle exogenous disturbance, coupled quadratic drag and coupled translational-

rotational added mass, the closed loop response still gives a good trajectory track-

ing. However, the trajectory tracking result is inferior when compared to the

proposed design. This is explained as given below,

1. Trajectory tracking errors are much higher compared to PCH design. See

figure 5.15, blue line for PCH, while red line for back-stepping.

2. The thrust forces are far more higher compared to PCH. Some of them have

order 105 N. This probably comes from the computation of input signal

where the differentiation of α involving third time derivative of the de-

sired inertial position as well as differentiation of quadratic drag which is a

function of an absolute value of velocity.

3. The roll, pitch and yaw angle have a large jump. This is probably caused

by the same reason mentioned in number 2.
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Figure 5.13: Trajectory of underactuated MARES - full space tracking (Back-
stepping)

119



0 200 400 600 800 1000 1200 1400 1600
−300

−250

−200

−150

−100

−50

0

50

100

150

time (s)

N

Thruster Command Force 1 f1

(a) Thruster command force 1 f1

0 200 400 600 800 1000 1200 1400 1600
−3

−2

−1

0

1

2

3

4
x 10

5

time (s)

N

Thruster Command Force 2 f2

(b) Thruster command force 2 f2

0 200 400 600 800 1000 1200 1400 1600
−3

−2

−1

0

1

2

3
x 10

5

time (s)

N

Thruster Command Force 3 f3

(c) Thruster command force 3 f3

Figure 5.14: Thruster command force for underactuated MARES - full space
tracking(Back-stepping)
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Figure 5.16: Inertial position and angle for underactuated MARES - full space
Tracking (Back-stepping)
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Figure 5.17: Body-fixed velocity for underactuated MARES - full space tracking
(Back-stepping)
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5.5 Conclusions

In this chapter, we have established the extension of the passivity-based PCH

control design of AUV to the underactuated condition. Using a proper design

of desired attitude and validating the matching condition for the underactuated

restriction, we are able to design the controller that can lead the underactuated

AUV to track full space trajectory. The benchmark results with the back-stepping

design developed in [3],[2] show a definite superiority of the proposed controller

design over the back-stepping design.
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Chapter 6

Observer Design

6.1 Introductions

The state feedback design requires the availability of the states to produce the

control input. While many controller designs are based on the state feedback, it

is a fact that in many systems, measuring all states might be not possible or phys-

ically not feasible. The observer provides a way to have an image of the system

states from measurements of the output. In the framework of Port Controlled

Hamiltonian (PCH), we present an approach to design an observer for a spe-

cific class of PCH that is well suited to Autonomous Underwater Vehicle (AUV).

Since the pioneer work of Luenberger’s observer in the mid sixties [61], observer

design for dynamic systems has drawn much attention and experienced many

remarkable results [95, 34, 78].

The design of an observer for linear system is a mature field. On the other hand,

for the non-linear counterpart, the design problem is still challenging. There are
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many observer design results available in the literature for specific classes of non-

linear systems [47, 48, 104, 40, 72, 6, 79]. For PCH, there have been several ob-

server designs for Hamiltonian systems proposed in the literature. Herbert [93],

proposed a design method for a class of generalized Hamiltonian systems, in

which the output was assumed to be linear and the structure matrix was assumed

to be constant. Lohmiller and Slotine [59] proposed an observer design of a class

of Hamiltonian systems based on their earlier work on contraction analysis to

produce a globally convergent observer. In [103], an observer of PCH systems

was designed using what is called ’Augment plus Feedback’. In this method, the

observer is designed using not only output error, but also a feedback through the

observed system, aiming to create a passivation in the augmented state and state

estimate dynamics. In [97], the observer design was proposed using a similar

way.

Before we present the observer design in PCH, we need to recall the vanishing

perturbation theorem[42] in input to state stability of nonlinear systems and the

stability of cascaded nonlinear time varying system [77]. We will use the vanish-

ing perturbation lemma to show that the error dynamics have asymptotic stable

equilibrium point at origin. The stability of cascaded nonlinear systems will be

used to establish the separation principle of PCH observer and controller design.

The contributions of this chapter are

1. New framework of observer design for quadratic Hamiltonian PCH sys-

tems.

2. Design of PCH based nonlinear observer for AUV.

3. The separation principle analysis of PCH systems in generals and AUV for
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particular cases.

4. Re-design of AUV observer proposed in [83].

6.2 Vanishing Perturbation

Consider the system

ẋ = f(t,x) + g(t,x) (6.1)

where f : [0,∞)× D → Rn and g : [0,∞)×D → Rn are piecewise continuous in

t and locally Lipschitz in x on [0,∞) × D and D ⊂ Rn is an open connected set

that contains the origin x = 0. We consider this system as a perturbation of the

nominal system

ẋ = f(t,x) (6.2)

The perturbation term g(t,x) could result from errors in modeling the nonlinear

dynamics or external forces. In a typical situation we do not know g(t,x), but we

know some information about it, like its upper-bound ‖g(t,x)‖. We will consider

the special class of the perturbations, where g(t, 0) = 0, known as Vanishing Per-

turbation. In this case, the perturbed system (6.1) has an equilibrium point at the

origin.

Suppose that the origin is an exponentially stable equilibrium point of the nomi-
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nal system (6.2) and let V (t,x) be a Lyapunov function that satisfies

c1‖x‖22 ≤ V (t,x) ≤ c2‖x‖22 (6.3)

∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x) ≤ −c3‖x‖22 (6.4)

∥

∥

∥

∥

∂V (t,x)

∂x

∥

∥

∥

∥

2

≤ c4‖x‖2 (6.5)

for all [0,∞)×D, for some positive constant c1, c2, c3, c4. In addition, suppose the

perturbation term g(t,x) satisfies the linear growth bound

‖g(t,x)‖2 ≤ γ(t)‖x‖2, ∀t ≥ 0, ∀x ∈ D (6.6)

where γ : R → R is non-negative and piecewise continuous. The derivative of V

along the trajectories of (6.1) is given by

V̇ =
∂V (t,x)

∂t
+
∂V (t,x)

∂x
f(t,x) +

∂V (t,x)

∂x
g(t,x)

With growth bound (6.6) as our only information on g, the best we can do is to

perform the worst case analysis as given below

V̇ ≤ −c3‖x‖22 +
∥

∥

∥

∥

∂V (t,x)

∂x

∥

∥

∥

∥

2

‖g(t,x)‖2

V̇ ≤ −c3‖x‖22 + c4γ(t)‖x‖22

if γ(t) is small enough to satisfy the bound

γ(t) ≤ γ̄ <
c3
c4
, ∀t ≥ 0 (6.7)
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then

V̇ (t,x) ≤ −(c4 − γ̄c4)‖x‖22, (c4 − γ̄c4) > 0

Lemma 6.1. [42] Let x = 0 be an exponentially stable Equilibrium point of the nominal

system (6.2). Let V (t,x) be a Lyapunov function of the nominal system satisfying the

(6.3),(6.4),(6.5) inequalities in [0,∞) × D. Suppose the perturbation term satisfies the

growth condition (6.6). Then x = 0 is an exponentially stable equilibrium point of the

perturbed system (6.1). Moreover, if all assumptions hold globally, then the origin is

globally exponentially stable.

6.3 Stability of Cascaded Nonlinear Time Varying Sys-

tem

In this section, we recall the analysis of stability of cascaded nonlinear time vary-

ing system as given in [77], where the detailed proofs may be found. Consider a

cascaded system as given below

Σ1 : ẋ1 = f1(t,x1) + g(t,x)x2 (6.8)

Σ2 : ẋ2 = f2(t,x2) (6.9)

where x =

[

x⊤
1 x⊤

2

]⊤

. Consider the following assumptions

Assumption 6.1. The system ẋ1 = f1(t,x1) is Uniformly Globally Asymptoti-

cally Stable (UGAS) with a Lyapunov function V (t,x1) : R+ × Rn → R+ positive
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definite and radially unbounded which satisfies

∥

∥

∥

∥

∂V (t,x1)

∂x1

∥

∥

∥

∥

‖x1‖ ≤ c1V (t,x1), ∀‖x1‖ ≥ σ (6.10)

where c1, σ > 0 and
∥

∥

∥

∥

∂V (t,x1)

∂x1

∥

∥

∥

∥

≤ c2, ∀‖x1‖ ≥ σ (6.11)

Assumption 6.2. The function g(t,x) satisfies

‖g(t,x)‖ ≤ ϕ1(‖x2‖) + ϕ2(‖x1‖)‖x2‖ (6.12)

where ϕ1, ϕ2 : R+ → R+ are continuous.

Assumption 6.3. Equation ẋ2 = f2(t,x2) is UGAS and for all t0 ≥ 0,

∫ ∞

t0

‖x2(t, t0,x2(t0))‖dt ≤ φ(‖x2(t0)‖) (6.13)

where φ is a class K function.

Theorem 6.1. If Assumptions 6.1-6.3 are satisfied and ẋ1 = f1(t,x1) is Uniformly

Globally Stable (UGS), then the cascaded system (6.8),(6.9) is UGS

Theorem 6.2. If Assumptions 6.1-6.3 are satisfied and ẋ1 = f1(t,x1) is UGAS with

Lyapunov function satisfying inequality (6.10) and Assumption 6.2-6.3, then the cas-

caded system (6.8),(6.9) is UGAS

6.4 Port Controller Hamiltonian Based Observer

In this section, rather than using the augmented approach as in [103, 97], we pro-

pose to design an observer that relies only on the output error, which is inspired
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by the linear Luenberger observer design. Consider the general PCH system as

below

ẋ = [J (x)−R(x)]∇xH +Gu

ẋ = T (x)∇xH +Gu (6.14)

The measurement of the system does not have to be the output of PCH system.

The assumptions that are used in the observer design are given as follows,

Assumption 6.4 (Quadratic Error Hamiltonian). The Hamiltonian of the system

is a quadratic function of the systems state, such that, the partial derivative of

the Hamiltonian with respect to the system state is linear function of the system

states and the difference between the partial derivative of Hamiltonian with re-

spect to the system state and the Hamiltonian with respect to state estimate is

linear in error, i.e. e = x− x̂ and He =
1

2
e⊤Pe. In addition, the shaped Hamilto-

nian error Hs,e is assumed quadratic.

Assumption 6.5. The PCH interconnection matrix, J , and its associate damping,

R, have the following properties,

T (x) = T (x̂) + ∆T (x̂, e) (6.15)

J (x) = J (x̂) + ∆J (x̂, e)

R(x) = R(x̂) + ∆R(x̂, e)

Assumption 6.6. There exists an observer gain matrix L(x̂), such that

L(x̂)ỹ = [J (x̂)−R(x̂)]∇eHe − [Js(x̂)−Rs(x̂)]∇eHs,e
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where Js is the desired antisymmetric interconnection matrix and Rs is the de-

sired damping characteristic.

Using the assumptions above, we develop the following observer design for a

class of PCH.

Theorem 6.3. Consider the system (6.14), the following observer equation

˙̂x = T (x̂)∇x̂H +Gu+ L (y − ŷ) (6.16)

with ∆T and ∆R having bounded gain. The observer described above has a Lyapunov

stable error dynamic, with the shaped Hamiltonian error Hs,e, if the following inequalities

are satisfied

−∇eH⊤
s,eRs∇eHs,e +∇eH⊤

s,e∆T (x̂, e)∇xH ≤ 0 (6.17)

Asymptotic stability is given, if the largest invariant set described by the above equation

contains only the origin.

Proof. Subtracting the state estimate dynamics from the state dynamics, we have

ẋ− ˙̂x = [T (x)∇xH− T (x̂)∇x̂H]− L(x̂)ỹ

ė = [T (x̂)∇eHe +∆T (x̂, e)∇xH]− L(x̂)ỹ

ė = [Js(x̂)−Rs]∇eHs,e +∆T (x̂, e)∇xH (6.18)

Evaluating the error Hamiltonian time derivative along the trajectory, the follow-

ing results are obtained

˙Hs,e = −∇eH⊤
s,eRs∇eHs,e +∇eH⊤

s,e∆T (x̂, e)∇xH
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Since we require

−∇eH⊤
s,eRs∇eHs,e +∇eH⊤

s,e∆T (x̂, e)∇xH ≤ 0,

The error dynamics is Lyapunov stable, with respect to the Hamiltonian of the

error. The asymptotic stability properties are provided if the largest invariant set

in {e : ˙Hs,e = 0} is the origin.

Remark 6.1. In the case that Rs is full rank matrix and positive definite, we can

use Lemma 6.1 to prove the exponential stability of the origin in error dynamic.

Consider now the states in the perturbed system (6.1) and the nominal system

(6.2) as the errors between the true state values and the estimates respectively.

From eq. (6.18), f will be equal to [Js(x̂)−Rs]∇eHe and g will be ∆T (x̂, e)∇xH.

g is equal to zero if e = 0, which implies the perturbations will vanish at the

origin. If there is an upper bound value γ̄ such that, g ≤ γ̄‖e‖ and ‖∇eHe‖ ≤

c4‖e‖ -which can easily be found, since we assume in the beginning that ∇eHe

is linear in e-, then following lemma 6.1, the error dynamics may shown to be

exponentially stable.

6.5 Separation Principle

In this section, we investigate the stability of the observer based feedback sys-

tems of PCH. It is well known from Luenberger linear observer that the observer

design can be done separately without affecting the closed loop system stabil-

ity, or in simple terms, the observer gain L can be chosen independently from

the feedback gain K. While general separation principle is guaranteed in linear
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systems, this is not valid in the nonlinear systems. So, it can happen that using

asymptotic stable state estimation, the asymptotically stable closed loop system

under state feedback control produces unstable closed loop dynamics.

Recall the general equation of the PCH system (6.14), where the feedback is a

function of the state estimate,

ẋ = T (x)∇xH +Gu(x̂) (6.19)

u(x̂) is the feedback signal which is a function of the state estimate. To analyze

the stability of (6.19), we need the following assumption

Assumption 6.7. The feedback signal u(x̂) can be selected such that

u(x̂) = ues(x̂) + uad(x̂)

ẋ = T (x)∇xHs +Guad(x̂)

We state the stability of the controlled system (6.19) as follows

Theorem 6.4. Consider the system (6.19), the closed loop system is Lyapunov stable if

the following inequality is satisfied

−∇xH⊤
s [Rs(x)−∆Ra(x̂, e)]∇xHs +∇xH⊤

s Ra(x̂)∇eHs,e ≤ 0 (6.20)

Asymptotic stability is given, if the largest invariant set contains only the origin.

Proof. Select uad = −Ra(x̂)∇x̂Hs and substitute it into the dynamics of the PCH
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system in (6.14). Doing this, we obtain

ẋ = T (x)∇xHs +Guad(x̂)

ẋ = T (x)∇xH−Ra(x̂) [∇xHs −∇eHs,e]

ẋ = [J (x)− (R(x) +Ra(x))]∇xHs +∆Ra(x̂, e)∇xHs +Ra(x̂)∇eHs,e

ẋ = [J (x)−Rs(x)]∇xHs +∆Ra(x̂, e)∇xHs +Ra(x̂)∇eHs,e (6.21)

Evaluating the time derivative of the Hamiltonian along the trajectory, we obtain

Ḣ = −∇xH⊤
s [Rs(x)−∆Ra(x̂, e)]∇xHs +∇xH⊤

s Ra(x̂)∇eHs,e (6.22)

Since we require

−∇xH⊤
s [Rs(x)−∆Ra(x̂, e)]∇xHs +∇xH⊤

s Ra(x̂)∇eHs,e ≤ 0

the closed loop system is Lyapunov stable with respect to the Hamiltonian. The

asymptotic stability property is provided if the largest invariant set in {x : Ḣs =

0} is only the origin.

Remark 6.2. In some applications, evaluating the condition of Ḣs ≤ 0 along the

trajectory is difficult. However, we can use theorem 6.1 or 6.2, to show that the

closed loop system is UGS or UGAS. If the error dynamics of the constructed

observer has UGAS behaviour, then by invoking theorem 6.1 or 6.2, we can con-

clude about the observer based closed loop system stability, provided that the as-

sumptions of the theorems are satisfied. This is related to the bound on Lyapunov

function, the growth rate on the perturbations and the integrable condition of the

error dynamics.
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Remark 6.3. If the additional damping Ra is a constant matrix, the problem be-

comes simplified since ∆Ra will be equal to zero. In the AUV case, as we have

seen in the previous chapter, because of the antisymmetric properties of the Cori-

olis matrix and the dissipativity of the natural AUV damping, we can have Ra as

a constant matrix to impose stronger dissipativity.

6.6 AUV applications

To have fully autonomous operation, AUV is typically equipped with on-board

set of sensors. These sensors usually contain Inertial Navigation System (INS)(usually

strap-down type), Global Positioning Systems (GPS) for at surface earth position

sensors and depth sensors. In addition, AUV can also be equipped with Doppler

sensors if the AUV travels near sea bed. Beacon type sensors are also commonly

used for AUV navigations. One of the main difficulties, is how to estimate the

inertial horizontal plane position of AUV , without using the beacon based mea-

surements. It is challenging since although the INS can have very high measure-

ment data rate, its position reading has divergent error characteristic due to two

folded integration of acceleration measurement. In the vertical axis (depth), the

position of the vehicle can be corrected continuously by a pressure sensor inside

the AUV. For the X,Y axis, the problem is more complicated. Indeed, there are

many approaches available in the literature dealing with the corrections (aiding)

of the INS inertial position measurements. The main approaches make use of the

kinematic equation of the vehicle and Extended Kalman Filter (EKF), mentioned

as follows:

1. Beacon based: This is the oldest way for aiding INS, [52]. The difficulties
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usually come from the slow rate of beacon based measurement, inherent

delay, high noise and high loss of data measurement.

2. Doppler Velocity : From the initial results available in the literature [44][36],

aiding INS with Doppler Velocity Log (DVL) provides means such that the

horizontal position estimation from INS can be tuned to have 0.01 % error

through the traveled path. This method faces difficulty in case the AUV is

not near the sea bed, or touching the trench shaped region.

3. Model Aided: This technique originally appeared for Unmanned Aerial Ve-

hicle (UAV) [46]. The idea is to reduce the propagation error of INS using

a model that most likely contains uncertainties. After the seminal paper

introduced for UAV came with outstanding simulation results[46], the idea

has been used in AUV with kinematic model [69], which subtracts the po-

sition measurements of INS from the position estimate computed from the

model. The errors are then propagated by EKF using perturbation tech-

nique. The real experimental results published recently in [33], show the

benefit of such method. This technique although it is considered cheap and

promising like the DVL aiding technique,it only reduces the horizontal po-

sition error propagation and does not make it convergent to zero.

In general, the aiding techniques are used in AUV navigation to have a longer

below-surface time operation until next surfacing. When the vehicle appears at

the sea surface, the position estimation of INS is corrected by the GPS. Aiding

technique by DVL and model does not replace the need for surfacing, since it

only reduces the error propagation. Readers are referred to [52] for a detailed

survey on this technique. In the next section, we study the possibility of using

the PCH based observer method.
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6.6.1 PCH based Observer Design

With all tools described in the previous section, we address the observer design

problem for AUV. For the observer development, we assume that, depth, atti-

tude, linear velocity and angular velocity are measured. Since the initial Hamil-

tonian is chosen equal to kinetic energy of the vehicle, the Hamiltonian of error

will be

He =
1

2
e⊤p M

−1ep (6.23)

and the observer error equation becomes

ė = (J (x̂)−R(x̂))∇eHe +∆Ψ(x̂, e) + Lỹ (6.24)

∆Ψ(x̂, e) = ∆J (x̂, e)∇xH +∆R(x̂, e)∇xH (6.25)

Next, we choose the shaped Hamiltonian error as below

Hs,e =
1

2

[

e⊤p M
−1ep + e⊤η1Λ1eη1 + e⊤η2Λ2eη2

]

(6.26)

Evaluating the matching condition, we have

(J (x̂)−R(x̂))∇eHe +∆Ψ(x̂, e) + Lỹ = (J (x̂)−Ro)∇eHs,e +∆Ψ(x̂, e)

If we select

Ro =













Do1

Do2

Do2
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Where, Do1 ,Do2 ∈ R
3×3 and Do3 ∈ R

6×6, then we have

Lỹ =













−Do1Λ1eη1

−Do2Λ2eη2

−J⊤
1 Λ1eη1 − J⊤

2 Λ2eη2 − (Do3 − D̄)eν













(6.27)

However, since two elements in the eη1 are inaccessible (X,Y of inertial position

are not measured), then Λ1 has to be chosen as diag{0 0 λz}. This implies that,

the error on X,Y of inertial position cannot be made convergent to zero, since

Hs,e will have non-unique minima. However, one can have a rough estimate of

eη1 value by integrating J(η2)eν1 , but this does not guarantee that the observer

will have an asymptotic error behaviour.

6.6.2 AUV Observer Alternative

In this subsection, we present an alternative observer design for AUV type with

the inertial position measured directly by beacon measurements. The proposed

AUV observer is closely related to the one proposed in [83]. However we analyze

and derive the error dynamics of the AUV observer without using a filtered error

dynamics as used in [83], so the derivation is clearer and shorter. In addition, as

we will elaborate more later on this subsection, the use of yet simpler notation

can lead to stronger stability results than the one mentioned in [83]. Let us define

x1 = η,x2 = J(y)ν,xb
2 = ν,x3 = b and x̃ = x̂− x.
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Since the only measurement available is η, the observer is constructed as below

˙̂x1 = x̂2 + L1x̃1

˙̂x2 = M∗−1(y)
[

J−1(y)τ + x̂3 − g(y)−C∗(x̂b
2,y)x̂2 −D∗(x̂b

2,y)x̂2

]

+ L2x̃1

˙̂x3 = −T−1x̂3 + L3x̃1

The plant equations are rewritten as follows,

ẋ1 = x2

ẋ2 = M∗−1(y)
[

J−1(y)τ + x3 − g(y)−C∗(xb
2,y)x2 −D∗(xb

2,y)x2

]

ẋ3 = −T−1x3

where we make use of assumptions 2.4 and 2.3. Using the preceding assumptions

and properties, the error dynamics are given by

˙̃x1 = x̃2 + L1x̃1 (6.28)

˙̃x2 = M∗−1(y)
[

x̃3 −
[

C∗(x̂b
2,y)x̂2 −C∗(xb

2,y)x2 +D∗(x̂b
2,y)x̂2 −D∗(xb

2,y)x2

]]

+ L2x̃1 (6.29)

˙̃x3 = −T−1x̃3 + L3x̃1 (6.30)

using property 2.2

C∗(x̂b
2,y)x̂2 = C∗(xb

2,y)x2 +C∗(xb
2,y)x̃2 +C∗(x̃b

2,y)x̂2

Hence ,

C∗(x̂b
2,y)x̂2 −C∗(xb

2,y)x2 = C∗(xb
2,y)x̃2 +C∗(x̃b

2,y)x̂2
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For the drag term, using properties 2.3 and 2.2, we have D∗(x̂b
2,y)x̂2−D∗(xb

2,y)x2

= D∗
l (y)x̃2 +D∗

nl(x
b
2,y)x2 −D∗

nl(x
b
2,y)x2

= D∗
l (y)x̃2 +D∗

nl(x
b
2,y)x̃2 +D∗

nl(x̃
b
2,y)x̂2

Arranging similar terms, we can have the error dynamics for the second state

written as

˙̃x2 = M∗−1(y)
[

x̃3 −Ψ1(x
b
2,y)x̃2 −Ψ∗∗

2 (x̃b
2,y)x̂2

]

+ L2x̃1 (6.31)

Ψ1(x
b
2,y) , C∗(xb

2,y) +D∗
l (y) +D∗

nl(x
b
2,y) (6.32)

Ψ∗∗
2 (x̃b

2,y) , C∗(x̃b
2,y) +D∗

nl(x̃
b
2,y) (6.33)

From properties 2.2 and 2.3, C∗(x̃b
2,y) and D∗

nl(x̃
b
2,y)depend linearly on x̃b

2. Hence,

∂Ψ∗∗
2 (x̃b

2,y)x̂2

∂x̃b
2

x̃b
2 = Ψ∗

2(x̂
b
2,y)J(y)x̃

b
2

= Ψ2(x̂
b
2,y)x̃2

Finally, we have

˙̃x2 = M∗−1(y)
[

x̃3 −
[

Ψ1(x
b
2,y) +Ψ2(x̂

b
2,y)

]

x̃2

]

+ L2x̃1 (6.34)

Having this, we select the following Lyapunov candidate function

V (x̃,y) =
1

2

[

x̃⊤
1 Λ1x̃1 + x̃⊤

2 M
∗(y)x̃2 + x̃⊤

3 Λ3x̃3

]

(6.35)

where Λ1 and Λ3 are symmetric positive definite matrices. Evaluating the time
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derivative of V along the trajectory, we have

V̇ =x̃⊤
1 Λ1x̃2 + x̃⊤

1 Λ1L1x̃1 + x̃⊤
2 x̃3 − x̃⊤

2 Ψ⊤(x̂2,x2,y)x̃2

− x̃⊤
3 Λ3T

−1x̃3 + x̃⊤
3 Λ3L3x̃1 + x̃⊤

2 Λ2L2x̃1 +
1

2
x̃⊤
2 Ṁ

∗(y)x̃2

Ψ⊤(x̂2,x2,y) ,Ψ1(x
b
2,y) +Ψ2(x̂

b
2,y)

Deploying the skew symmetric property of (Ṁ∗ − 2C∗), property 2.1,the term

having Ṁ∗ can be removed from the equation. Further, we elaborate more on the

last equation as below

V̇ =− x̃⊤
1 P1x̃1 − x̃⊤

3 (1− γ2)P3x̃3 + 2x̃⊤
3 Λ3L3x̃1

− x̃⊤
2 P2x̃2 − x̃⊤

3 (γ
2)P3x̃3 + x̃⊤

3 x̃2

P1 ,
√

Λ1L1

P2 ,
√

Ψ⊤

P3 ,
√

Λ3T−1

‖γ‖ <1

where we select L2 = −M∗−1Λ1. From properties 2.3 and 2.2, as well as the

bounded velocity assumption 2.2, Ψ⊤ will be positive definite with non-zero

lower bound. Hence, it is possible to design the observer that has V̇ always

negative along the trajectory by designing proper observer gains, Li. The time

derivative of the Lyapunov as described in the above equation, can be made neg-
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ative definite by selecting the L1 negative definite and ,L3,Λ3 as follows

Λ3 >
1

4γ2
Ψ⊤

−1
minT (6.36)

L3 = 2
√

1− γ2Λ−1
3

√

Λ3T−1Λ1L1 (6.37)

Ψ⊤min ≤ Ψ⊤ (6.38)

Finally we state the following proposition

Proposition 6.1. For the AUV system satisfying all assumptions and properties men-

tioned in section 2.4, for a given Lyapunov function (6.35) there will be a set of Li, i =

1, 2, 3,

Λ3 >
1

4γ2
Ψ⊤

−1

minT (6.39)

L1 < 0 (6.40)

L2 = −M∗−1Λ1 (6.41)

L3 = 2
√

1− γ2Λ−1
3

√

Λ3T−1Λ1L1 (6.42)

that render the system Uniformly Globally Exponentially Stable (UGES).

6.6.3 Separation Principle

As mentioned in remark 6.2, we have to show that the output feedback closed

loop system satisfies the required assumption of the theorem. The nominal sys-

tem of the AUV state dynamics has UGAS properties. Based on the discussion in

the previous chapter, we showed that there is an associated quadratic Lyapunov

function which proves that the desired equilibrium point is Uniformly Locally
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Exponentially Stable (ULES). As mentioned in [77], the growth condition of the

Lyapunov function mentioned in assumption 6.1 is satisfied by all functions of

the form V (t, x) = k‖x‖p, ∀p ∈ (1,∞), k > 0, which is satisfied by the Lyapunov

function of the AUV as mentioned in the previous chapter.

We have the following equation for the AUV dynamics,

ẋ = T (x)∇xHs +G (−∆ues(x̂, e) + uad(x̂)−∆g(x̂, e)) (6.43)

Since Guad(x̂) = −Ra(x̂)∇x̂Hs

ẋ = [J (x)−Rs(x)]∇xHs −∆R(x̂, e)∇xHs

+G (−∆ues(x̂, e)−∆g(x̂, e) +Ra(x̂)∇eHs,e) (6.44)

Next, we separate the state dynamics into the following two terms

f(x) = [J (x)− (Rs(x)−∆Ra(x̂, e))]∇xHs (6.45)

̺(x̂, e) = −G (∆ues(x̂, e) + ∆g(x̂, e) +Ra(x̂)∇eHs,e) (6.46)

Using proper selection, the nominal value of state dynamic ẋ = f(x) is UGAS.

This can be achieved by selecting Rs > supx̂∆Ra and this will lead to negative

definite shaped Hamiltonian time derivative. In addition, as pointed out in re-

mark 6.3, for most AUV types, we can always select Ra as a constant. Next, we

show that the assumption 6.2 and 6.3 are satisfied as well, which is related to the

growth bound of the perturbations. ̺ will be treated separately in relationship

with cascaded system analysis as given in section 6.3.
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Perturbation growth of ̺

This section is intended to discuss the perturbation growth of ̺ and its relation

with the total stability of the system. We will elaborate more using the cascaded

theorem, with x1 = x and x2 = e. ∆ues(x̂, e) is given by

∆ues(x̂, e) =ues(x)− ues(x̂)

=− J⊤(η̂2)Q̂eη −∆J⊤Q̂η̃

Recall that in the state dynamics, ̺ can be given by

̺(x̂, e) = +G (−∆ues(x̂, e)−∆g(x̂, e) +Ra(x̂)∇eHs,e)

=J⊤(η̂2)Q̂eη +∆J⊤Q̂η̃ +Ra(ν̂)eν −∆g(x̂, e)

Using the mean value theorem there will be xr on the line joining x and x̂, such

that

X (x)−X (x̂) =
∂X
∂x

∣

∣

∣

∣

x=xr

e (6.47)

Furthermore, if X is Lipschitz continuous in x, there will be a constant ς , such that

|X (x)−X (x̂)| ≤ sup
x

∥

∥

∥

∥

∂X
∂x

∥

∥

∥

∥

‖e‖ = ς‖e‖ (6.48)
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Using the mean value theorem, we get the following results

‖̺‖ ≤ λJQ‖eη‖+ (λ∆JQ + λg) ‖eη2‖+ λDa
‖eν‖

λJQ , sup
η2

∥

∥

∥
J⊤(η2)Q̂

∥

∥

∥

λ∆JQ , sup
η2

∥

∥

∥

∥

∥

∂J⊤(η2)Q̂

∂η2

∥

∥

∥

∥

∥

‖η̃‖

λg , sup
η2

∥

∥

∥

∥

∂g(η2)

∂η2

∥

∥

∥

∥

λDa
, sup

ν

Da(ν)

From the above equation, using angle restriction assumption 2.1, bounded J

property 2.5 and bounded velocities assumption 2.2, the condition in assump-

tion 6.2 of cascaded theorem is satisfied. Assumption 6.3 is satisfied by the fact

that the estimation error e dynamic is UGES.

6.7 Simulation Results

The PCH observer and the alternative observer simulation results are presented

here. The simulations are carried in the presence of ocean current as external

disturbance which are assumed to be irrotional. The measurements are also as-

sumed to be corrupted with white noise. We present two cases of simulation.

The first set of simulation is carried out with the controller input signals com-

puted using the true value of the state. This has to be taken first to show the

convergence of the estimation, since the system is open loop unstable. The sec-

ond simulation set is carried out with the controller signals computed using the

estimated states to show observer-controller closed loop responses.
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Figure 6.1: Error on inertial position estimation - case 1
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Figure 6.2: Error on body-fixed velocity estimation - case 1
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Figure 6.3: Error on inertial position estimation - case 2
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Figure 6.4: Error on body-fixed velocity estimation - case 2
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Figure 6.5: Body-fixed frame velocity - case 1
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Figure 6.6: Body-fixed frame velocity - case 2
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Figure 6.7: Error on inertial position estimation - case 1
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Figure 6.8: Error on body-fixed velocity estimation - case 1
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Figure 6.9: Error on inertial position estimation - case 2
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Figure 6.10: Error on body-fixed velocity estimation - case 2
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6.7.1 PCH Observer

The simulation results for the first case are shown in figures 6.1 and 6.2, whilst

the results of the second case are shown in figures 6.3 and 6.4. From the simula-

tion case 1 as shown in figures 6.1 and 6.2, we can see that the observer is able

to produce good estimations in body-fixed velocity, angle and depth. The depth

actually has an initial value error, as can be seen in figure 6.1c, but it reduces very

fast to the white noise. The fact that the horizontal inertial position errors are

not converging can also be seen in figure 6.1a and 6.1b. As we already predicted

before, the horizontal inertial position estimation cannot converge. The drifts

in horizontal position are also propagated as the vehicle moves in the horizontal

plane. Fortunately, from 800 seconds simulation, the error of the inertial horizon-

tal plane is less than one meter. The combination of the controller and observer

is also able to track the desired path, nearly the same with the direct feedback.

6.7.2 Alternative Observer

The estimation errors in the first case are shown in figures 6.7 and 6.8, whilst the

results of the second case are shown in figures 6.9 and 6.10. From figures 6.7 and

6.2, we can see that the observer is able to produce good estimations for body-

fixed velocities and inertial positions. The X and Y positions have an initial error.

The errors reduce very fast as seen in 6.7a and 6.7b. The results of body-fixed

velocity estimation are also considerably good, even for angular velocities u, v, w.

The estimations are smoother than the measurement as seen in figure 6.5. Inertial

position and angle comparison between the estimated and the true value are not

presented here, since they closely coincide each other. The observer-controller
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output feedback simulations also give a satisfactory trajectory tracking result,

but with the trajectory errors becoming slightly bigger than direct state feedback.

(See figures 6.9, 6.10 and 6.6)

6.8 Conclusions

In this chapter, we have presented a new observer design for a class of PCH that

has a quadratic Hamiltonian function. The separation principle is also described

for the class of PCH. However, when we use the designed PCH observer for

AUV where horizontal position is not measured, the estimation errors are still

converging to zero. Fortunately, as shown in the simulation results, the horizon-

tal estimation drifts are considerably small compared to the travelled trajectory.

The simulations show that the output-feedback design using the proposed PCH

observer is able to track the desired trajectory with small drifts.

We also redesigned an observer for an AUV type with inertial position measure-

ments. The proposed AUV observer is closely related to the one proposed in

[83]. Using nearly the same assumptions and properties, we can meet a stronger

stability condition on observer estimation error dynamics.
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Chapter 7

Conclusions

7.1 Contributions

In this thesis, the following problems have been carefully presented through rig-

orous mathematical analysis

• Chapter 4,

1. PCH formulation of AUV dynamics.

2. Design of nonlinear passivity-based controller for AUV based on PCH

formalism.

3. Extension of the work in [91] in L2 disturbance attenuation for PCH.

In our work,we relaxed the input gain matrix G(x) restriction, where

we allow the disturbance have different input gain matrix G2.

4. Extension to the work in [57] in adaptive L2 disturbance attenuation

for PCH. We relaxed the G(x) restriction, where we allow the input
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and disturbance matrix gain to have some uncertainties.

5. Convergence rate analysis of closed loop AUV systems.

6. Stability analysis of the designed closed loop AUV system in the pres-

ence of parameter uncertainty and exogenous disturbance.

7. Application of the L2 and adaptive L2 attenuation for PCH system into

the AUV.

• Chapter 5,

1. Robust L2 Input to State Stable (ISS) trajectory tracking design with

respect to the ocean currents.

2. Relaxation of a smooth time differentiable desired trajectory constraint

as in [2, 3].

• Chapter 6,

1. New framework of observer design for quadratic Hamiltonian PCH

system.

2. Design of PCH based nonlinear observer for AUV.

3. The separation principle analysis of PCH system in general and AUV

for particular case.

4. Re-design of AUV observer proposed in [83].
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7.2 Concluding Remarks

Based on the work presented here, we can have the following conclusions

1. PCH based nonlinear controller and observer design find an easy applica-

tion for wide mechanical systems. In our development, we look that by

means of PCH formulation, we can meet both simplicity of the design as

well as the robustness against parameter uncertainty and exogenous dis-

turbance. Using the PCH formulation, design of L2 disturbance attenuation

control as well as its adaptive scheme found a straight forward extension

and easy application in AUV.

2. The extension of the passivity-based PCH control design of AUV for un-

deractuated condition has been established here. Using a proper design

of desired attitude and validating the matching condition for the under-

actuated restriction, we are able to design the controller that can lead the

underactuated AUV to track full-space desired trajectory.

3. The designed PCH observer for AUV still does not able to meet the conver-

gence condition on horizontal position estimation. However, from the sim-

ulation results, the drift of the horizontal estimation is considerably small

when compared to the travelled trajectory. The simulations also show that

the closed loop of the observer based feedback is able to track the desired

trajectory with small drift in the horizontal inertial position.
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7.3 Future Work

1. Controller design that we presented is restricted to the affine controlled

type of AUV. However, for AUV with a fin surface as a controller, the dy-

namics equation is not input affine. An extension of this work to non affine

conditions will be a good contribution.

2. The actuator dynamics and saturation restrictions are not considered here.

However, for real implementation, this factor has to be carefully consid-

ered. Extension of this work with actuators restrictions will be also an in-

teresting problem to examine.
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