119 research outputs found

    Variational Analysis in Nonsmooth Optimization and Discrete Optimal Control

    Get PDF
    The paper is devoted to applications of modern methods of variational· analysis to constrained optimization and control problems generally formulated in infinite-dimensional spaces. The main attention is paid to the study of problems with nonsmooth structures, which require the usage of advanced tools of generalized differentiation. In this way we derive new necessary optimality conditions in optimization problems with functional and. operator constraints and then apply them to optimal control problems governed by discrete-time inclusions in infinite dimensions. The principal difference between finite-dimensional and infinite-dimensional frameworks of optimization and control consists of the lack of compactness in infinite dimensions, which leads to imposing certain normal compactness properties and developing their comprehensive calculus, together with appropriate calculus rules of generalized differentiation. On the other hand, one of the most important achievements of the paper consists of relaxing the latter assumptions for certain classes of optimization and control problems. In particular, we fully avoid the requirements of this type imposed on target endpoint sets in infinite-dimensional optimal control for discrete-time inclusions

    Necessary Conditions in Multiobjective Optimization With Equilibrium Constraints

    Get PDF
    In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) described by generalized equations in the form 0 is an element of the set G(x,y) + Q(x,y), where both mappings G and Q are set-valued. Such models particularly arise from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish verifiable necessary conditions for the general problems under consideration and for their important specifications using modern tools of variational analysis and generalized differentiation. The application of the obtained necessary optimality conditions is illustrated by a numerical example from bilevel programming with convex while nondifferentiable data

    On nonsmooth multiobjective fractional programming problems involving (p, r)− ρ −(η ,θ)- invex functions

    Get PDF
    A class of multiobjective fractional programming problems (MFP) is considered where the involved functions are locally Lipschitz. In order to deduce our main results, we introduce the definition of (p,r)−ρ −(η,θ)-invex class about the Clarke generalized gradient. Under the above invexity assumption, sufficient conditions for optimality are given. Finally, three types of dual problems corresponding to (MFP) are formulated, and appropriate dual theorems are proved

    Higher-order symmetric duality in nondifferentiable multiobjective programming problems

    Get PDF
    AbstractIn this paper, a pair of nondifferentiable multiobjective programming problems is first formulated, where each of the objective functions contains a support function of a compact convex set in Rn. For a differentiable function h:Rn×Rn→R, we introduce the definitions of the higher-order F-convexity (F-pseudo-convexity, F-quasi-convexity) of function f:Rn→R with respect to h. When F and h are taken certain appropriate transformations, all known other generalized invexity, such as η-invexity, type I invexity and higher-order type I invexity, can be put into the category of the higher-order F-invex functions. Under these the higher-order F-convexity assumptions, we prove the higher-order weak, higher-order strong and higher-order converse duality theorems related to a properly efficient solution

    Suboptimality Conditions for Mathematical Programs with Equilibrium Constraints

    Get PDF
    In this paper we study mathematical programs with equilibrium constraints (MPECs) described by generalized equations in the extended form 0 is an element of the set G(x,y) + Q(x,y), where both mappings G and Q are set-valued. Such models arise, in particular, from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish new weak and strong suboptimality conditions for the general MPEC problems under consideration in finite-dimensional and infinite-dimensional spaces that do not assume the existence of optimal solutions. This issue is particularly important for infinite-dimensional optimization problems, where the existence of optimal solutions requires quite restrictive assumptions. Our techriiques are mainly based on modern tools of variational analysis and generalized differentiation revolving around the fundamental extremal principle in variational analysis and its analytic counterpart known as the subdifferential variational principle
    corecore