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Abstract

In this paper, a pair of nondifferentiable multiobjective programming problems is first formulated,
where each of the objective functions contains a support function of a compact convexr8et in
For a differentiable functiork: R" x R"™ — R, we introduce the definitions of the higher-order
F-convexity (F-pseudo-convexityF-quasi-convexity) of functiory : R — R with respect toh.
When F andh are taken certain appropriate transformations, all known other generalized invexity,
such ag;-invexity, type | invexity and higher-order type | invexity, can be put into the category of the
higher-orderF-invex functions. Under these the higher-ordeéiconvexity assumptions, we prove
the higher-order weak, higher-order strong and higher-order converse duality theorems related to a
properly efficient solution.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Symmetric duality in nonlinear programming problem was first introduced by Dorn [6],
who defined a mathematical programming problem and its dual to be symmetric if the dual
of the dual is the primal problem, that is, when the dual is recast in the form of primal, its
dual is primal. Later, Dantzig et al. [2] and Mond [11] formulated a pair of symmetric dual
programs for scalar functiofi(x, y) that is convex in the first variable and that is concave
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in the second variable, respectively. Under the weaker convexity assumptions imposed
on f, Mond and Weir [13] gave another different pair of symmetric dual problem.

Mond [10] first formulated second-order symmetric dual models, introduced the con-
cept of second-order convex function, and proved second-order symmetric duality the-
orems. Bector and Chandra [1] established the second-order symmetric and self duality
results under second-order pseudo-convexity and pseudo-concavity assumptions. Devi [5]
formulated a pair of second-order symmetric dual programs and established duality re-
sults involving second-order invex functions. Pandey [15] introduced secondseitohesx
function for multiobjective fractional programming problem and established weak and
strong duality theorems.

Mond and Schechter [12] constructed two new symmetric dual pairs in which the
objective functions contain a support function of a compact convex &t iand are there-
fore nondifferentiable. Under the second-ordepseudo-convexity assumptions, Hou and
Yang [7] gave the second-order symmetric duality.

Higher-order duality in nonlinear programs have been studied by some researchers.
Mangasarian [8] formulated a class of higher-order dual problems for the nonlinear pro-
gramming problem “mifif (x) | g(x) > 0}" by introducing twice differentiable function
h:R"x R" — Randk:R" x R" — R™.Mond and Zhang [14] obtained duality results for
various higher-order dual programming problems under higher-order invexity assumptions.
Recently, under invexity-type conditions, such as higher-order type |, higher-order pseudo-
type |, and higher-order quasi-type | conditions, Mishra and Rueda [9] gave various duality
results, which included Mangasarian higher-order duality and Mond—Weir higher-order
duality. Chen [3] also discussed the duality theorems under the higher®rdenvexity
(F-pseudo-convexityl’-quasi-convexity) for a pair of nondifferentiable programs.

Up to now, there is no literature, as known by author, in which the higher-order sym-
metric duality for multiobjective programming problems is discussed. In this paper, we first
formulate a pair of symmetric higher-order multiobjective programming problems by intro-
ducing a differentiable function, where each of objective functions contains a support func-
tion of a compact convex set iR". For a differentiable functioh: R x R" — R, we also
introduce the definitions of the higher-ordérconvexity (F-pseudo-convexityF-quasi-
convexity) with respect td. All known other generalized invexity, such asinvexity,
type | invexity and higher-order type | invexity, can be put into the category of the higher-
order F-invex functions by taking certain appropriate transformationg @nds. Under
these the higher-orddf-convexity assumptions, we prove the higher-order weak, higher-
order strong and higher-order converse duality theorems related to a properly efficient
solution.

2. Preliminariesand lemmas

Throughout this paper, denote IR/ the n-dimension Euclidean space, ai the
nonnegative orthant at”, respectively.
Let C be a compact convex set RI'. The support function of is defined by

s(x|C) :=max{xTy|yeC).
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A support function, being convex and everywhere finite, has a subdifferential [16], that is,
there exits € R" such that

s(y|C) = s(x|C)+z  (y—x) forallyeC.

The subdifferential of (x|C) is given by
Is(x|0) =z e C |7 x =5(x|0)).

For any setD C R", the normal cone t® at a pointx € D is defined by
Np(x):={yeR"|y"(z—x)<O0forallz e D}.

It is obvious that for a compact convex &ty € N¢(x) if and only if s(y|C) = xTy, or

equivalentlyx € 9s(y|C).
Consider the following multiobjective programming problem:

(P) minimizef(x) subjecttog(x) <0, xe€X,

wheref: R" — R, g: R" — R! and X c R". Denote byY the set of feasible solutions
of (P).

Definition 1. A point x € Y is said to be an efficient solution of (P) if there exists no other
x € Y such thatf (x) — f(x) € Rﬁ\{O}, thatis, fi(x) < fi(x) foralli € {1,2,...,k},and
atleastong € {1,2,...,k}, fj(x) < f;(¥); ¥ € Y is said to be a weak efficient solution
of (P) if there exists no other € Y such thatforali € {1, 2, ..., k}, fi(x) > f; (x).

Definition 2. x € Y is said to be a Geoffrion properly efficient solution of (P)xifs an
efficient solution, and there exists a real number 0 such that for alf € {1, 2,..., p},
xeY,andf;(x) < f; (%),

i) = fitx) SM[fi(x) = f;(®)]
for somej € {1, 2, ..., k} such thatf; (x) < f;(x).

Lemmal[4]. If x € Y is a properly efficient solution ofP), there existx = (a1, a2, ...,
ax)! € RF andB = (B1, B2, ..., B)T € R! such that

k l
D aiVefi@®) + Y BiVegj(®)=0, «>0, >0, (@', p")#0.

i=1 j=1

For a real-valued twice differentiable functigq(x, y) defined on an open set in
R" x R™, denote byV,g(x,y) the gradient vector og with respect tox at (x, y),
Vixg (X, y¥) the Hessian matrix with respecttat (x, y). Similarly, Vg (X, y), Vi, g(x, ¥)
andV,,g(x, y) are also defined.

Definition 3. A function F: X x X x R* — R (whereX C R") is sublinear with respect
to the third variable if for allx, u) € X x X,

() F(x,u;a1+a2) < F(x,u;a1) + F(x,u;ap) forallay,az e R",
(i) F(x,u;aa)=aF(x,u;a), a>0, forallaeR".
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Now, we give the definitions of a class of higher-ordemvexity.

Definition 4. Suppose thai: X x R" — R is a differentiable functionF is sublinear with
respect to the third variablg. is said to be higher-orddr-convex atu € X with respect
toh, ifforall (x, p) € X x R",

f(x) = fu) = F(x,u; Vo fu) + Vph(u, p)) + h(u, p) — pT[Vph(u, P
If for all (x, p) € X x R",

F(x,u; Vi f(u) + Vph(u, p)) 20
= f) > f@) +h, p)—p [Vphu, p)].

then f is said to be higher-ordeér-pseudo-convex at € X with respect to:.
If forall (x, p) € X x R",

FE) < f@)+hu, p)— p'[Vph(u, p)]
= F(x,u; Vo f ) + Vyh(u, p)) <0,

then f is said to be higher-ordér-quasi-convex at € X with respect td:.

If f is higher-orderF-convex (F-pseudo-convext'-quasi-convex) at each pointe X
with respect to same functidn then f is said to be higher-orddr-convex (F-pseudo-
convex,F-quasi-convex) orX with respect tah.

If —f is higher-orderF-convex (F-pseudo-convexF-quasi-convex) aiz € X with
respect toi, then f is said to be higher-order-concave f-pseudo-concave;-quasi-
concave) at: € X with respect td:.

Remark 1. (i) Whenh(u, p) = (1/2) pT Vi, f () p andF (x, u; a) = n(x, u)Ta, wheren is
afunction fromX x X to R", the higher-ordeF-convexity (F-pseudo-convexitys'-quasi-
convexity) reduces tg-bonvexity ¢-pseudo-bonvexity;-quasi-bonvexity) in [5,15].

(i) When h(u, p) = (1/2) pT V,x f (u) p, the higher-ordetrF-convexity (higher-order
F-pseudo-convexity, higher-ordef-quasi-convexity) reduces to the second-order
(pseudo-, quasi-) invexity in [7].

(i) When h(u, p) = —pT Vi f(u) +k(u, p) andF (x, u; a) = a(x, u)a® n(x, u), where
a:X x X - R:\{0}, n: X x X — R" are positive functions, ank: X x R" — R is a
differentiable function, the higher-ord€rconvex (higher-ordeF -pseudo-convex, higher-
order F-quasi-convex) function becomes the higher-order type | (higher-order pseudo-
type I, and higher-order quasi-type I) function in [9,14].

From now on, suppose that the sublinear functibsatisfies the following condition:

F(x,y;a)+aly>0 foralla e R, Q)

3. Higher-order symmetric duality

In this section, we consider the following multiobjective symmetric dual problems:
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(MP)  minimize(f1(x, y) +s(x|C1) — y"z1
+ hl(-xv Y, pl) - p{[vplhl(xs ) pl)]7 ey
fie, ) +s(x1Cr) — yT 2k

+he(x, Y, ) — P [Vpchi(x, v, po)])
k

subjectto " A;[Vy fi(x. y) — zi + V. hi(x. y, p)] <O, (2)
i=1
k
YN MYy i y) = zi+ Vi hi(x, y, pi)] 2 0, €)
i=1
weD;, i=12 ...k r>0 rTe=1, (4)

and
(MD)  maximize(f1(u, v) —s(v|D1) +u” wy
+g1(u, v, 71) — 1 [Vmgr(u, v, 1], ...,
SiQu,v) — s D) +u” wy

+ g, v, 1) — 1l [ Vi gk, v, 70)])
k

subjectto " A;[ Vi fi(u, v) + wi + Vi gi (u, v, 77)] > 0, (5)
i=1
k
ul Zki[vxﬁ(u, v) +wi + Vi, 8i(u, v, 1) <0, (6)
i=1
wie€Ci,i=12 ...k +>0 2Te=1, (7)

whereC; andD; is a compact convex sets Ri* andR™, respectively;f; : R" x R™ — R,
hi:R" x R™ x R™ — R andg; : R" x R™ x R" — R are twice differentiable functions,
i=12,...,k. Since the objective functions contain the functiqm|C;) ands(v|D;),
i=12, ...k, they are nondifferentiable multiobjective programming problems.

Remark 2. (1) If ki (x, y, pi) = (1/2)p] Vyy fi (x, ) pis pi = p; gi(u, v, ri) = (1/2)r] x
Vix fi(u, v)ri, r; =r; andk = 1, then (MP) and (MD) become the problems considered by
Hou and Yang [7].

(2) If k =1, then (MP) and (MD) become the nondifferentiable programming problems
(SP) and (SD) considered by Chen [3].

We first give the weak duality theorem under the higher-oftdleonvexity assumptions.
Theorem 1 (Weak duality).For each feasible solutiorix, y, A, z1, z2, ..., Zk, P1, P2,

.., pr) of (MP) and each feasible solutiofiu, v, A, w1,, w2, ..., Wk, 71,72, ..., k)
of (MD), if f;(-,v) + ()T w; is higher-order F-convex atu with respect tog; (u, v, r;);
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—[fi(x,-) — ()Tz] is higher-orderG-convex aty with respect to—h; (x, v, p;), i =
1,2,..., k, where sublinear function8: R” x R" x R" — RandG:R™ x R x R™ — R
satisfy the conditioril), then the following inequalities cannot hold simultaneously

() foralli e{1,2,...,k},

fite,y) +s(x|C) =y zi +hi(x, y, pi) = pl [Vphi(x, v, pi)]
< fiu,v) = sIDy) +ul wi + gi(u, v, 1) — ] [V gi(u, v, 1)), (8)
(I1) foratleastonei €{1,2,...,k},

[iG ) +s@IC) =y zj+hjCe.y, p) = p) [Vihjx. y. pj)]
< £, 0) = s@ID)) +uTw) + g, v,r) = T [V, 850, )] (9)

Proof. For each feasible solutiaw, y, A, z1, z2, . .., 2k, p1, p2, - . ., px) of (MP) and each
feasible solution(u, v, A, w1, wa, ..., wk, r1, 2, ..., ry) of (MD), by (1) and (5), we have

k
F<x, ;> A Vi fi G, v) 4+ wi + Vi gi (v, ri)])
i=1
k

+ 3 3 [V i, v) + wi + Vi gi v, )] u >0, (10)
i=1

and from (6), (10) yields

k
F<x, ;Y [ Vi fi e, v) + wi + Vi gius v, ri)])> 0. (11)

i=1
Using the higher-ordeF-convexity of f; (-, v) + ()T w; atu with respect teg; (u, v, r;),
we have
[fiGr,v) +xTwi ] = [ fi(u, v) + u" wi]
> F(x,u; Va fi (u, v) + wi + Vr, 8 (u, v, 1))
+ gi(u, v, 1) — 1] [V gi(u, v, 77)]. (12)
SinceF is a sublinear function about the third variable, and 0, A7 e = 1, from (5), (11)
and (12), it holds
k k

Z)»i[fi(x’ v) +xTwi] — Z)»i[ﬁ(u, v) —i—uTw,-]

i=1 i=1

k
> F(x, u; Z)»i [V fi (u, v) + wi + Vi, i (u, v, Vi)])
i=1

k

+ Z)ti{gi w,v,r;)) —r [Vrgiu,v,r)]}
i=1
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> rifgiu,vor) —r] [V gitu, v, )]},

M-

that is,

k k
S onifiew) =Y wi{ fitwv) —xTwi +u"w;

i=1 i=1
+giu, v, i) = rf [VigiCu, v, )]} (13)
On the other hand, from (2) and (1), we get

k
G<U7 Y _Z)\i[vyfi(x: ) —Zi +Vp,-hi(xv Vs Pz)])

i=1

k
+yT{_ Zki[vyfi(x: )7) —zi+ vp,‘hi(-xv Y, pl)]} = 0. (14)
i=1
From (3), (14) implies
k
G(v, y;— Z)\i [Vyfi(x,y) —zi + Vphi(x, y, Pi)])> 0. (15)
i=1

By the higher-orde6-convexity of—[ f; (x, -) — (-) T z;] aty with respect to-h; (x, y, pi),
and from (1), we have
—[fit.v) = v ]+ [fie y) =y 2]
>G(v,y: =V, fi(x,y) +2zi — Vphi(x, y, pi))
+[—hiCe, y, p)] = Pl Vi [—hix, v, p)])
=G(v,y; —[Vy i(x,y) — zi + Yy hi(x, v, p)])
— hi(x, y, pi) + p! [Vpihi(x, y, pd)]- (16)
Similarly, from the sublinearity o7, A > 0, (2), (15) and (16), we have

k k
=Y nilfie vy =0 L]+ ) ni[fite ) =y ]
i=1 i=1
k k
> = nihiCey. p)+ Y hip! [VpchiGx.y. pi)].
i=1 i=1

that is,

k k
Z)»ifi(x, v) < Z)»i{fi(% N+vlz =y

i=1 i=1
+hi(x,y, pi) — pl [Vpihi(x,y, p)]}- (17)



430 X. Chen /J. Math. Anal. Appl. 290 (2004) 423-435

From (13) and (17), we obtain

k

o nif{fitwv) = vz +uTwi + giG v ) = 1 [V giGu, v, )]}
i=1

=~

< onif i,y +xTwi =y 2+ hiCx, v, pi) = pl [Vprhi(x,y, po)]} (18)
i=1

Noting thatx” w; < s(x|C;) andv” z; < s(v|D;), (18) yields

k

D ni{ fiuv) = s@IDy) +uTwi + g, v, i) — 1] [ Vi gi (v, )]}
i=1

=~

< n{fi y) +s@1C) =y i+ hiCx,y, pi) = p] [Vpihi(x.y. pi)]}
i=1

this implies that the conclusion holdsC

Remark 3. From the process of the proofin Theorem 1, we can also obtain that (8) and (9)
cannot hold simultaneously if the sublinear functidhandG satisfy the condition (1), and
for each feasible solutiogx, y, A, z1, z2, ..., 2k, P1, P2, - - ., px) Of (MP) and each feasible
solution(u, v, A, w1, w2, ..., wk, r1, 12, ..., rx) of (MD), one of the following conditions
holds:

(1) fi(-,v) + ()T w; is higher-orderF-pseudo-convex at with respect tag; (u, v, r;),
—[fi(x,-) — ()T z;]is higher-ordeiG -pseudo-convex at with respect to-%; (x, v, pi);

(2) fi(-,v) + (-)Tw; is higher-orderF-quasi-convex ak: with respect tog; (u, v, r;),
—[fi(x,-) — () Tz is higher-ordeiG-quasi-convex ap with respect to-A; (x, y, p;).

The following result indicates that under some conditions, a properly efficient solution
of (MP) is also the ones of (MD) and the two objective values are correspondingly equal.

Theorem 2 (Strong duality)Let (¥, ¥, A, Z1, Z2, . . ., Zk» P1, P2s - - - » px) b€ a properly effi-
cient solution of(MP), f; : R" x R" — R is twice differentiable atx, y), #; : R" x R" x
R™ — R is twice differentiable atx, y, p;), gi : R" x R" x R" — R is differentiable at
(x,y,pi),i=12,..., k. If the following conditions hold

(I) hi(-ivyvo):Oi gi()zv)_)vo):Or Vpihi(xvyso):()v Vyhi(xvyvo):Oa Vxhi(-ivyvo)
=V, 8 50),i=12 ...k
() forall i € {1,2,...,k}, the Hessian matri%,, ,,h; (%, y, p) is positive definite or
negative definite
(Ill) the set of vector§V, f; (x,y) — zi + Vp hi (X, 3, ﬁ,-)}f.‘zl is linearly independent
(IV) for somea € R¥ (@ > 0) and p; € R, p; #0 (i = 1,2,...,k) implies that
Y @i pl [Vy fi(5, 3) = Zi + Vi hi (%, 3, pi)] #0.
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Then

M) pi=0i=12. .k ]
(i) there existsw; € C; such that(x, y, A, w1, w2, ..., wx,r1=r2=---=r,=0) is a
feasible solution ofMD).

Furthermore, if the hypotheses in Theorgare satisfied, thetx, y, A, wy, wa, . .., Wk, p1
= pp=---= px = 0) is a properly efficient solution ofMD), and the two objective values
are equal.

Proof. Since(x, ¥, A, 21,22, ..., 2k, P1. P2, - - -, px) iS properly efficient for (MP), from
Lemma 1, there exisis € R¥, B € R", u € R, andy; € C; such that

k k
N @[ Ve fi@5) + i+ Vehi G5, )]+ D ki (ViR ) (B = 15)
i=1 i=1
k . _
+ D (Vpichi (5,5, p))” (i — i pi — Aip§) =0, (19)
i=1
k k ~ -
D[ VyfiE 5 = Zi 4+ Vyhi (5, 5, pi) ]+ Y 4i(Vyy fiR, ) (B — 1)
i=1 i=1
k . .
+ D (Vpiyhi (5,5, p)" (i — i pi — hit3)
i=1
k -
— 1Y Mi[VyfiEF) = Zi + Vp hiR. 5, pi)] =0, (20)
i=1
B =1 [V fi%,5) =% + Vphi (5, 5, )] =0, i=1,2,....k (21)
k
> (Vo @ 5. 50))" (i — i pi — Aip§) =0, (22)
i=1
k -
BT Wi[Vy fi(R.5) = Zi + Vi hi (R, 5, pi)] =0, (23)
i=1
k -
uT Y k[ Vy fi(5 $) = Zi+ Vphi(R, 5, pi)] =0, (24)
i=1
oy —MB+ripuy € Np,(Z), i=12...k, (25)
v X =s(XIC), i=12,...,k (26)
vieC, i=12...k, (a, B, 1) =0, (a,B,pn)#0. (27)

From the condition (ll), (22) yields
LB —oipi — hipy =0. (28)
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We claim thatr = (a1, a2, ..., ax)T # 0. Otherwise, itx = 0, then (28) becomes

B=uy,
and (20) yields

k -
1Y hi(Vyfi(®.5) =%+ Vp hi (R, 5, pi))=0.
i=1
Since(V, f; (%, ) — Zi + Vy, hi(x, ¥, pi)}*_; is linearly independent, ard> 0, we have
u =0, and sg8 = 0. These contradict (27).
Subtracting (24) from (23) yields

k
B—u" Y MYy i 5) = Zi + Vphi(, 5, pi)] =0.
i=1
Using (28), we get
k
> i pl [Vy fi®.5) = % + Vyhi(R. 5. pi)] =0.
i=1
By the condition (IV), we have; =0,i =1,2,..., k. And from (28) and8 >0,y > 0.
By (28),p; =0,i =1, 2,...,k, the condition (I) and. > 0, (19) and (20) become

k
D [ Vi fi(®. F) +vi + Vihi (R, 5, pi)] =0 (29)
i=1
and
k -
Y (@i — k)| Vy fi(5, F) = Zi + Y hi(R, 5, pi)] =0, (30)
i=1

respectively. Similarly, from the condition (Ill), we hawe= pui. Thus, from (29) and
w >0, itholds
k -
D Mi[VafiE $) +vi + Vehi(R, 5, pi)] =0,
i=1
and from the condition (), we have

k
D K[ Vi i@ ) +vi + Vi gi (3.5, pi)] =0.
i=1
Takingw; =v;, i =1,2,...,k, then(x, y, A, w1, Wo, ..., Wy, i =ip=--- =i = 0) sat-
isfies (5)—(7), thatis, it is a feasible solution of (MD).
Under Theorem 1 assumptions,(if, ¥, A, w1, wa, ..., Wi, r1 =72 =--- =1 =0) is

not an efficient solution of (MD), then there exists other feasible solution, A, w1, wo,
e, Wi, F1, 12, ..., 1) Of (MD) such thatforall € {1, 2, ...,k},
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fi@, ) = s@ID) + 5w + i (%, 5, 7) — 7] Vi gi (R, 5,7)]
< fiGu,v) = s@ID) +ul wi + gi (v, o) = r [ Vi giCu, v, )]s (31)
and for atleastong € {1, 2, ..., k},
fiGE.3) —s@IDj) + " w; + g;(X, 3. 7)) _ij[Vr_,'gj(i:)_’v’:j)]
< fiu,v) —s|Dj)+ uij +gi(u,v,r;)— ro[Vrjgj(u, v, rj)]. (32)
Sincea > 0 andB = uy, (25) yieldsy € Np, (), thatis,s(3|D;) =3"z;,i =1,2,...,k.
Therefore, using (26)p; =0,i =1, 2, ..., k, and the condition (I), we obtain that for all
ief{l,2,...,k},
[iE ) +sGIC) =3z + i, 5, pi) — p [Vphi (5, 5, pi)]
= fi(8, ) —sGID) + X" + g (%, 5, 7)) — 7] [Vrgi (&, 3, 70)]
< filu, v) —s@ID) +ul wi + giu, v, 1) — 1] [V gi(w, v,m)],
and for atleastong € {1, 2, ..., k},
G P +sEIC)H =52+ hiE, 5. p)) —ij[Vr,-gj(iJ,fj)]
= fj(&,5) —sGIDj) + 5 w; + g;(X, 3, 7)) —ff[Vr,gj(i,i,fj)]
< fi,v) —s@|Dj) +u"wj + g, v, r)) = r] [Vr, g, v, r)],
which contradict Theorem 1.

If (x,y,A, w1, wo,...,wg, 71 =r2="---=r, = 0) is not a properly efficient solution of
(MD), then there exists a feasible solution v, A, w1, wa, ..., wg, r1, 72, ..., ry) of (MD)
such that for somee {1, 2, ..., k} and any realf > O,

{fiCu, v) = s@ID) +u" wi + gi @, v, 1) = r{ [V 8w, 0,7)]}
—{fiG. ) —sGID) + 3w + i (X, 5, 7)) — ] [Vegi (8,5, 7)]} > M.
Itis similar to the above discussion that we have
{fiCu, v) = s@IDy) +u” w; + i, v,ri) = r/ [V 8i (u, v, )]}
—{ i@ 9 +5@IC) =57 Z +hi 5,5, pi) = pi [Vp i 5.5, )]} > M,
which contradicts Theorem 1 again.
Furthermore, we also obtain
[iG 9 +sGICH =372+ hi (%, 3, pi) = bl [Vpehi (R, 5, pi)]
= fi%5 )+ v —sGIDy)
= fi(%5,5) = s(GID) + X Wi + g (%, 3, 7i) — ] [V gi(%, 3, 7))
foralli €{1, 2, ..., k}, which indicates that the objective values of (MP][)'atyli, 71, 22,

.., Zk, P1 = p2 = --- = px = 0) and the objective values of (MD) &k, y, A, w1, wa,
..., Wi, r1 =72 =---=1 = 0) are correspondingly equal.c0

Similarly, we have the following converse duality.
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Theorem 3 (Converse duality)Let (iz, 0, A, w1, Wy, ..., Wk, 71, 72, ..., %) be a properly
efficient solution of(MD), f;:R" x R" — R is differentiable at(it, v), g; : R" x R" x
R™ — R is twice differentiable atu, v, r;), h; : R" x R" x R" — R is differentiable at
(u, v, r;). If the following conditions hold

() hi(u,v,00=0,g;@,0,00=0,V,,g@,u,0=0,V,gi(,i,0) =0, V,gi(u,v,0)=
Vpihi(it,9,0),i =1,2,...,k;
(I for all i € {1,2,...,k}, the Hessian matriw,,, g; (i, v, ;) iS positive definite or
negative definite
(1) the set of vector§V, f; (u, v) — w; + V,, i (it, v, f,»)}f.‘:1 is linearly independent
(IV) for somea € R¥ (« > 0) andr; € R", r; #0 (i = 1,2,...,k) implies that
Sy irl [V fi (@@, ©) — Wi + Vi, gi (i1, 0, 7)1 #0.

Then

() i=0,i=12...k )
(i) there exists; € D; such that(i,v,A,21,22,..., 2%, pr=p2=---=pr=0) is a
feasible solution of MP).

Furthermore, if the hypotheses in Theorgare satisfied, thetw, v, A, 21, Z2, . . . , Tk, p1 =
p2=---= pr = 0) is a properly efficient solution ofMP), and the two objective values
are correspondingly equal.

In the above, we formulate a pair of the higher-order symmetric multiobjective pro-
gramming problem in which the objective functions contain a support function of a
compact convex set iR or R™. Under the higher-ordeF-convexity (higher-order
F-pseudo-convexity, higher-orddr-quasi-convexity) assumption, we give the higher-
order weak, higher-order strong and higher-order converse duality. In our models, if
hi(x,y,p) = (1/2p" Vy, fiCx, y)p, gi(u, v, 1) = (1/2)r" Vi fi(u, v)r, andk = 1, then
(MP) and (MD) reduce to the second-order symmetric models in [7]. So, our results in-
clude some of the known results in [1,7-10,14,15].
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