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SUBOPTIMALITY CONDITIONS FOR MATHEMATICAL 
PROGRAMS WITH EQUILIBRIUM CONSTRAINTS 

TRUONG Q. BA01 , PANKAJ GUPTA2 and BORIS S. MORDUKHOVICH3 

Dedicated to Phan Quoc Khanh 

Abstract. In this paper we study mathematical programs with equilibrium constraints 
(MPECs) described by generalized equations in the extended form 

0 E G(x,y) +Q(x,y), 

where both mappings G and Q are set-valued. Such models arise, in particular, from certain 
optimization-related problems governed by variational inequalities and first-order optimality 
conditions in nondifferentiable programming. We establish new weak and strong subopti­
mality conditions for the general MPEC problems under consideration in finite-dimensional 
and infinite-dimensional spaces that do not assume the existence of optimal solutions. This 
issue is particularly important for infinite-dimensional optimization problems, where the 
existence of optimal solutions requires quite restrictive assumptions. Our techriiques are 
mainly based on modern tools of variational analysis and generalized differentiation re­
volving around the fundamental extremal principle in variational analysis and its analytic 
counterpart known as the subdifferential variational principle. 

Keywords: Mathematical programs with equilibrium constraints, variational analysis, 
nonsmooth optimization, extremal principle, subdifferential variational principle, gener­
alized differentiation, coderivatives. 

1 Introduction 

This paper concerns the study of a broad and important class of parametric optimization 
problems unified under the name of Mathematical Programs with Equilibrium Constraints 
(MPECs) that can be generally described as follows: 

J minimize 

l""'""" 
cpo(x, y) 
'Pi(x, y) :50, i = 1, ... , m, 
'Pi(x, y) = 0, i = m +1, ... , m + r, 
(x, y) E !1, 
y E S(x), 

(1.1) 

where y E Y stands for the decision variable while x E X signifies the parameter, which 
is also included into the optimization process. The most characteristic feature of problems 
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(1.1) is that, together with more conventional functional constraints of the equality and in­
equality types defined by (extended-)real-valued functions <p; as well as geometric constraints 
given by sets fl, they contain parameterized constraints in the form y E S(x) described 
by set-valued mappings S: X =t Y. The latter constraints often arise as solution maps 
to lower-level parametric optimization problems (as in bilevel programming), or sets of La­
grange multipliersjKarush-Kuhn-Tucker vectors in first-order optimality conditions, or solu­
tion sets to various complementarity problems and variationaljhemivariational/ quasivariational 
inequalities, etc. In general, constraints of this type describe certain equilibria; that's where 
the name comes from. In numerous publications (see, e.g., books [15, 17, 22] and the refer­
ences therein) the reader can find more examples, discussions, and various qualitative and 
numerical results for particular classes of MPECs written in form (1.1) with underlying 
specifications of equilibrium constraint mappings S. 

It has been well recognized that a convenient model for describing equilibrium con­
straints in MPECs is provided by Robinson's framework of generalized equations 

S(x) = {y E Y[ 0 E g(x,y) + Q(y)} (1.2) 

originally introduced in [24] for the case when the set-valued "field" mapping Q: Y =t y• 
is parameter-independent and is given as the normal cone mapping Q(y) = N(y; 8) to a 
convex set 8 C Y, while the "base" parameter-dependent mapping g: X x Y ---+ Y* is single­
valued. This particularly covers the classical variational inequalities and complementarity 
problems. Other important equilibrium models (e.g., quasivariational inequalities) admit 
adequate descriptions in somewhat more general framework of type (1.2) with parameter­
dependent fields Q = Q(x, y); see, e.g., [12, 19] and the references therein. 

However, there are broad classes of MPECs (1.1) whose equilibrium constraints cannot 
be described in form (1.2) while require the extended generalized equation framework 

S(x) = {y E Y[ 0 E G(x,y) +Q(x,y)}, (1.3) 

where both base and field mappings are set-valued. Let us mention two particular classes 
of equilibrium constraints that can be written in the extended form (1.3) while not in the 
previously developed forms of generalized equations. 

• Consider the so-called set-valued/generalized variational inequalities defined by: 

find y E 8 such that there is y• E G(x, y) with (y*, u- y) 2 0 for all u E 8, (1.4) 

where G: X x Y =t Y*; we refer the reader to the handbook [28] for the theory and 
applications of (1.4) and related problems. It is easy to see that model (1.4) can be written in 
form (1.3) with Q(y) = N(y; 8). The classical case of parameterized variational inequalities 
corresponds to (1.4) with a single-valued mapping G = g: X x Y -> Y*. 

• Consider a parameti"ic problem of nonsmooth constrained optimization in the form: 

minimize <p(x, y) subject to y E 8, 

where <p: X X y ----7 lR := ( -oo, oo] is a lower semicontinuous function and where e c y is 
a closed set. Then general first-order necessary optimality conditions for this problem can 
be written as 

0 E 8y<p{x, y) + N{y; 8) (1.5) 
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via appropriate subdifferentials of <p with respect to y and normal cones to 8, where 8ycp 
and N(-; 8) reduce to the corresponding constructions of convex analysis if <p(x, ·) and 
8 are convex; in the latter case condition (1.5) is known to be necessary and sufficient 
for optimality. We refer the reader to [14[ for more discussions and various results on 
model (1.5), which is obviously a particular case of (1.3) with G(x, y) = Oy<p(x, y) and 
Q(y) = N(y; 8). Furthermore, MPEC problems with equilibrium constraints of type (1.5) 
relate to the so-called optimistic version of nondifferentiable bilevel programming; see [4] for 
more details and recent results in this direction. 

As usual in optimization theory, the mainstream of studying various classes of MPECs 
consists of deriving necessary optimality conditions associated with appropriate notions of 
stationarity; see particularly [1, 2, 7, 15, 17, 19, 22, 29] and the references therein. However, 
as it is pointed by Young [30], any theory of necessary optimaiity conditions is "naive" unless 
the existence of optimal solutions is guaranteed. The latter issue is far from being trivial for 
important classes of MPECs and related problems, especially in infinite-dimensional spaces, 
imposing rather restrictive requirements on the initial data; see, e.g., [2, 15, 12, 17, 28] for 
various results and discussions. 

On the other hand, there is an alternative route in optimization theory and applications, 
which allows us to avoid difficulties with justifying the existence of optimal solutions while 
providing an efficient approach to the study of qualitative aspects of optimization and the 
development of numerical algorithms. This approach is based on deriving suboptimality 
conditions that give "almost necessary conditions" (up to an arbitrary e > 0) for 1'almost 
optimal (suboptimal) solutions", which automatically exist. 

The first systematic results of this type go back probably to Ekeland's seminal paper 
[5] being among the strongest motivations to develop his now classical variational principle. 
Based on this principle, it is shown in [5] that, given any£ > 0, there is an £-minimizer x 
to a smooth function <p: X -> IRon a Banach space X that satisfies an £-counterpart of the 
Fermat stationary rule: 

(1.6) 

Suboptimality conditions of type (1.6) and their appropriate (more involved) extensions 
and analogs have been further developed for and applied to various kinds of constrained 
optimization-related problems in [8, 9, 10, 14, 21, 17, 26, 27] and their references, although 
this direction in optimization theory is somehow underestimated and not sufficiently ex­
plored. In particular, we are not familiar with any suboptimality conditions for MPECs. 

The primary goal of this paper is to derive suboptimality conditions for general MPECs 
given in the form 

subject to 

( 

minimize <po(x, y) 
<p;(x, y) ::; 0, i = 1, ... , m, 
<p;(x, y) = 0, i = m + 1, ... , m + r, 
(x, y) E f!, 
0 E G(x, y) + Q(x, y), 

(1. 7) 

which corresponds to (1.1) with the equilibrium constraints y E S(x) defined by solution 
maps to the extended generalized equations (1.3). Following the terminology of [17, 21], 
where suboptimality conditions are derived for mathematical programs with no equilib­
rium constraints, we distinguish between the two generally independent forms of subop­
timality conditions: weak and strong. The weak form of suboptimality conditions holds 
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under very mild assumptions on the initial data involving however weal?' neighborhoods 
from the corresponding dual spaces in their formulations. The strong form of subopti­
mality conditions imposes more requirements while provides stronger results with the re­
placement of weak' neighborhoods by small dual balls, i.e., it establishes the underlying 
estimates in suboptimality conditions in the norm topology versus the weal?' topology of 
dual spaces. Furthermore, strong suboptimality conditions are expressed via limiting nor­
malsjsubgradientsjcoderivatives of the initial data instead of F'rechet-like constructions in 
the weak form. The limiting constructions are robust and enjoy comprehensive rules of full 
calculus in contrast to the Fn3chet ones; see Section 2 for more discussions and references. 

Our approach to deriving suboptimality conditions is based on extremal/variational 
principles of variational analysis whose versions needed in the paper are recalled in Section 2. 
We significantly modify the scheme developed in [17, 21] to be able to apply it to establishing 
suboptimality conditions for the MPECs under consideration. As a by-product of the new 
scheme, we also improve the results obtained in [17, 21] for mathematical programs with 

. no equilibrium (just functional) constraints. 

The rest of the paper is organized as follows. Section 2 contains some preliminaries from 
variational analysis and generalized differentiation needed for the formulation and justifica­
tion of the main results. Section 3 is devoted to deriving weak suboptimality conditions for 
MPECs (1.7), while in Section 4 we present strong suboptimality conditions for the general 
MPECs under consideration and discuss some of their specifications. 

The notation used throughout the paper is basically standard; see [16, 17, 25]. Recall 
that IN := {1, 2, ... } and that lB and JB' stands, respectively, for the closed unit ball of 
the space X in question and of its topological dual X'. Given a nonempty set n C X, we 
denote by o(x; fl) the indicator function of fl equal to 0 if X E fl and oo otherwise. 

2 Tools of Variational Analysis 

For the reader's convenience, we briefly overview in this section some underlying construc­
tions and principles of variational analysis and generalized differentiation widely used in the 
sequel. We mainly follow the recent book by Mordukhovich [16], where the reader can find 
all the details and commentaries. The main framework of our study is the Asplund space 
setting. Thus we assume, unless otherwise stated, that all the spaces under consideration 
are Asplund, i.e., such Banach spaces whose separable subspaces have separable duals. The 
class of Asplund spaces is sufficiently large particularly including every reflexive Banach 
space and every Banach space with a separable dual; see, e.g., [23, 16] for more details, 
discussions, and references. The definitions and properties presented below are adjusted 
to the case of Asplund spaces; see [16] for their modifications and analogs in more general 
Banach space settings. 

Given a nonempty subset n of au Asplund space X, we define the prenormaljF'rechet 
normal cone to !1 at x E !1 by 

N(x; n) := { x' EX' I . (x',x-x) 
hm;~p llx- x]] 
x~x 

(2.1) 

where the symbol x E. x means that x --> x with x E n. While the set N(x; fl) c X' is 
always convex, it may be empty at boundary points x E n and does not possess satisfac­
tory pointwise calculus rules while enjoying the so-called fuzzy calculus; see [3, 16] for more 
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details and references. The situation is dramatically improved when we consider the follow­
ing "sequential robust regularization" of (2.1) known as the basicjlimitingjMordukhovich 
normal cone to !1 at x E !1: 

{ I 
!l w' 

N(x; !1) := x' EX' 3 sequences Xk--> x and xk--> x' 

with xk E N(xk; !1) for all k E IN}, (2.2) 

where xk ~ x* signifies the sequential convergence in the weak" topology of X*. Despite 
being nonconvex (actually due to this), the basic normal cone (2.2) and the associated 
coderivativejsubdifferential constructions given below satisfy comprehensive pointwise rules 
of full calculus; see [16] for probably the complete account in Asplund spaces and partly in 
the arbitrary Banach space setting. 

Given further a set-valued mapping F: X ==t Y with the graph 

gphF := {(x,y) EX x Yl y E F(x)}, 

define its (basic, normal) coderivative at (x, y) E gph F by 

D'F(x,y)(y') := {x' E X*l (x',-y') E N((x,ji);gphF)}, (2.3) 

which is a positively homogeneous mapping of y'; we always omit y = f(x) in (2.3) if 
F = f: X --> Y is single-valued. It easily follows from (2.2) that the coderivative (2.3) 
admit the sequential limiting representation 

D' F(x, y)(y') = { x* E X* I 3 (xk, Yk) --> (x, y) and (xk, yk) ~ (x', y') as k --> oo 

with Yk E F(xk) and xk E fr F(xk, Yk)(y'k), k E IN}, 
where the Fh'.chet-type coderivative D* F is defined similarly to (2.3) with the replacement 
of the basic normal cone N by its Frechet counterpart N from (2.1). IfF= f: X--> Y 
is strictly differentiable at x with the derivative \1 f(x): X --> Y (this is automatic when 
f E C 1 around this point), we have 

D'f(x)(y') = D'f(x)(y') = {'lf(x)'y*} for all y' E Y*. 

Considering an extended-real-valued function rp: X --> lR finite at x, define its F'rechet 
subdifferential at x (known also as the regular or viscosity subdifferential of <p at x) by 

Bcp(x) := {x' E X*llimipf cp(x)- cp(x)- (x',x- x) ;::: o} 
x~x [[x- x[[ 

(2.4) 

and the (basic, limiting, Mordukhovich) subdifferential of <p at x by: 

8<p(x) := {x' E X'l3 sequences Xk £. x, xi,~ x' with xi, E B<p(xk)}, (2.5) 

where x £. x stands for x--> x with cp(x)--> rp(x). We also need in what follows the singular 
subdifferential construction for <p at x defined (sequentially) by 
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which reduces to {0} if rp is locally Lipschitzian around x. If rp is lower semicontinuous 
around x, there are the following useful geometric representations 

Brp(x) = .B·&,(x,rp(x))(1), 8rp(x) = D*&,(x,rp(x))(1), 800 rp(x) = D*&,(x,rp(x))(O) (2.7) 

of the subdifferentials (2.4)-(2.6) via the corresponding coderivatives of the epigraphical 
multifunction &, : X =t IR associated with rp and defined by 

&,(x) := {I' E JRII' ~ rp(x)} with gph&, = epi rp; 

see, respectively, Theorem 1.86, Theorem 1.89, and Theorem 2.38 from the book [16]. 
We conclude this section with formulating two underlying results that play a crucial 

role in deriving the suboptimality conditions for MPECs obtained in this paper. The first 
result, known as the subdifferential variational principle, is established by Mordukhovich 
and Wang [21] (see also [16, Theorem 2.28]) as an analytic description of the fundamental 
extremal principle of variational analysis; see [16, Theorem 2.20] and the related material 
of [16, Chapter 2] with the commentaries and references therein. 

Theorem 2.1 (subdifferential variational principle). Let rp: X ---> .IR be a lower semi­
continuous function bounded from below on X. Then for every f > 0, 11 > 0, and xo E X 
satisfying rp(xo) < infx rp + f there are x EX and x* E Brp(x) such that 

llx- xo II :<:; 11, 

The next result, known is the weak fuzzy sum rule, is established by Fabian [6] as a 
consequence of the Borwein-Preiss smooth variational principle (see [3, 16]) by the method 
of separable reduction. It also follows from the extremal principle; see [16, Corollary 2.29] 
and [17, Lemma 5.27] and the discussions therein. 

Theorem 2.2 {weak fuzzy sum rule). Let 'Pi: X---> JR, i = 1, ... , n, be lower semicon­
tinuous functions on X. Then for every x E X, 1} > 0, x* E B( 'PI + ... + 'Pn) (x) and for 

any weak* neighborhood V of the origin in X* there are x, E x + 1}1B and xi E Brp;(x;) such 
that lrp,(x;)- 'Pi(x)i :<:;'I for all i = 1, ... , n and 

n 

x*ELxi+V. 
i=l 

3 Weak Suboptimality Conditions 

In this section we derived weak suboptimality conditions for MPECs (1.7) under very general 
assumptions on the initial data. We begin with the following lemma giving weak subopti­
mality conditions for mathematical programs with only the geometric constraint: 

minimize <po(x) subject to xES C X (3.1) 

where <po: X ---> IR with infs <po > -oo. We say that x E S is an E-optimal solution to the 
constraint problem (3.1) if 
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Obviously for any c > 0 the set of £-optimal solutions to (3.1) is nonempty. The result below 
is actually a specification of [17, Theorem 5.29] for problems with no functional constraints. 
Nevertheless, for completeness and the reader's convenience we present a simplified proof 
of this lemma in the case needed in what follows. 

Lemma 3.1 (weak suboptimality conditions for problems with geometric con­
straints). Suppose that <po is lower semicontinuous on the set of £-optimal solutions 
to problem (3.1) for c > 0 sufficiently small and suppose that the constraint set 3 is 
closed. Then given an arbitrary weak' neighborhood U of the origin 0 E X*, there ex­
ists E: > 0 such that for every 0 < c < E: and every 102-optimal solution x to (3.1) there are 
(xo,xs,x0,xE;) EX x X x X* x X* satisfying the relationships 

llxo- xll :::; c with I'Po(xo)- <po(x)l :::; c, llxs- xll :::; c with xs E 3, (3.2) 

x(j E a<po(xo), xE; E N(xs; 3), 0 E x(j + Xg + u. (3.3) 

Proof. For any v E X and "( > 0 we consider a family of weak* neighborhoods of the origin 
in X* defined by 

U(v;"() := {x* E X*jl(x*,v)l < "(}; 

this family forms a base of the weak* topology on X*. Then picking an arbitrary weak* 
neighborhood U in the theorem, find "f > 0, p E IN, andvj E X with II vi II = 1 as 1 :::; j :::; p 
satisfYing the inclusion 

p n U(vj; 2'?) c U. (3.4) 
j=l 

and show that the conclusions of the theorem hold for every c such that 

0 < c < E: :=min{'?, 1 }. 

To proceed, take any x E 3 with <po(x) :::; infs<po + 102 and find "fJ E (O,c) such that 
<po(x) < infs <po + (c- ry) 2 . Observe that for the function 

<p(x) := <po(x) + o(x; 3), X EX, (3.5) 

we have <p(x) < infx <p + (c - ry) 2. Applying now the subdifferential variational principle 
from Theorem 2.1 to the above function <p with the parameters 

E := ( c - "fJ )2 and v := c - "fJ 

and taking into account the structure of <pin (3c5), we get u E 3 and u* E §<p(u) satisfying 
the relationships 

llu- xll :5 "- "TJ, llu*ll :5 "- "TJ < "f, <po(u) :5 i~f 'P + (c- ry)2 < i~f <po +"- "TJ, (3.6) 

which imply, by the (c- ry) 2-optimality of x to problem (3.1), that I'Po(u)- <po(x)l :::; c- "f/· 
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Next apply the weak fuzzy sum rule from Theorem 2.2 to u* E B<p(u) for the sum of two 
functions in (3.5) with the weak' neighborhood 

p 

V := n U(vJ;"'Y) 
j=l 

of the origin in X* and the number "' > 0 chosen above. In this way we find elements 
(xo, x;;:, x0, x!;) E X x X x X* x X* such that 

llxo- ull ~ 'f/ with I'Po(xo)- <po(u)l ~ q, llx=:- ull ~ 'f/ with x=: E B, 
x0 E B<po(xo), x!; E N(x=:; B), and u' E x0 + x!;+ V. 

(3.7) 

Taking finally into account the relationships in {3.4) and (3.6), the above construction of the 
weak* neighborhood V, and that llu'll ~ "'f, we arrive from {3.7} at the desired conclusions 
{3.2) and (3.3) and thus complete the proof of the lemma. 6 

The next theorem provides weak suboptimality conditions for the general class of MPECs 
{1.7), where all the spaces under consideration are Asplund. 

Theorem 3.2 (weak sub optimality conditions for MPECs). Consider MP EC {1. 7) 
defined by 'Pi' X X y __, lR as i = o, ... ,m+r, !1 c X X Y, G: X X y =t z, and 
Q: X x Y =t Z. Assume that the functions 'Pi are all finite and lower semicontinuous for 
i = 0, ... , m while continuous fori = m + 1, ... , m + r on the set of e-optimal solutions 
to {1.7) for each e > 0 sufficiently small and that the sets !1, gphG, and gphQ ate locally 
closed around the points under consideration. Let U be an arbitrary weak' neighborhood 
of the origin in X' x Y', and let 'Y be an arbitrary positive number. Then we can find a 
number 6 > 0 such that for every e E {0, 6), every e2-optimal solution (x, Y) to {1.7), and 
every z E G(x, Y) n (- Q(x, Y)) there are elements 

as i = 0, ... , m + r from the corresponding spaces, with Ao = 1, satisfying the relationships 

ll(xo, Yo)- (x, Ylll ~ e with I'Po(xo, Yo)- <po(x, Yll ~ e, {3.8a) 
ll(x,, Yi)- (x, Ylll ~ e, i = 1, ... , m, {3.8b) 

ll(x,,y,)-(x,YJII~e with I'Pi(x,,y,)-<p,(x,Y)I~e, i=m+1, ... ,m+r, (3.8c) 

ll(xa,ya,za)-(x,y,z)ll~e with (xa,ya,za)EgphG, {3.8d) 

ll(xq,yq,zq)- {x,y,z)ll ~e with (xq,yq,zq) E gphQ, {3.8e) 

ll(xn,Yn)- {x,YJII ~ e with (xn,Yn) E !1, {3.8f) 

(x0, y0) E B<po(xo, Yo), (x0, Yo) E N( (xn, Yn); !1), (3.8g) 

(xi, yi) E .x,a<p,(x,, y,) with .X, ;::: o, i = 1, ... , m, (3.8h) 

(xi, yi) E .X, [B<p,(x,, y;) U B( -<p,)(x,, y;)] with .X, 2: 0, i = m + 1, ... , m + r, (3.8i) 

(x(,,y(,) E D'G(xa,ya,za)(z(;), (xQ,YQ) E D*G(xq,yq,zq)(ziJ) (3.8j) 

with z(; E Z', zQ E Z*, and liz(; - ziJ II ~ "f, {3.8k) 
m+r 

0 E 2)xi,yi) + (x(,,y(;) + (xQ,YQ) + (xfi,yfi) + U. {3.81) 
i=O 
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Proof. Our approach to deriving the suboptimality conditions formulated in the theorem 
employs the following procedure. Construct first a mathematical program of type (3.1) 
with only the geometric constraint given by a set intersection in such a way that this 
problem is equivalent to the general MPEC (1.7) under consideration. Applying then the 
suboptimality conditions from Lemma 3.1 to the designed problem (3.1), we need to express 
them constructively in terms of the initial data of (1.7). This will be done by using the weak 
fuzzy sum rule from Theorem 2.2 and the efficient descriptions of Frechet normals to graphs 
and epigraphs of functions established in [16, Section 2.4] on the base of variational/extremal 
principles. Details follow. - · 

Consider the product space W := X x Y x JRm+r x Z endowed with the standard sum 
norm on the product. It is well known [23] that W is Asplund as a product of Asplund 
spaces. Define the following subsets of W by 

n,:={(x,y,a,z)EW I (x,y,a;)Eepi<p;}, i=1, ... ,m, 
!1;:={(x,y,a,z)EW (x,y,a;)Egph<p.}, i=m+1, ... ,m+r, 
!1a :: {(x,y,a,z) E WI (x,y,z) E gphG}, 
!1q .- {(x,y,a,z) E W (x,y,-z) E gphQ}, 

m+r 
!1n := !1 X JR'!': X {0} X Z C W, B := n !1; n !1a n !1q n !1n, 

i=l 

(3.9) 

where a= (<>J, ... ,<>m+r) E JRm+r, where lR'!': stands for the nonpositive orthant of IRm, 
and where 0 E JRr. It is easy to see that all these sets are locally closed around the points in 
question due to the semi continuity /continuity /closedness assumptions made in the theorem. 
Observe also that for every feasible solution (x, y) to MPEC (1.7) we have 

(x, y, a, z) E B with a= ('P!(x, y), ... , 'Pm+r(x, y)) and any z E G(x, y) n (- Q(x,y)) 

by the construction of Bin (3.9). Conversely, the inclusion (x, y, a, z) E B implies that (x, y) 
is a feasible solution to MPEC (1.7), since 

<p,(x,y)::; a;::; 0 for i = 1, ... ,m, <p;(x,y) =a;= 0 for i = m+ 1, ... ,m+r, 
z- z = 0 E G(x, y) + Q(x, y), and (x, y) E !1 

due to the set structures in (3.9). Furthermore, define iji0 : X x Y x JRm+r x Z-+ lR by 

ifio(x,y,a,z) := <po(x,y) for all (x,y,a,z) E W (3.10) 

and construct a mathematical program of type (3.1) with only the geometric constraint 
given by the set B from (3.9) as follows: 

minimize ifio(x,y,a,z) subject to (x,y,a,z) E B. (3.11) 

Having (x, Y) E XxY, denote a:= ('!'!(X, y), ... , 'Pm+r(x, y)) E JRm+r and pick any element 
z E G(x, Y) n ( --Q(x, Y)). By construction we get that (x, y) is an <-optimal solution to 
MPEC (1.7) if and only if (x, y, a, z) E W is an <-optimal solution to (3.11). 

Fix an arbitrary number"'/> 0 and take an arbitrary weak* neighborhood U of the origin 
in X* x Y* from the formulation of the theorem. Let us construct a weak' neighborhood 
v of the origin in w· by 

V ·= (-1 -U) X JRm+r X ~(lint JB') ' m+r+l I 2 ' (3.12) 
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where JB' stands for the closed unit ball in Z'. Applying now Lemma 3.1 to problem 
(3.11) with the neighborhood V from (3.12) and taking into account the structures of 'Po 
and V in (3.10) and (3.12), respectively, we find "t > 0 such that for every e E (O,o/3) and 
every o:2-optimal solution (x, y, a, z) to (3.11)-corresponding to the designated o:2-optimal 
solution (x, Y) to MPEC (1.7)-there are elements 

satisfying the following relationships 

ll(xo, yo, ao, zo)- (x, y, a, z)ll :$ e with I'Po(xo, Yo)- <po(x, Y)l :$ £, 

ll(xs,ys,as,zs)- (x,y,a,z)ll :$ e with (xs,ys,as,zs) E 2, 

(x0, y0, 0, 0) E D<;io(xo, yo, ao, zo) = D<po(xo, Yo) x {0}, 

(x8,y8,a8,z2) E N((xs,Ys,as,zs);2) with llzsll $ 'Y/2, 

0 E (x(;, Yo) + (x8, Ys) + m+~+l U. 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 

(3.13e) 

It is easy to observe from the intersection structure of the set 2 in (3.9) that inclusion 
(3.13d) can be equivalently written as 

m+r 
(x2;, Yg, a8,z2) E a( L 8(·; !1;) + 8(·; !1a) + 8(·; l1Q) + 8(·; !1nl) (xs, Ys, as, zs). (3.14) 

i=l 

Taking the Frechet subgradient (x2;, y2;, a;;, zg) in (3.14) and applying to it the weak fuzzy 
sum rule from Theorem·2.2 with the neighborhood V defined in (3.12) and with any fixed 
number rJ = e E (O,o/3) from above, we find elements 

as i = 1, ... , m + r satisfying the following relationships, where as; stands for the i-th 
component of the vector as E JR=+r from (3.13): 

II (x;, y;, a;) - (xs, Ys, <>s;)ll :,; e, (x;, y;, ai) E epi <p;, i = 1, ... , m, 

ll(x;, y;, a;)- (xs, Ys, as;) II :$ e, (x;, y;, a;) E gph<p;, i = m + 1, ... , m + r, 
ll(xa,ya,wa)- (xs,Ys,zs)ll :$ e, ll(xQ,YQ,wQ)- (xs,Ys,zs)ll :$ e, 

ll(xn,Yn)- (xs,Ys)ll :$ e with (xn,Yn) E !1, 

(Xi,Yi,-~i) EN((Xi,Yi,ai);epicpi), i= l, ... ,m, 

(Xi, Yi, -Xi) E fJ ((Xi, ffi, Qi)i gph cpi), i = m + 1, ... , m + r, 
(x1J,y1\) E N((xn,yn);!1), (x(:,y(:,-z(:) E N((xa,Ya,za);gphG), 

(xq, Yq, zq) E N((xQ, YQ, ZQ); gph ( -Q)) with llz'G- zq + z?;ll :$ 'Y/2, 
m+r 

(xg, y?;) E L (X:, !1;) + (x(:, y(:) + (xq, Yq) + (x1J, Yn) + m+~+l U. 
i=l 

(3.15a) 

(3.15b) 

(3.15c) 

(3.15d) 

(3.15e) 

(3.15f) 

(3.15g) 

(3.15h) 

(3.15i) 

Let us further elaborate conditions (3.15). Consider first the relationships for inequality 
constraints and fix i E {1, ... ,m} in (3.15a) and (3.15e). It is easy to check, due to the 
definition of Frechet normals in (2.1) and a; 2: <p;(x;,y;), that (3.15e) implies the inclusion 

(x;,y;,-3:,) E N((x;,y;,<p;(x,,y,));epi<p;) with;;, 2:0, (3.16) 
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and thus there are the two possible cases in {3.16): :>;, > 0 and:>;,= 0. 

If:>;,> 0 in {3.16), we immediately get (X):,1/i) E :>;,§cp,(x,,'jj;) from {3.16) due to the 
first relationship in (2.7); hence by {3.13b) and {3.15a) we arrive at conclusions {3.8b) and 
(3.8h) of the theorem with (x;, y;, A;, xi, yi) := (x;, y;);, Xi, 1/i). 

The other case of:>;, = 0 in {3.16) means that (xi, 1/i) is a horizontal Prechet normal to 
the epigraph of cp; at (x;, y;). Using [16, Lemma 2.37] on the description of such normals in 
Asplund spaces, we find (x;, y;, A;, xi, yi) E X X y X IRx x· X y• satisfying the relationships 

ll(x;,y;)- (x;,jJ;)II :s; E:, (xi,yi) E (xi,1/i)+ m+~+1 U, 
A; 2': 0, and (xi, yi) E A;Bcp;(x;, y;), i = 1, ... , m, 

which imply those in {3.8h) in the case under consideration. 

{3.17) 

Next we elaborate the relationships for equality constraints in {3.15) and fix an index 
i E { m + 1, ... , m + r} in {3.15b) and {3.15f). Again, explore the two possible cases in 
(3.15f).; :>;, of 0 and :>;, = 0. 

If A; =J 0, we get from [16, Theorem 1.80] that (3.15f) yields 

(Xi,Yi) E A;[Bcp;(x;,y;)UB(-cp;)(x;,y;)] with A;:= 1::;;,1, 

which justifies (3.8i) with (x;, y;, xi, yi) := (x;, y;, xi, 1/i). If:>;, = 0 in (3.15f), this means 
that (xi, yi) is a horizontal Prechet normal to the graph of cp; at (x;, y;). Using the descrip­
tion of such normals for continuous functions on Asplund spaces from [16, Theorem 2.40{i)], 
we find elements (x;, y;, A;, xi, yi) E X X y X lR X x· X y• satisfying the relationships 

ll(x;, y;) - (x;, y;)ll :s; E:, (xi, yi) E (xi, 1/i) + m+~+l U, A; 2': 0, 

(xi, yi) E A; [Bcp;(x;, y;) U B( -cp;)(x;, y;), i = m + 1, ... , m + r, 

which imply those in {3.8i) in this case. 

(3.18) 

Considering finally the inclusions and estimates in the above relationships {3.13) and 
(3.15) for the cases of geometric and equilibrium constraints and taking into account the 
construction of the Fn\chet coderivative in Section 2, we easily arrive at the correspond­
ing condition in {3.8d)-(3.8g) and (3.8j) of the theorem from those in (3.13) and {3.15). 
Estimate (3.8k) for the equilibrium constraints follows from 

llza- zqll :s; ll{za- Zq + zs)- zsll :S: llza- zq + zsll + llzsll :s; 1/2+ "f/2 = "f 

due to {3.13d) and (3.15h). Furthermore, the relationships in (3.8a) and (3.8g) for the cost 
function of (1.7) are implied directly by those in (3.13a) and (3.13c); the cost function is 
not involved in the conditions of {3.15). 

To complete the proof of theorem, it remains to justify the generalized Euler equation 
(3.81) involving the given weak' neighborhood u of the origin in x· X y•. We get this by 
combining relationships (3.13e), {3.15i) with those for (xi, yi) in {3.17) and {3.18). 6 

Remark 3.3 (qualified suboptimality conditions with no constraint qualifica­
tions). As we see from Theorem 3.2, the suboptimality conditions for MPECs obtained 
therein are in the qualified/normal form, which means that Ao = 1 for the multiplier corre­
sponding to the cost function <po; see (3.8g) and (3.81) in comparison with {3.8h) and (3.8i). 
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This is a new result even for problems with just functional (no equilibrium) constraints 
derived in [17, Theorem 5.29], which contains conditions in the non-qualified (Fritz John) 
form: 

m+r 

(x0,y0)EAo8<p0 (xo,yo), LA;=1, A;::O:O forall i=O, ... ,m+r (3.19) 
i=O 

instead of the qualified ones with Ao = 1 in the counterpart of Theorem 3.2 for problems with 
no equilibrium constraints. It is easy to check that Theorem 3.2 implies its non-qualified 
version with conditions (3.19). Indeed, letting 

m+r 

A:= 1 +LA;, 
i=l 

- 1 
Ao := );• 

- A· 
Ai := ; for i = 1, ... , m + r, 

~ x; . * x* * * z* ~ ·- xa _.,. ·- Q ~* -· xn "'* ·- za ._,.,. Q xi := T for ~ = 0, ... , m + r, xa .- A' xq .- A' xn -. A' za .- A' zq := A 

in the suboptimality conditions of Theorem 3.2, we arrive the non-qualified version of this 
theorem with conditions (3.19). 

At the first glance it looks rather surprising that we get qualified conditions with no 
constraint qualifications. The key here is that the conditions obtained are not pointwise 
but fuzzy, i.e., they involve all points from a neighborhood ofsuboptimal solutions as well 
as dual elements measured by an arbitrary small number e > 0. We can see from the 
proof of Theorem 3.2 that deriving such conditions benefits from the possibility of limiting 
subgradient representations of horizontal normals to epigraphs and graphs of functions, 
which are based on variational principles; see [16, Subsection 2.4.2] for more details. 

Remark 3.4 (comparison with another approach). It is worth mentioning that the 
proof of suboptimality conditions in [17, Theorem 5.29] for standard mathematical programs 
with no equilibrium constraints 

minimize <po(x) subject to x E !1 C X, 
<p;(x) :::; 0, i = 1, ... , m, and <p;{x) = 0, i = m + 1, ... , m + r, 

(3.20) 

employs a different device in comparison with that of Theorem 3.2 above. The former is 
based on considering the auxiliary unconstrained minimization problem 

m+r 

minimize <po(x) + o(x; !1) + L o(x; !1;), X EX, 
i=l 

equivalent to (3.20), where the sets n, are defined by 

!1, := {x E XI <p;(x) :::;o}, i=1, ... ,m; !1, := {xE XI <p;(x) =0}, i=m+1, ... ,m+r. 

To adopt this scheme in the case of equilibrium-type constraints given by 0 E G(x) + Q(x), 
we need to involve the set (G+Q)-1(0), which is essentially more complicated to handle and 
often fails to be closed even when both mappings G and Q are assumed to be closed-graph. 
Observe that the closedness requirements are necessary to employ variational arguments. 

Remark 3.5 (implementation and applications of weak suboptimality condi­
tions). Theorem 3.2 deals with a general MPEC model particularly including problems 
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with equilibrium constraints described by set-valued/generalized variational inequalities, 
solutions sets to lower-level problems in hierarchical optimization; see, e.g., Section 1 above 
and [1, 17} for more examples and discussions. To implement suboptimality conditions 
obtained in this way and to apply them to particular models, we need to calculate the 
corresponding coderivatives that appear in (3.8). It has been partly done in [1, 17} and 
the references therein in the case of necessary optimality conditions obtained via our basic 
coderivative (2.3), which enjoys comprehensive pointwise rules of full calculus and has been 
computed for broad classes of mappings arising in many important applications. The situ­
ation is more complicated with the Frechet-like constructions used in Theorem 3.2, which 
satisfy a much modest amount of pointwise/exact calculus; see [16} and also [18} for recent 
results in this direction. However, the latter constructions possess many useful rules of fuzzy 
calculus in Asplund spaces (see, e.g., [3, 11, 16, 20} with more references and discussions), 
which are appropriate to be employed in the fuzzy framework of suboptimality conditions. 

4 Strong Suboptimality Conditions 

In this section we derive new suboptimality conditions for MPECs (1.7) in the strong form, 
which-as discussed in Section l-is different from the weak form of suboptimality condi­
tions in the following two major aspects: 

(a) the strong form provides estimates of dual elements in the strong/norm topology 
instead of the weak' topology of the dual spaces in question as in the weak work; 

(b) the strong form uses our robust limiting sub gradient, normal, and co derivative con­
structions instead of the Frechet-like constructions in the weak form. 

The strong form undoubtedly offers significant advantages over the weak form-even in 
finite dimensions, where there is no difference between weak and strong topologies of dual 
spaces-due to essentially more developed calculus for the limiting constructions and their 
efficient computation for various classes of sets and mappings important in applications; 
see [16, 17} and the discussions in Remark 3.5 and Remark 4.4. On the other hand, strong 
suboptimality conditions require more assumptions in comparison with weak ones: quali­
fication conditions in both finite and infinite dimensions and the so-called SNC properties 
[16}, which are automatic in finite-dimensional spaces. 

Recall that a set !1 C X is sequentially normally compact (SNC) at x E !1 if the following 
implication holds: 

(4.1) 

for any sequences involved in (4.1). Further, we say that an extended-real-valued function 
<p: X --+ JR. is sequentially normally epi-compact (SNEC) at x with <p(x) < oo of its epigraph 
epi <p C X x JR. is SNC at (x, <p(x)). Besides the obvious validity of both SNC and SNEC 
properties in finite-dimensional spaces, !1 is SNC at x if it is compactly epi-Lipschitzian 
around this point in the sense of Borwein and Str6jwas, while <p is SNEC at x if it is 
directionally Lipschitzian around this point in the sense of Rockafellar; in particular, when 
it is locally Lipschitzian around x---see [16} for more details and references and for other 
sufficient conditions for the fulfillment of the SNC and SNEC properties. Furthermore, 
these and related properties of sets, mappings, and functions enjoy well-developed SNC 
calculus ensuring their preservation under various operations. Note that SNC calculus is 
also based on variational/extremal principles of variational analysis; see [16}. 
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To derive strong suboptimality conditions for MPECs (1.7), we start----£imilarly to Sec­
tion 3-with such conditions for problem (3.1) involving only the geometric constraint given 
by a closed set ::0 C X. The following result is a specification and a small modification of 
[17, Theorem 5.30] for this case, while we present its simplified proof for completeness and 
the reader's convenience. 

Lemma 4.1 (strong suboptimality conditions for problems with geometric con­
straints). Let <po be lower semicontinuous on the sets of €-optimal solutions to problem 
(3.1) for all o > 0 sufficiently small, and let 3 be closed. Assume also that either <po is 
SNEC or 3 is SNC and that the qualification condition 

D00<po(x) n (- N(x; 3)) = {0} (4.2) 

is satisfied on the afore-mentioned set. Then for every o > 0 sufficiently small and every 
o2-optimal solution x to (3.1) there is an o2-optimal solution x to this problem such that 

[IX- x[[ ::; e and llxo + x211 ::; e (4.3) 

for some xo E D<po(x) and X3 E N(x;3). 

Proof. Consider the unconstrained problem 

minimize <p(x) := <po(x) + o(x; 3), X EX, (4.4) 

equivalent to (3.1) and observe that x is an o2-optimal solution to (4.4). Applying the 
subdifferential variational principle from Theorem 2.1 with the parameters 

e := c2 and v := E 

to the function <pin (4.4), we find an e2-optimal solution x E 3 to (4.4)-and hence to the 
original constrained problem (3.1)-satisfying conditions (4.3) with a subgradient 

x' E a['Po +O(·; 3)j(x). (4.5) 

Using now the sum rule for the basic subdifferential in ( 4.5), which holds under the SNC 
and qualification conditions imposed in the theorem (see [16, Theorem 3.36]), we get 

D<p(x) c D<po(x) + Do(X; 3) = D<po(x) + N(x; 3), 

and thus arrive from (4.5) at the second condition in (4.3). 

Note that we automatically have the suboptimality conditions of the lemma if <po is 
locally Lipschitzian on the sets of e-optimal solutions to (3.1). Indeed, in this case both the 
SNEC and qualification condition ( 4.2) are satisfied. 

The next theorem provides strong suboptimality conditions in the qualified form for 
general MPECs (1.7) in Asplund spaces. Denote 

.l. := (.l.1, ... ,Am+r) E JRm+r and A:= {.l. E JRm+rl,;,i 2: 0 for all i = 1, ... ,m}: 
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Theorem 4.2 (strongsuboptimality conditions for MPECs). Let the sets !1, gphG, 
and gph Q be closed, and let the functions <p; be lower semicontinuous for i = 0, ... , m and 
continuous fori= m + 1, ... , m+r on the set of e:-optimal solutions to MPEC {1.7) for all 
e: > 0 sufficiently small. Suppose also that the following two groups of conditions hold on 
the latter set of e:-optimal solutions: 

(a) The SNC conditions: 
-either <po is SNEC and all but one of the sets epi<p; fori= 1, ... ,m, gph<p; for 

i=m+1, ... ,m+r, gphG, gphQ, and !I areSNC; 
-or all of the sets epi<p; fori = 1, ... ,m, gph<p; fori = m + 1, ... ,m + r, gphG, 

gph Q, and !1 are SNC; · 

(b) The qualification condition: the only zero elements 

(xo, Yo) = ... = (x;',>+r, y;;,+r) = (x(,, y(,) = (xQ, YQ) = (x1J, Yn) = 0, A= 0, z* = 0 

satisfy the relationships 

(x0,yQ) E IJOO<po(x,y), A E A, (xj,yi) E D*E'P,(x,y,a,)(A;) fori= 1, ... ,m, 
(xj,yi) E D*<p;(x,y)(A;) for i=m+1, ... ,m+r, (x1J,y?,) EN((x,y);!t), 
(x(,, y(,) E D*G(x, y, z)(z*), (xQ,YQ)) E D*Q(x, y, -z)(z*), and 

m+r 
(x0,Yo) + L)xi,yi) + (x(,,y(,) + (xQ,YQ) + (x1J,y?,) = 0 

i=l 

whenever a; ~ <p;(x,y) fori= 1, ... , m and z E G(x, y) n (- Q(x, y)). 

Then given any number e: > 0, for every e2 -optimal solution (x, Y) to MPEC (1.7) and 
every z E G(x,y) n (- Q(x,y)) there is an e2 -optimal solution (x,y) to this problem and 
zE G(x,YJ n (- Q(x,y)) such that 

ll(x,YJ- (x,y)ll:::; "• liZ- zll:::; e, and 

m+r 

ll(xij,j)Q) + 2)xi,Yi) + <xa.ilG) + (:i:Q,flQ)+(xn.%)11:::::, 
i=l 

where the dual elements (XQ, YQ, Xi, Y;, X(;, YQ, XQ, YQ, XO, 1in) satisfy the relationships 

(x0,j)Q) E o<po(x,y), (X1J,Y1J) E N((x,y);n), 
(:i:;,Yi) E D*E<p,(x,y,i'i;)(X,) with i'i, ~ <p;(x,YJ, X,~ 0, i = 1, ... ,m, 
(Xi, Yi) E D*<p;(x, y)(X,) with X, E JR, i = m + 1, ... , m + r, 
(XC,, YG) E D*G(x, y, z)(za), (:i:Q, fiQ) E D*Q(x, y, -z)(ZQ) with liz(,- zqll:::; e. 

{4.6) 

{4.7) 

(4.8) 

Proof. We start proceeding similarly to the proof of Theorem 3.2 and consider the op­
timization problem (3.11) with only the geometric constraint equivalent to MPEC {1.7), 
where the constraint set 3 C W and the cost function ijio are defined in (3.9) an (3.10), 
respectively. Taking an e2-optimal solution (x, Y) to MPEC {1.7) from the formulation of 
the theorem and picking any z E G(x,y) n (- Q(x,y)), we conclude similarly to the proof 
of Theorem 3.2 that (x, y, a, z) E W with a:= (<p1(x, y), ... ,'Pm+r(x,y)) is an e2-optimal 
solution to problem (3.11). Applying now the strong suboptimality conditions (4.3) from 
Lemma 4.1 to the designated e2-optimal solution (x, y, a, z) to problem (3.11) and taking 
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into account the structure of iji0 in (3.10), we find an c2-optimal solution (x,y,a,Z) E W to 
this problem and dual elements 

('XQ, YO) E D<po(x, y) and (xs, j)3, i!B, zs) E N( (x, y, a, z); B) (4.9) 

satisfying the relationships 

ll(x,y,a,z)- (x,y,a,z)ll:::;" and li(x0,y0,0,0) + (x3,yE;,a3,z3)11:::;" (4.10) 

provided that the qualification condition 

(000<po(x,y),O,O) n [ -N((x,y,a,z);B)] = {0} (4.11) 

coming from (4.2) holds on the set of c-optimal solutions to problem (3.11) for all E suffi­
ciently small and that either <po is SNEC, orB is SNC on this set. 

To proceed further, we need to represent the basic normal cone N(·; B) in (4.9) and 
( 4.11) in terms of the initial data of MPEC (1.7) and also to express the SNC condition for 
B via requirements imposed on the initial data of (1.7). It can be done by using efficient 
rules of generalized differential and SNC calculi developed in [16], which are both based on 
the extremal principle of variational analysis. 

Indeed, by the intersection rule for basic normals from [16, Corollary 3.5] we have for 
the set intersection B in (3.9) that 

m+r 

N((x,y,a,z);B) C L N((x,y,a,z);!!;) +N((x,y,a,z);!!a) 
i=l 
+N((x,y,a,z);!!c) + N((x,y,a,z);!!n) 

provided that all but one of the set !!;, i = 1, ... , m + r, !Ia, fiQ, and !! are SNC at 
(x, y, a, z) and the qualification condition 

[ w; E N(w;f!;), i = 1, ... ,m+r, w0 E N(w;f!c), w0 E N(w;f!Q), 
m+r . 

• N( " ) '"' * * * * o] * * * * o W!l E w; H!J , L.. W; + Wa + WQ + W!J = ==} W; = We = WQ = W!J = 
i=l 

is satisfied for w = (x, y, a, z) from above. By the set structures in (3.9) and the coderivative 
definition in (2.3) we can easily conclude that the latter qualification condition reduces to 
the one formulated in part (b) of the theorem. On the other hand, by [16, Corollary 3.81] 
the intersection set B is SNC at (x, y, a, z) if all sets!!;, i = 1, ... , m + r, flo, flQ, and fl 
are SNC at the point under the validity of the qualification condition (b). 

Combining this with (4.9)-(4.11), taking into account the particular structures of the 
sets in (3.9), and adjusting the corresponding notation, we arrive at the suboptimality 
conditions (4.6)-(4.8) and thus complete the proof of the theorem. The reader can easily 
reproduce all the corresponding details. D. 

Remark 4.3 (specifications of strong suboptimality conditions under additional 
assumptions). If for some i E {1, ... ,m} the function <p; is continuous at the points 
in question, then without loss of generality we can let "'' = <p;(x, y) in the qualification 
condition (b) of Theorem 4.2 and a;= <p;(x,y) in suboptimality conditions (4.8) for the 
corresponding inequality constraint. In this case the coderivative terms in (b) reduces to 
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either A/)<p;(x, y) for A; > 0 or 800<p;(x, y) for A; = 0, and similarly in ( 4.8); see the formulas 
in (2.7) justifying these representations. Furthermore, if all <p;, i = 1, ... , m+r, are Lipschitz 
continuous around the points in question, then the coderivative conditions corresponding 
to the inequality constraints in ( 4.8) can be equivalently replaced by 

'>.;8<p;(x, Y) with >., ;::: o, i = 1, ... , m, 

while the coderivative conditions for the equality constraints can be replaced by 

['>.;[[8<p;(x,Y)ua( -<p;)(x,YJ], i=m+1, ... ,m+r; 

similarly for the qualification condition (b) in Theorem 4.2. Moreover, the sets epi<p; for 
i = 1, ... , m and gph <p; for i = m + 1, ... , m + r are automatically SNC in this setting. 
Thus we get back to [17, Theorem 5.30] established for Lipschitzian functional constraints 
with no constraints of the equilibrium type. 

Remark 4.4 (implementation and applications of strong suboptimality condi­
tions). The strong suboptimality conditions obtained in Theorem 4.2 in terms of our 
basic/limiting normals, subgradients, and coderivatives can be applied to a broad range of 
problems with specific structures due to full calculus available for them and due to efficient 
computing these constructions in numerous settings important for applications; see [16, 17] 
for more results, discussions, and examples. Actually, there is no much difference between 
implementation and applications of necessary optimality conditions for MPECs (see, e.g., 
[1, 2, 7, 17, 29] and their references) and the strong suboptimality conditions established 
in this paper. We can particularly handle in this way complementarity problems, varia­
tional inequalities and their extensions, problems of bilevel programming, etc., by using 
second-order subdifferentials of extended-real-valued functions as in [1, 17]. 
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