45 research outputs found

    Two-Way Automata Making Choices Only at the Endmarkers

    Full text link
    The question of the state-size cost for simulation of two-way nondeterministic automata (2NFAs) by two-way deterministic automata (2DFAs) was raised in 1978 and, despite many attempts, it is still open. Subsequently, the problem was attacked by restricting the power of 2DFAs (e.g., using a restricted input head movement) to the degree for which it was already possible to derive some exponential gaps between the weaker model and the standard 2NFAs. Here we use an opposite approach, increasing the power of 2DFAs to the degree for which it is still possible to obtain a subexponential conversion from the stronger model to the standard 2DFAs. In particular, it turns out that subexponential conversion is possible for two-way automata that make nondeterministic choices only when the input head scans one of the input tape endmarkers. However, there is no restriction on the input head movement. This implies that an exponential gap between 2NFAs and 2DFAs can be obtained only for unrestricted 2NFAs using capabilities beyond the proposed new model. As an additional bonus, conversion into a machine for the complement of the original language is polynomial in this model. The same holds for making such machines self-verifying, halting, or unambiguous. Finally, any superpolynomial lower bound for the simulation of such machines by standard 2DFAs would imply LNL. In the same way, the alternating version of these machines is related to L =? NL =? P, the classical computational complexity problems.Comment: 23 page

    Automata with Modulo Counters and Nondeterministic Counter Bounds

    Get PDF
    We introduce and investigate Nondeterministically Bounded Modulo Counter Automata (NBMCA), which are two-way multi-head automata that comprise a constant number of modulo counters, where the counter bounds are nondeterministically guessed, and this is the only element of nondeterminism. NBMCA are tailored to recognising those languages that are characterised by the existence of a specific factorisation of their words, e. g., pattern languages. In this work, we subject NBMCA to a theoretically sound analysis

    On the membership problem for pattern languages and related topics

    Get PDF
    In this thesis, we investigate the complexity of the membership problem for pattern languages. A pattern is a string over the union of the alphabets A and X, where X := {x_1, x_2, x_3, ...} is a countable set of variables and A is a finite alphabet containing terminals (e.g., A := {a, b, c, d}). Every pattern, e.g., p := x_1 x_2 a b x_2 b x_1 c x_2, describes a pattern language, i.e., the set of all words that can be obtained by uniformly substituting the variables in the pattern by arbitrary strings over A. Hence, u := cacaaabaabcaccaa is a word of the pattern language of p, since substituting cac for x_1 and aa for x_2 yields u. On the other hand, there is no way to obtain the word u' := bbbababbacaaba by substituting the occurrences of x_1 and x_2 in p by words over A. The problem to decide for a given pattern q and a given word w whether or not w is in the pattern language of q is called the membership problem for pattern languages. Consequently, (p, u) is a positive instance and (p, u') is a negative instance of the membership problem for pattern languages. For the unrestricted case, i.e., for arbitrary patterns and words, the membership problem is NP-complete. In this thesis, we identify classes of patterns for which the membership problem can be solved efficiently. Our first main result in this regard is that the variable distance, i.e., the maximum number of different variables that separate two consecutive occurrences of the same variable, substantially contributes to the complexity of the membership problem for pattern languages. More precisely, for every class of patterns with a bounded variable distance the membership problem can be solved efficiently. The second main result is that the same holds for every class of patterns with a bounded scope coincidence degree, where the scope coincidence degree is the maximum number of intervals that cover a common position in the pattern, where each interval is given by the leftmost and rightmost occurrence of a variable in the pattern. The proof of our first main result is based on automata theory. More precisely, we introduce a new automata model that is used as an algorithmic framework in order to show that the membership problem for pattern languages can be solved in time that is exponential only in the variable distance of the corresponding pattern. We then take a closer look at this automata model and subject it to a sound theoretical analysis. The second main result is obtained in a completely different way. We encode patterns and words as relational structures and we then reduce the membership problem for pattern languages to the homomorphism problem of relational structures, which allows us to exploit the concept of the treewidth. This approach turns out be successful, and we show that it has potential to identify further classes of patterns with a polynomial time membership problem. Furthermore, we take a closer look at two aspects of pattern languages that are indirectly related to the membership problem. Firstly, we investigate the phenomenon that patterns can describe regular or context-free languages in an unexpected way, which implies that their membership problem can be solved efficiently. In this regard, we present several sufficient conditions and necessary conditions for the regularity and context-freeness of pattern languages. Secondly, we compare pattern languages with languages given by so-called extended regular expressions with backreferences (REGEX). The membership problem for REGEX languages is very important in practice and since REGEX are similar to pattern languages, it might be possible to improve algorithms for the membership problem for REGEX languages by investigating their relationship to patterns. In this regard, we investigate how patterns can be extended in order to describe large classes of REGEX languages

    Converting Nondeterministic Two-Way Automata into Small Deterministic Linear-Time Machines

    Full text link
    In 1978 Sakoda and Sipser raised the question of the cost, in terms of size of representations, of the transformation of two-way and one-way nondeterministic automata into equivalent two-way deterministic automata. Despite all the attempts, the question has been answered only for particular cases (e.g., restrictions of the class of simulated automata or of the class of simulating automata). However the problem remains open in the general case, the best-known upper bound being exponential. We present a new approach in which unrestricted nondeterministic finite automata are simulated by deterministic models extending two-way deterministic finite automata, paying a polynomial increase of size only. Indeed, we study the costs of the conversions of nondeterministic finite automata into some variants of one-tape deterministic Turing machines working in linear time, namely Hennie machines, weight-reducing Turing machines, and weight-reducing Hennie machines. All these variants are known to share the same computational power: they characterize the class of regular languages

    Two-wayness: Automata and Transducers

    Get PDF
    This PhD is about two natural extensions of Finite Automata (FA): the 2-way fa (2FA) and the 2-way transducers (2T). It is well known that 2FA s are computably equivalent to FAs, even in their nondeterministic (2nfa) variant. However, in the field of descriptional complexity, some questions remain. Raised by Sakoda and Sipser in 1978, the question of the cost of the simulation of 2NFA by 2DFA (the deterministic variant of 2FA) is still open. In this manuscript, we give an answer in a restricted case in which the nondeterministic choices of the simulated 2NFA may occur at the boundaries of the input tape only (2ONFA). We show that every 2ONFA can be simulated by a 2DFA of subexponential (but superpolynomial) size. Under the assumptions L=NL, this cost is reduced to the polynomial level. Moreover, we prove that the complementation and the simulation by a halting 2ONFA is polynomial. We also consider the anologous simulations for alternating devices. Providing a one-way write-only output tape to FAs leads to the notion of transducer. Contrary to the case of finite automata which are acceptor, 2-way transducers strictly extends the computational power of 1-way one, even in the case where both the input and output alphabets are unary. Though 1-way transducers enjoy nice properties and characterizations (algebraic, logical, etc. . . ), 2-way variants are less known, especially the nondeterministic case. In this area, this manuscript gives a new contribution: an algebraic characterization of the relations accepted by two-way transducers when both the input and output alphabets are unary. Actually, it can be reformulated as follows: each unary two-way transducer is equivalent to a sweeping (and even rotating) transducer. We also show that the assumptions made on the size of the alphabets are required, that is, sweeping transducers weakens the 2-way transducers whenever at least one of the alphabet is non-unary. On the path, we discuss on the computational power of some algebraic operations on word relations, introduced in the aim of describing the behavior of 2-way transducers or, more generally, of 2-way weighted automata. In particular, the mirror operation, consisting in reversing the input word in order to describe a right to left scan, draws our attention. Finally, we study another kind of operations, more adapted for binary word relations: the composition. We consider the transitive closure of relations. When the relation belongs to some very restricted sub-family of rational relations, we are able to compute its transitive closure and we set its complexity. This quickly becomes uncomputable when higher classes are considered

    REGULAR LANGUAGES: TO FINITE AUTOMATA AND BEYOND - SUCCINCT DESCRIPTIONS AND OPTIMAL SIMULATIONS

    Get PDF
    \uc8 noto che i linguaggi regolari \u2014 o di tipo 3 \u2014 sono equivalenti agli automi a stati finiti. Tuttavia, in letteratura sono presenti altre caratterizzazioni di questa classe di linguaggi, in termini di modelli riconoscitori e grammatiche. Per esempio, limitando le risorse computazionali di modelli pi\uf9 generali, quali grammatiche context-free, automi a pila e macchine di Turing, che caratterizzano classi di linguaggi pi\uf9 ampie, \ue8 possibile ottenere modelli che generano o riconoscono solamente i linguaggi regolari. I dispositivi risultanti forniscono delle rappresentazioni alternative dei linguaggi di tipo 3, che, in alcuni casi, risultano significativamente pi\uf9 compatte rispetto a quelle dei modelli che caratterizzano la stessa classe di linguaggi. Il presente lavoro ha l\u2019obiettivo di studiare questi modelli formali dal punto di vista della complessit\ue0 descrizionale, o, in altre parole, di analizzare le relazioni tra le loro dimensioni, ossia il numero di simboli utilizzati per specificare la loro descrizione. Sono presentati, inoltre, alcuni risultati connessi allo studio della famosa domanda tuttora aperta posta da Sakoda e Sipser nel 1978, inerente al costo, in termini di numero di stati, per l\u2019eliminazione del nondeterminismo dagli automi stati finiti sfruttando la capacit\ue0 degli automi two-way deterministici di muovere la testina avanti e indietro sul nastro di input.It is well known that regular \u2014 or type 3 \u2014 languages are equivalent to finite automata. Nevertheless, many other characterizations of this class of languages in terms of computational devices and generative models are present in the literature. For example, by suitably restricting more general models such as context-free grammars, pushdown automata, and Turing machines, that characterize wider classes of languages, it is possible to obtain formal models that generate or recognize regular languages only. The resulting formalisms provide alternative representations of type 3 languages that may be significantly more concise than other models that share the same expressing power. The goal of this work is to investigate these formal systems from a descriptional complexity perspective, or, in other words, to study the relationships between their sizes, namely the number of symbols used to write down their descriptions. We also present some results related to the investigation of the famous question posed by Sakoda and Sipser in 1978, concerning the size blowups from nondeterministic finite automata to two-way deterministic finite automata

    On regular copying languages

    Get PDF
    This paper proposes a formal model of regular languages enriched with unbounded copying. We augment finite-state machinery with the ability to recognize copied strings by adding an unbounded memory buffer with a restricted form of first-in-first-out storage. The newly introduced computational device, finite-state buffered machines (FS-BMs), characterizes the class of regular languages and languages de-rived from them through a primitive copying operation. We name this language class regular copying languages (RCLs). We prove a pumping lemma and examine the closure properties of this language class. As suggested by previous literature (Gazdar and Pullum 1985, p.278), regular copying languages should approach the correct characteriza-tion of natural language word sets
    corecore