17,122 research outputs found

    Adaptive Discrete Second Order Sliding Mode Control with Application to Nonlinear Automotive Systems

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient model-based controller design technique for highly nonlinear systems, in the presence of model and external uncertainties. However, the implementation of the conventional continuous-time SMC on digital computers is limited, due to the imprecisions caused by data sampling and quantization, and the chattering phenomena, which results in high frequency oscillations. One effective solution to minimize the effects of data sampling and quantization imprecisions is the use of higher order sliding modes. To this end, in this paper, a new formulation of an adaptive second order discrete sliding mode control (DSMC) is presented for a general class of multi-input multi-output (MIMO) uncertain nonlinear systems. Based on a Lyapunov stability argument and by invoking the new Invariance Principle, not only the asymptotic stability of the controller is guaranteed, but also the adaptation law is derived to remove the uncertainties within the nonlinear plant dynamics. The proposed adaptive tracking controller is designed and tested in real-time for a highly nonlinear control problem in spark ignition combustion engine during transient operating conditions. The simulation and real-time processor-in-the-loop (PIL) test results show that the second order single-input single-output (SISO) DSMC can improve the tracking performances up to 90%, compared to a first order SISO DSMC under sampling and quantization imprecisions, in the presence of modeling uncertainties. Moreover, it is observed that by converting the engine SISO controllers to a MIMO structure, the overall controller performance can be enhanced by 25%, compared to the SISO second order DSMC, because of the dynamics coupling consideration within the MIMO DSMC formulation.Comment: 12 pages, 7 figures, 1 tabl

    A study on high accuracy discrete-time sliding mode control

    Get PDF
    In this paper a Discrete-Time Sliding-Mode based controller design for high accuracy motion control systems is presented. The controller is designed for a general SISO system with nonlinearity and external disturbance. Closed-Loop behavior of the general system with the proposed control and Lyapunov stability is shown and the error of the closed loop system is proven to be within an o(T2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from hysteresis nonlinearity in the control gain. Proposed SMC controller is proven to offer chattering-free motion and rejection of the disturbances represented by hysteresis and the time variation of the piezo drive parameters. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    Discretization of control law for a class of variable structure control systems

    Get PDF
    A new method for the discretization of a class of continuous-time variable structure control systems, based on the linear complementarity theory, is proposed. The proposed method consists two steps. In the first step, the motion projected on the sliding manifold (the fast dynamics) is discretized by means of backward Euler time-step method. In the second step, the sampled and hold control law is determined such that the trajectories of the discrete-time closed loop system projected on the sliding manifold coincide with the trajectories of discretized fast dynamics. The discrete-time closed-loop system exhibits discrete-time sliding motion. It means that the trajectories of the discrete-time closed loop system reach the sliding manifold in a finite number of steps and stay on it after that. Also, it is proved that control law is a continuous function. Therefore, the closed loop system is chattering free. The theoretically obtained results are verified on the example of the non-holonomic integrator. \u

    Scaled bilateral teleoperation using discrete-time sliding mode controller

    Get PDF
    In this paper, the design of a discrete-time slidingmode controller based on Lyapunov theory is presented along with a robust disturbance observer and is applied to a piezostage for high-precision motion. A linear model of a piezostage was used with nominal parameters to compensate the disturbance acting on the system in order to achieve nanometer accuracy. The effectiveness of the controller and disturbance observer is validated in terms of closed-loop position performance for nanometer references. The control structure has been applied to a scaled bilateral structure for the custom-built telemicromanipulation setup. A piezoresistive atomic force microscope cantilever with a built-in Wheatstone bridge is utilized to achieve the nanonewtonlevel interaction forces between the piezoresistive probe tip and the environment. Experimental results are provided for the nanonewton-range force sensing, and good agreement between the experimental data and the theoretical estimates has been demonstrated. Force/position tracking and transparency between the master and the slave has been clearly demonstrated after necessary scalin

    Switching frequency regulation in sliding mode control by a hysteresis band controller

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixing the switching frequency is a key issue in sliding mode control implementations. This paper presents a hysteresis band controller capable of setting a constant value for the steady-state switching frequency of a sliding mode controller in regulation and tracking tasks. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a discrete-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. For tracking purposes, an additional feedforward action is introduced to compensate the time variation of the switching function derivatives at either sides of the switching hyperplane in the steady state. Stability proofs are provided, and a design criterion for the control parameters to guarantee closed-loop stability is subsequently derived. Numerical simulations and experimental results validate the proposal.Accepted versio

    Variable-parameter double-power reaching law sliding mode control method

    Get PDF
    To solve the problem of the slow convergence rate of the reaching law and the chattering problems in the dynamic response in the sliding mode control, an improved double-power sliding mode reaching law is proposed. The reaching law is adjusted by changing the magnitude of the power terms adaptively at different stages of the system approach process, and the convergence speed of the dynamic response process is greatly improved. Its existence, accessibility and stability are proven by theory. The simulation results show that the improved double-power reaching law is faster than the double-power reaching law and the fast power reaching law. When there is uncertainty in the system, the system state and its derivatives can rapidly converge to the neighbor-hood of the equilibrium zeros. In the presence of time-varying perturbations of the two-order system, the sliding mode control system based on the improved double-power sliding mode reaching law has higher tracking precision of the given signal and differential signal and effectively reduces the high-frequency chattering phenomenon of the control input signal
    corecore