100,700 research outputs found

    Non-Rigid Structure from Motion

    Get PDF
    This thesis revisits a challenging classical problem in geometric computer vision known as "Non-Rigid Structure-from-Motion" (NRSfM). It is a well-known problem where the task is to recover the 3D shape and motion of a non-rigidly moving object from image data. A reliable solution to this problem is valuable in several industrial applications such as virtual reality, medical surgery, animation movies etc. Nevertheless, to date, there does not exist any algorithm that can solve NRSfM for all kinds of conceivable motion. As a result, additional constraints and assumptions are often employed to solve NRSfM. The task is challenging due to the inherent unconstrained nature of the problem itself as many 3D varying configurations can have similar image projections. The problem becomes even more challenging if the camera is moving along with the object. The thesis takes on a modern view to this challenging problem and proposes a few algorithms that have set a new performance benchmark to solve NRSfM. The thesis not only discusses the classical work in NRSfM but also proposes some powerful elementary modification to it. The foundation of this thesis surpass the traditional single object NRSFM and for the first time provides an effective formulation to realise multi-body NRSfM. Most techniques for NRSfM under factorisation can only handle sparse feature correspondences. These sparse features are then used to construct a scene using the organisation of points, lines, planes or other elementary geometric primitive. Nevertheless, sparse representation of the scene provides an incomplete information about the scene. This thesis goes from sparse NRSfM to dense NRSfM for a single object, and then slowly lifts the intuition to realise dense 3D reconstruction of the entire dynamic scene as a global as rigid as possible deformation problem. The core of this work goes beyond the traditional approach to deal with deformation. It shows that relative scales for multiple deforming objects can be recovered under some mild assumption about the scene. The work proposes a new approach for dense detailed 3D reconstruction of a complex dynamic scene from two perspective frames. Since the method does not need any depth information nor it assumes a template prior, or per-object segmentation, or knowledge about the rigidity of the dynamic scene, it is applicable to a wide range of scenarios including YouTube Videos. Lastly, this thesis provides a new way to perceive the depth of a dynamic scene which essentially trivialises the notion of motion estimation as a compulsory step to solve this problem. Conventional geometric methods to address depth estimation requires a reliable estimate of motion parameters for each moving object, which is difficult to obtain and validate. In contrast, this thesis introduces a new motion-free approach to estimate the dense depth map of a complex dynamic scene for successive/multiple frames. The work show that given per-pixel optical flow correspondences between two consecutive frames and the sparse depth prior for the reference frame, we can recover the dense depth map for the successive frames without solving for motion parameters. By assigning the locally rigid structure to the piece-wise planar approximation of a dynamic scene which transforms as rigid as possible over frames, we can bypass the motion estimation step. Experiments results and MATLAB codes on relevant examples are provided to validate the motion-free idea

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    Canonoid and Poissonoid Transformations, Symmetries and BiHamiltonian Structures

    Get PDF
    We give a characterization of linear canonoid transformations on symplectic manifolds and we use it to generate biHamiltonian structures for some mechanical systems. Utilizing this characterization we also study the behavior of the harmonic oscillator under canonoid transformations. We present a description of canonoid transformations due to E.T. Whittaker, and we show that it leads, in a natural way, to the modern, coordinate-independent definition of canonoid transformations. We also generalize canonoid transformations to Poisson manifolds by introducing Poissonoid transformations. We give examples of such transformations for Euler's equations of the rigid body (on so∗(3)\mathcal{so}^\ast (3) and so∗(4) so^\ast (4)) and for an integrable case of Kirchhoff's equations for the motion of a rigid body immersed in an ideal fluid. We study the relationship between biHamiltonian structures and Poissonoid transformations for these examples. We analyze the link between Poissonoid transformations, constants of motion, and symmetries.Comment: 34 pages, no figure

    Observability/Identifiability of Rigid Motion under Perspective Projection

    Get PDF
    The "visual motion" problem consists of estimating the motion of an object viewed under projection. In this paper we address the feasibility of such a problem. We will show that the model which defines the visual motion problem for feature points in the euclidean 3D space lacks of both linear and local (weak) observability. The locally observable manifold is covered with three levels of lie differentiations. Indeed, by imposing metric constraints on the state-space, it is possible to reduce the set of indistinguishable states. We will then analyze a model for visual motion estimation in terms of identification of an Exterior Differential System, with the parameters living on a topological manifold, called the "essential manifold", which includes explicitly in its definition the forementioned metric constraints. We will show that rigid motion is globally observable/identifiable under perspective projection with zero level of lie differentiation under some general position conditions. Such conditions hold when the viewer does not move on a quadric surface containing all the visible points
    • …
    corecore