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Abstract

In this paper, a pair of nondifferentiable multiobjective programming problems is first formu
where each of the objective functions contains a support function of a compact convex setRn.
For a differentiable functionh :Rn × Rn → R, we introduce the definitions of the higher-ord
F -convexity (F -pseudo-convexity,F -quasi-convexity) of functionf :Rn → R with respect toh.
WhenF andh are taken certain appropriate transformations, all known other generalized inv
such asη-invexity, type I invexity and higher-order type I invexity, can be put into the category o
higher-orderF -invex functions. Under these the higher-orderF -convexity assumptions, we prov
the higher-order weak, higher-order strong and higher-order converse duality theorems rela
properly efficient solution.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Symmetric duality in nonlinear programming problem was first introduced by Dorn
who defined a mathematical programming problem and its dual to be symmetric if th
of the dual is the primal problem, that is, when the dual is recast in the form of prim
dual is primal. Later, Dantzig et al. [2] and Mond [11] formulated a pair of symmetric
programs for scalar functionf (x, y) that is convex in the first variable and that is conc
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in the second variable, respectively. Under the weaker convexity assumptions im
onf , Mond and Weir [13] gave another different pair of symmetric dual problem.

Mond [10] first formulated second-order symmetric dual models, introduced the
cept of second-order convex function, and proved second-order symmetric dualit
orems. Bector and Chandra [1] established the second-order symmetric and self
results under second-order pseudo-convexity and pseudo-concavity assumptions. D
formulated a pair of second-order symmetric dual programs and established dua
sults involving second-order invex functions. Pandey [15] introduced second-orderη-invex
function for multiobjective fractional programming problem and established weak
strong duality theorems.

Mond and Schechter [12] constructed two new symmetric dual pairs in whic
objective functions contain a support function of a compact convex set inRn, and are there
fore nondifferentiable. Under the second-orderF -pseudo-convexity assumptions, Hou a
Yang [7] gave the second-order symmetric duality.

Higher-order duality in nonlinear programs have been studied by some resea
Mangasarian [8] formulated a class of higher-order dual problems for the nonlinea
gramming problem “min{f (x) | g(x) � 0}” by introducing twice differentiable functio
h :Rn×Rn → R andk :Rn×Rn → Rm. Mond and Zhang [14] obtained duality results
various higher-order dual programming problems under higher-order invexity assump
Recently, under invexity-type conditions, such as higher-order type I, higher-order ps
type I, and higher-order quasi-type I conditions, Mishra and Rueda [9] gave various d
results, which included Mangasarian higher-order duality and Mond–Weir higher-
duality. Chen [3] also discussed the duality theorems under the higher-orderF -convexity
(F -pseudo-convexity,F -quasi-convexity) for a pair of nondifferentiable programs.

Up to now, there is no literature, as known by author, in which the higher-order
metric duality for multiobjective programming problems is discussed. In this paper, w
formulate a pair of symmetric higher-order multiobjective programming problems by i
ducing a differentiable function, where each of objective functions contains a suppor
tion of a compact convex set inRn. For a differentiable functionh :Rn ×Rn →R, we also
introduce the definitions of the higher-orderF -convexity (F -pseudo-convexity,F -quasi-
convexity) with respect toh. All known other generalized invexity, such asη-invexity,
type I invexity and higher-order type I invexity, can be put into the category of the hig
orderF -invex functions by taking certain appropriate transformations ofF andh. Under
these the higher-orderF -convexity assumptions, we prove the higher-order weak, hig
order strong and higher-order converse duality theorems related to a properly e
solution.

2. Preliminaries and lemmas

Throughout this paper, denote byRn the n-dimension Euclidean space, andRn+ the
nonnegative orthant ofRn, respectively.

LetC be a compact convex set inRn. The support function ofC is defined by

s(x|C) := max{xT y | y ∈ C}.
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A support function, being convex and everywhere finite, has a subdifferential [16], th
there exitsz ∈Rn such that

s(y|C)� s(x|C)+ zT (y − x) for all y ∈C.

The subdifferential ofs(x|C) is given by

∂s(x|C)= {
z ∈ C | zT x = s(x|C)}.

For any setD ⊂Rn, the normal cone toD at a pointx ∈D is defined by

ND(x) := {
y ∈ Rn | yT (z− x)� 0 for all z ∈D

}
.

It is obvious that for a compact convex setC, y ∈ NC(x) if and only if s(y|C)= xT y, or
equivalently,x ∈ ∂s(y|C).

Consider the following multiobjective programming problem:

(P) minimizef (x) subject tog(x)� 0, x ∈X,

wheref :Rn → Rk , g :Rn → Rl andX ⊂ Rn. Denote byY the set of feasible solution
of (P).

Definition 1. A point x̄ ∈ Y is said to be an efficient solution of (P) if there exists no ot
x ∈ Y such thatf (x̄)− f (x) ∈Rk+\{0}, that is,fi(x)� fi(x̄) for all i ∈ {1,2, . . . , k}, and
at least onej ∈ {1,2, . . . , k}, fj (x) < fj (x̄); x̄ ∈ Y is said to be a weak efficient solutio
of (P) if there exists no otherx ∈ Y such that for alli ∈ {1,2, . . . , k}, fi(x̄) > fi(x).

Definition 2. x̄ ∈ Y is said to be a Geoffrion properly efficient solution of (P), ifx̄ is an
efficient solution, and there exists a real numberM > 0 such that for alli ∈ {1,2, . . . , p},
x ∈ Y , andfi(x) < fi(x̄),

fi(x̄)− fi(x)�M
[
fj (x)− fj (x̄)

]
for somej ∈ {1,2, . . . , k} such thatfj (x̄) < fj (x).

Lemma 1 [4]. If x̄ ∈ Y is a properly efficient solution of(P), there existα = (α1, α2, . . . ,

αk)
T ∈Rk andβ = (β1, β2, . . . , βl)

T ∈Rl such that

k∑
i=1

αi∇xfi(x̄)+
l∑

j=1

βj∇xgj (x̄)= 0, α � 0, β � 0, (αT ,βT ) �= 0.

For a real-valued twice differentiable functiong(x, y) defined on an open set
Rn × Rm, denote by∇xg(x̄, ȳ) the gradient vector ofg with respect tox at (x̄, ȳ),
∇xxg(x̄, ȳ) the Hessian matrix with respect tox at(x̄, ȳ). Similarly,∇yg(x̄, ȳ), ∇xyg(x̄, ȳ)

and∇yyg(x̄, ȳ) are also defined.

Definition 3. A functionF :X ×X ×Rn → R (whereX ⊆ Rn) is sublinear with respec
to the third variable if for all(x,u) ∈X ×X,

(i) F (x,u;a1 + a2)� F(x,u;a1)+ F(x,u;a2) for all a1, a2 ∈Rn,

(ii) F (x,u;αa)= αF(x,u;a), α � 0, for all a ∈ Rn.
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Now, we give the definitions of a class of higher-orderF -invexity.

Definition 4. Suppose thath :X×Rn →R is a differentiable function,F is sublinear with
respect to the third variable.f is said to be higher-orderF -convex atu ∈ X with respect
to h, if for all (x,p) ∈X ×Rn,

f (x)− f (u)� F
(
x,u;∇xf (u)+ ∇ph(u,p)

)+ h(u,p)− pT
[∇ph(u,p)

]
.

If for all (x,p) ∈X×Rn,

F
(
x,u;∇xf (u)+ ∇ph(u,p)

)
� 0

⇒ f (x)� f (u)+ h(u,p)− pT
[∇ph(u,p)

]
,

thenf is said to be higher-orderF -pseudo-convex atu ∈X with respect toh.
If for all (x,p) ∈X×Rn,

f (x)� f (u)+ h(u,p)− pT
[∇ph(u,p)

]
⇒ F

(
x,u;∇xf (u)+ ∇ph(u,p)

)
� 0,

thenf is said to be higher-orderF -quasi-convex atu ∈X with respect toh.
If f is higher-orderF -convex (F -pseudo-convex,F -quasi-convex) at each pointu ∈X

with respect to same functionh, thenf is said to be higher-orderF -convex (F -pseudo-
convex,F -quasi-convex) onX with respect toh.

If −f is higher-orderF -convex (F -pseudo-convex,F -quasi-convex) atu ∈ X with
respect toh, thenf is said to be higher-orderF -concave (F -pseudo-concave,F -quasi-
concave) atu ∈X with respect toh.

Remark 1. (i) Whenh(u,p)= (1/2)pT ∇xxf (u)p andF(x,u;a)= η(x,u)T a, whereη is
a function fromX×X toRn, the higher-orderF -convexity (F -pseudo-convexity,F -quasi-
convexity) reduces toη-bonvexity (η-pseudo-bonvexity,η-quasi-bonvexity) in [5,15].

(ii) When h(u,p) = (1/2)pT ∇xxf (u)p, the higher-orderF -convexity (higher-orde
F -pseudo-convexity, higher-orderF -quasi-convexity) reduces to the second-orderF

(pseudo-, quasi-) invexity in [7].
(iii) Whenh(u,p)= −pT ∇xf (u)+k(u,p) andF(x,u;a)= α(x,u)aT η(x,u), where

α :X × X → R+\{0}, η :X × X → Rn are positive functions, andk :X × Rn → R is a
differentiable function, the higher-orderF -convex (higher-orderF -pseudo-convex, highe
orderF -quasi-convex) function becomes the higher-order type I (higher-order ps
type I, and higher-order quasi-type I) function in [9,14].

From now on, suppose that the sublinear functionF satisfies the following condition:

F(x, y;a)+ aT y � 0 for all a ∈ Rn+. (1)

3. Higher-order symmetric duality

In this section, we consider the following multiobjective symmetric dual problems
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(MP) minimize
(
f1(x, y)+ s(x|C1)− yT z1

+ h1(x, y,p1)−pT1
[∇p1h1(x, y,p1)

]
, . . . ,

fk(x, y)+ s(x|Ck)− yT zk

+ hk(x, y,pk)− pTk
[∇pkhk(x, y,pk)

])
subject to

k∑
i=1

λi
[∇yfi(x, y)− zi + ∇pi hi(x, y,pi)

]
� 0, (2)

yT
k∑

i=1

λi
[∇yfi(x, y)− zi + ∇pi hi(x, y,pi)

]
� 0, (3)

zi ∈Di, i = 1,2, . . . , k, λ > 0, λT e= 1, (4)

and

(MD) maximize
(
f1(u, v)− s(v|D1)+ uT w1

+ g1(u, v, r1)− rT1
[∇r1g1(u, v, r1)

]
, . . . ,

fk(u, v)− s(v|Dk)+ uT wk

+ gk(u, v, rk)− rTk
[∇rkgk(u, v, rk)

])
subject to

k∑
i=1

λi
[∇xfi(u, v)+wi + ∇ri gi(u, v, ri )

]
� 0, (5)

uT
k∑
i=1

λi
[∇xfi(u, v)+wi + ∇ri gi (u, v, ri )

]
� 0, (6)

wi ∈Ci, i = 1,2, . . . , k, λ > 0, λT e = 1, (7)

whereCi andDi is a compact convex sets inRn andRm, respectively;fi :Rn ×Rm → R,
hi :Rn × Rm × Rm → R andgi :Rn × Rm × Rn → R are twice differentiable functions
i = 1,2, . . . , k. Since the objective functions contain the functions(x|Ci) and s(v|Di),
i = 1,2, . . . , k, they are nondifferentiable multiobjective programming problems.

Remark 2. (1) If hi(x, y,pi) = (1/2)pTi ∇yyfi(x, y)pi , pi = p; gi(u, v, ri )= (1/2)rTi ×
∇xxfi(u, v)ri , ri = r; andk = 1, then (MP) and (MD) become the problems considere
Hou and Yang [7].

(2) If k = 1, then (MP) and (MD) become the nondifferentiable programming prob
(SP) and (SD) considered by Chen [3].

We first give the weak duality theorem under the higher-orderF -convexity assumptions

Theorem 1 (Weak duality).For each feasible solution(x, y,λ, z1, z2, . . . , zk,p1,p2,

. . . , pk) of (MP) and each feasible solution(u, v,λ,w1, ,w2, . . . ,wk, r1, r2, . . . , rk)

of (MD), if fi(·, v) + (·)T wi is higher-orderF -convex atu with respect togi(u, v, ri );
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−[fi(x, ·) − (·)T zi] is higher-orderG-convex aty with respect to−hi(x, y,pi), i =
1,2, . . . , k, where sublinear functionsF :Rn×Rn×Rn → R andG :Rm×Rm×Rm →R

satisfy the condition(1), then the following inequalities cannot hold simultaneously:

(I) for all i ∈ {1,2, . . . , k},
fi(x, y)+ s(x|Ci)− yT zi + hi(x, y,pi)− pTi

[∇pi hi(x, y,pi)
]

� fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi
[∇ri gi(u, v, ri )

]
, (8)

(II) for at least onej ∈ {1,2, . . . , k},
fj (x, y)+ s(x|Cj)− yT zj + hj (x, y,pj )− pTj

[∇pi hj (x, y,pj )
]

< fj (u, v)− s(v|Dj )+ uT wj + gj (u, v, rj )− rTj
[∇rj gj (u, v, rj )

]
. (9)

Proof. For each feasible solution(x, y,λ, z1, z2, . . . , zk,p1,p2, . . . , pk) of (MP) and each
feasible solution(u, v,λ,w1,w2, . . . ,wk, r1, r2, . . . , rk) of (MD), by (1) and (5), we have

F

(
x,u;

k∑
i=1

λi
[∇xfi(u, v)+wi + ∇ri gi(u, v, ri )

])

+
k∑
i=1

λi
[∇xfi(u, v)+wi + ∇ri gi(u, v, ri )

]T
u� 0, (10)

and from (6), (10) yields

F

(
x,u;

k∑
i=1

λi
[∇xfi(u, v)+wi + ∇ri gi(u, v, ri )

])
� 0. (11)

Using the higher-orderF -convexity offi(·, v)+ (·)T wi atu with respect togi(u, v, ri ),
we have[

fi(x, v)+ xT wi

]− [
fi(u, v)+ uT wi

]
� F

(
x,u;∇xfi(u, v)+wi + ∇ri gi (u, v, ri )

)
+ gi(u, v, ri )− rTi

[∇ri gi (u, v, ri )
]
. (12)

SinceF is a sublinear function about the third variable, andλ > 0,λT e = 1, from (5), (11)
and (12), it holds

k∑
i=1

λi
[
fi(x, v)+ xT wi

]−
k∑
i=1

λi
[
fi(u, v)+ uT wi

]

� F

(
x,u;

k∑
i=1

λi
[∇ufi(u, v)+wi + ∇ri gi (u, v, ri )

])

+
k∑
λi
{
gi(u, v, ri )− rTi

[∇ri gi(u, v, ri )
]}
i=1
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�
k∑
i=1

λi
{
gi(u, v, ri )− rTi

[∇ri gi (u, v, ri )
]}
,

that is,

k∑
i=1

λifi(x, v)�
k∑
i=1

λi
{
fi(u, v)− xT wi + uT wi

+ gi(u, v, ri )− rTi
[∇ri gi (u, v, ri )

]}
. (13)

On the other hand, from (2) and (1), we get

G

(
v, y;−

k∑
i=1

λi
[∇yfi(x, y)− zi + ∇pi hi(x, y,pi)

])

+ yT

{
−

k∑
i=1

λi
[∇yfi(x, y)− zi + ∇pi hi(x, y,pi)

]}
� 0. (14)

From (3), (14) implies

G

(
v, y;−

k∑
i=1

λi
[∇yfi(x, y)− zi + ∇pi hi(x, y,pi)

])
� 0. (15)

By the higher-orderG-convexity of−[fi(x, ·)− (·)T zi ] aty with respect to−hi(x, y,pi),
and from (1), we have

−[fi(x, v)− vT zi
]+ [

fi(x, y)− yT zi
]

�G
(
v, y;−∇yfi(x, y)+ zi − ∇pihi(x, y,pi)

)
+ [−hi(x, y,pi)]− pTi

{∇pi

[−hi(x, y,pi)]}
=G

(
v, y;−[∇yfi(x, y)− zi + ∇pihi(x, y,pi)

])
− hi(x, y,pi)+ pTi

[∇pi hi(x, y,pi)
]
. (16)

Similarly, from the sublinearity ofG, λ > 0, (2), (15) and (16), we have

−
k∑
i=1

λi
[
fi(x, v)− vT zi

]+ k∑
i=1

λi
[
fi(x, y)− yT zi

]

� −
k∑
i=1

λihi(x, y,pi)+
k∑
i=1

λip
T
i

[∇pihi(x, y,pi)
]
,

that is,

k∑
i=1

λifi(x, v)�
k∑
i=1

λi
{
fi(x, y)+ vT zi − yT zi

+ hi(x, y,pi)−pTi
[∇pi hi(x, y,pi)

]}
. (17)
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From (13) and (17), we obtain

k∑
i=1

λi
{
fi(u, v)− vT zi + uT wi + gi(u, v, ri )− rTi

[∇ri gi (u, v, ri )
]}

�
k∑
i=1

λi
{
fi(x, y)+ xT wi − yT zi + hi(x, y,pi)− pTi

[∇pi hi(x, y,pi)
]}
. (18)

Noting thatxT wi � s(x|Ci) andvT zi � s(v|Di), (18) yields

k∑
i=1

λi
{
fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi

[∇ri gi (u, v, ri )
]}

�
k∑
i=1

λi
{
fi(x, y)+ s(x|Ci)− yT zi + hi(x, y,pi)− pTi

[∇pi hi(x, y,pi)
]}
,

this implies that the conclusion holds.✷
Remark 3. From the process of the proof in Theorem 1, we can also obtain that (8) a
cannot hold simultaneously if the sublinear functionsF andG satisfy the condition (1), an
for each feasible solution(x, y,λ, z1, z2, . . . , zk,p1,p2, . . . , pk) of (MP) and each feasibl
solution(u, v,λ,w1,w2, . . . ,wk, r1, r2, . . . , rk) of (MD), one of the following conditions
holds:

(1) fi(·, v)+ (·)T wi is higher-orderF -pseudo-convex atu with respect togi(u, v, ri ),
−[fi(x, ·)− (·)T zi] is higher-orderG-pseudo-convex aty with respect to−hi(x, y,pi);

(2) fi(·, v) + (·)T wi is higher-orderF -quasi-convex atu with respect togi(u, v, ri ),
−[fi(x, ·)− (·)T zi] is higher-orderG-quasi-convex aty with respect to−hi(x, y,pi).

The following result indicates that under some conditions, a properly efficient sol
of (MP) is also the ones of (MD) and the two objective values are correspondingly e

Theorem 2 (Strong duality).Let (x̄, ȳ, λ̄, z̄1, z̄2, . . . , z̄k, p̄1, p̄2, . . . , p̄k) be a properly effi-
cient solution of(MP), fi :Rn ×Rn → R is twice differentiable at(x̄, ȳ), hi :Rn × Rn ×
Rn → R is twice differentiable at(x̄, ȳ, p̄i ), gi :Rn × Rn × Rn → R is differentiable at
(x̄, ȳ, p̄i), i = 1,2, . . . , k. If the following conditions hold:

(I) hi(x̄, ȳ,0)= 0, gi(x̄, ȳ,0)= 0, ∇pi hi(x̄, ȳ,0)= 0, ∇yhi(x̄, ȳ,0)= 0, ∇xhi(x̄, ȳ,0)
= ∇ri gi (x̄, ȳ,0), i = 1,2, . . . , k;

(II) for all i ∈ {1,2, . . . , k}, the Hessian matrix∇pipi hi(x̄, ȳ, p̄) is positive definite or
negative definite;

(III) the set of vectors{∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i)}ki=1 is linearly independent;
(IV) for someα ∈ Rk (α > 0) and pi ∈ Rn, pi �= 0 (i = 1,2, . . . , k) implies that∑k

i=1αip
T [∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i)] �= 0.
i
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s

Then

(i) p̄i = 0, i = 1,2, . . . , k;
(ii) there existsw̄i ∈ Ci such that(x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k, r̄1 = r̄2 = · · · = r̄k = 0) is a

feasible solution of(MD).

Furthermore, if the hypotheses in Theorem1 are satisfied, then(x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k, p̄1
= p̄2 = · · · = p̄k = 0) is a properly efficient solution of(MD), and the two objective value
are equal.

Proof. Since(x̄, ȳ, λ̄, z̄1, z̄2, . . . , z̄k, p̄1, p̄2, . . . , p̄k) is properly efficient for (MP), from
Lemma 1, there existsα ∈Rk , β ∈Rn, µ ∈R, andνi ∈ Ci such that

k∑
i=1

αi
[∇xfi(x̄, ȳ)+ νi + ∇xhi(x̄, ȳ, p̄i )

]+ k∑
i=1

λ̄i
(∇yxfi(x̄, ȳ)

)T
(β −µȳ)

+
k∑
i=1

(∇pixhi(x̄, ȳ, p̄i)
)T
(λiβ − αip̄i − λ̄iµȳ)= 0, (19)

k∑
i=1

αi
[∇yfi(x̄, ȳ)− z̄i + ∇yhi(x̄, ȳ, p̄i)

]+
k∑
i=1

λ̄i
(∇yyfi(x̄, ȳ)

)T
(β −µȳ)

+
k∑
i=1

(∇piyhi(x̄, ȳ, p̄i)
)T
(λ̄iβ − αip̄i − λ̄iµȳ)

−µ

k∑
i=1

λ̄i
[∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i)

]= 0, (20)

(β −µȳ)T
[∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )

]= 0, i = 1,2, . . . , k, (21)
k∑
i=1

(∇pipi hi(x̄, ȳ, p̄i)
)T
(λ̄iβ − αip̄i − λ̄iµȳ)= 0, (22)

βT
k∑
i=1

λ̄i
[∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )

]= 0, (23)

µȳT
k∑
i=1

λ̄i
[∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )

]= 0, (24)

αi ȳ − λ̄iβ + λ̄iµȳ ∈NDi (z̄i ), i = 1,2, . . . , k, (25)

νTi x̄ = s(x̄|Ci), i = 1,2, . . . , k, (26)

νi ∈ Ci, i = 1,2, . . . , k, (α,β,µ)� 0, (α,β,µ) �= 0. (27)

From the condition (II), (22) yields

λ̄iβ − αip̄i − λ̄iµȳ = 0. (28)



432 X. Chen / J. Math. Anal. Appl. 290 (2004) 423–435
We claim thatα = (α1, α2, . . . , αk)
T �= 0. Otherwise, ifα = 0, then (28) becomes

β = µȳ,

and (20) yields

µ

k∑
i=1

λ̄i
(∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )

)= 0.

Since{∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )}ki=1 is linearly independent, and̄λ > 0, we have
µ= 0, and soβ = 0. These contradict (27).

Subtracting (24) from (23) yields

(β −µȳ)T
k∑
i=1

λ̄i
[∇yfi(x̄, ȳ)− z̄i + ∇pihi(x̄, ȳ, p̄i)

]= 0.

Using (28), we get

k∑
i=1

αip̄
T
i

[∇yfi(x̄, ȳ)− z̄i + ∇pihi(x̄, ȳ, p̄i)
]= 0.

By the condition (IV), we havēpi = 0, i = 1,2, . . . , k. And from (28) andβ � 0, ȳ � 0.
By (28), p̄i = 0, i = 1,2, . . . , k, the condition (I) and̄λ > 0, (19) and (20) become

k∑
i=1

αi
[∇xfi(x̄, ȳ)+ νi + ∇xhi(x̄, ȳ, p̄i )

]= 0 (29)

and

k∑
i=1

(αi −µλ̄i)
[∇yfi(x̄, ȳ)− z̄i + ∇pi hi(x̄, ȳ, p̄i )

]= 0, (30)

respectively. Similarly, from the condition (III), we haveα = µλ̄. Thus, from (29) and
µ> 0, it holds

k∑
i=1

λ̄i
[∇xfi(x̄, ȳ)+ νi + ∇xhi(x̄, ȳ, p̄i )

]= 0,

and from the condition (I), we have

k∑
i=1

λ̄i
[∇xfi(x̄, ȳ)+ νi + ∇ri gi (x̄, ȳ, p̄i)

]= 0.

Takingw̄i = νi , i = 1,2, . . . , k, then(x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k, r̄1 = r̄2 = · · · = r̄k = 0) sat-
isfies (5)–(7), that is, it is a feasible solution of (MD).

Under Theorem 1 assumptions, if(x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k, r̄1 = r̄2 = · · · = r̄k = 0) is
not an efficient solution of (MD), then there exists other feasible solution(u, v,λ,w1,w2,

. . . ,wk, r1, r2, . . . , rk) of (MD) such that for alli ∈ {1,2, . . . , k},
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ll

f

fi(x̄, ȳ)− s(ȳ|Di)+ x̄T w̄i + gi(x̄, ȳ, r̄i )− r̄Ti
[∇ri gi(x̄, ȳ, r̄i )

]
� fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi

[∇ri gi(u, v, ri )
]
, (31)

and for at least onej ∈ {1,2, . . . , k},
fj (x̄, ȳ)− s(ȳ|Dj)+ x̄T w̄j + gj (x̄, ȳ, r̄j )− r̄Tj

[∇rj gj (x̄, ȳ, r̄j )
]

< fj (u, v)− s(v|Dj )+ uT wj + gj (u, v, rj )− rTj
[∇rj gj (u, v, rj )

]
. (32)

Sinceα > 0 andβ = µȳ, (25) yieldsȳ ∈NDi (z̄i ), that is,s(ȳ|Di)= ȳT z̄i , i = 1,2, . . . , k.
Therefore, using (26),̄pi = 0, i = 1,2, . . . , k, and the condition (I), we obtain that for a
i ∈ {1,2, . . . , k},

fi(x̄, ȳ)+ s(x̄|Ci)− ȳT z̄i + hi(x̄, ȳ, p̄i)− p̄Ti
[∇pi hi(x̄, ȳ, p̄i )

]
= fi(x̄, ȳ)− s(ȳ|Di)+ x̄T w̄i + gi(x̄, ȳ, r̄i )− r̄Ti

[∇ri gi(x̄, ȳ, r̄i )
]

� fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi
[∇ri gi(u, v, ri )

]
,

and for at least onej ∈ {1,2, . . . , k},
fj (x̄, ȳ)+ s(x̄|Cj)− ȳT z̄j + hj (x̄, ȳ, p̄j )− r̄Tj

[∇rj gj (x̄, ȳ, r̄j )
]

= fj (x̄, ȳ)− s(ȳ|Dj)+ x̄T w̄j + gj (x̄, ȳ, r̄j )− r̄Tj
[∇rj gj (x̄, ȳ, r̄j )

]
< fj (u, v)− s(v|Dj )+ uT wj + gi(u, v, rj )− rTj

[∇rj gj (u, v, rj )
]
,

which contradict Theorem 1.
If (x̄, ȳ, λ̄, w̄1, w̄2, . . . , w̄k, r̄1 = r̄2 = · · · = r̄k = 0) is not a properly efficient solution o

(MD), then there exists a feasible solution(u, v,λ,w1,w2, . . . ,wk, r1, r2, . . . , rk) of (MD)
such that for somei ∈ {1,2, . . . , k} and any realM > 0,{

fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi
[∇ri gi (u, v, ri )

]}
− {

fi(x̄, ȳ)− s(ȳ|Di)+ x̄T w̄i + gi(x̄, ȳ, r̄i )− r̄Ti
[∇ri gi (x̄, ȳ, r̄i)

]}
>M.

It is similar to the above discussion that we have{
fi(u, v)− s(v|Di)+ uT wi + gi(u, v, ri )− rTi

[∇ri gi (u, v, ri )
]}

− {
fi(x̄, ȳ)+ s(x̄|Ci)− ȳT z̄i + hi(x̄, ȳ, p̄i )− p̄Ti

[∇pi hi(x̄, ȳ, p̄i)
]}
>M,

which contradicts Theorem 1 again.
Furthermore, we also obtain

fi(x̄, ȳ)+ s(x̄|Ci)− ȳT z̄i + hi(x̄, ȳ, p̄i)− p̄Ti
[∇pi hi(x̄, ȳ, p̄i )

]
= fi(x̄, ȳ)+ x̄T νi − s(ȳ|Di)

= fi(x̄, ȳ)− s(ȳ|Di)+ x̄T w̄i + gi(x̄, ȳ, r̄i )− r̄Ti
[∇ri gi(x̄, ȳ, r̄i )

]
for all i ∈ {1,2, . . . , k}, which indicates that the objective values of (MP) at(x̄, ȳ, λ̄, z̄1, z̄2,

. . . , z̄k, p̄1 = p̄2 = · · · = p̄k = 0) and the objective values of (MD) at(x̄, ȳ, λ̄, w̄1, w̄2,

. . . , w̄k, r̄1 = r̄2 = · · · = r̄k = 0) are correspondingly equal.✷
Similarly, we have the following converse duality.
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Theorem 3 (Converse duality).Let (ū, v̄, λ̄, w̄1, w̄2, . . . , w̄k, r̄1, r̄2, . . . , r̄k) be a properly
efficient solution of(MD), fi :Rn × Rn → R is differentiable at(ū, v̄), gi :Rn × Rn ×
Rn → R is twice differentiable at(ū, v̄, r̄i), hi :Rn × Rn × Rn → R is differentiable at
(ū, v̄, r̄i). If the following conditions hold:

(I) hi(ū, v̄,0)= 0,gi(ū, v̄,0)= 0, ∇ri gi (ū, ū,0)= 0, ∇xgi(ū, ū,0)= 0, ∇ygi(ū, v̄,0)=
∇pihi(ū, v̄,0), i = 1,2, . . . , k;

(II) for all i ∈ {1,2, . . . , k}, the Hessian matrix∇riri gi (ū, v̄, r̄i) is positive definite or
negative definite;

(III) the set of vectors{∇xfi(ū, v̄)− w̄i + ∇ri gi (ū, v̄, r̄i)}ki=1 is linearly independent;
(IV) for someα ∈ Rk (α > 0) and ri ∈ Rn, ri �= 0 (i = 1,2, . . . , k) implies that∑k

i=1αir
T
i [∇xfi(ū, v̄)− w̄i + ∇ri gi(ū, v̄, r̄i )] �= 0.

Then

(i) r̄i = 0, i = 1,2, . . . , k;
(ii) there exists̄zi ∈ Di such that(ū, v̄, λ̄, z̄1, z̄2, . . . , z̄k, p̄1 = p̄2 = · · · = p̄k = 0) is a

feasible solution of(MP).

Furthermore, if the hypotheses in Theorem1 are satisfied, then(ū, v̄, λ̄, z̄1, z̄2, . . . , z̄k, p̄1 =
p̄2 = · · · = p̄k = 0) is a properly efficient solution of(MP), and the two objective value
are correspondingly equal.

In the above, we formulate a pair of the higher-order symmetric multiobjective
gramming problem in which the objective functions contain a support function
compact convex set inRn or Rm. Under the higher-orderF -convexity (higher-orde
F -pseudo-convexity, higher-orderF -quasi-convexity) assumption, we give the high
order weak, higher-order strong and higher-order converse duality. In our mod
hi(x, y,p) = (1/2)pT ∇yyfi(x, y)p, gi(u, v, r) = (1/2)rT ∇uufi(u, v)r, andk = 1, then
(MP) and (MD) reduce to the second-order symmetric models in [7]. So, our resu
clude some of the known results in [1,7–10,14,15].
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