866 research outputs found

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Multi-directional Geodesic Neural Networks via Equivariant Convolution

    Full text link
    We propose a novel approach for performing convolution of signals on curved surfaces and show its utility in a variety of geometric deep learning applications. Key to our construction is the notion of directional functions defined on the surface, which extend the classic real-valued signals and which can be naturally convolved with with real-valued template functions. As a result, rather than trying to fix a canonical orientation or only keeping the maximal response across all alignments of a 2D template at every point of the surface, as done in previous works, we show how information across all rotations can be kept across different layers of the neural network. Our construction, which we call multi-directional geodesic convolution, or directional convolution for short, allows, in particular, to propagate and relate directional information across layers and thus different regions on the shape. We first define directional convolution in the continuous setting, prove its key properties and then show how it can be implemented in practice, for shapes represented as triangle meshes. We evaluate directional convolution in a wide variety of learning scenarios ranging from classification of signals on surfaces, to shape segmentation and shape matching, where we show a significant improvement over several baselines

    Geometric deep learning for shape analysis: extending deep learning techniques to non-Euclidean manifolds

    Get PDF
    The past decade in computer vision research has witnessed the re-emergence of artificial neural networks (ANN), and in particular convolutional neural network (CNN) techniques, allowing to learn powerful feature representations from large collections of data. Nowadays these techniques are better known under the umbrella term deep learning and have achieved a breakthrough in performance in a wide range of image analysis applications such as image classification, segmentation, and annotation. Nevertheless, when attempting to apply deep learning paradigms to 3D shapes one has to face fundamental differences between images and geometric objects. The main difference between images and 3D shapes is the non-Euclidean nature of the latter. This implies that basic operations, such as linear combination or convolution, that are taken for granted in the Euclidean case, are not even well defined on non-Euclidean domains. This happens to be the major obstacle that so far has precluded the successful application of deep learning methods on non-Euclidean geometric data. The goal of this thesis is to overcome this obstacle by extending deep learning tecniques (including, but not limiting to CNNs) to non-Euclidean domains. We present different approaches providing such extension and test their effectiveness in the context of shape similarity and correspondence applications. The proposed approaches are evaluated on several challenging experiments, achieving state-of-the- art results significantly outperforming other methods. To the best of our knowledge, this thesis presents different original contributions. First, this work pioneers the generalization of CNNs to discrete manifolds. Second, it provides an alternative formulation of the spectral convolution operation in terms of the windowed Fourier transform to overcome the drawbacks of the Fourier one. Third, it introduces a spatial domain formulation of convolution operation using patch operators and several ways of their construction (geodesic, anisotropic diffusion, mixture of Gaussians). Fourth, at the moment of publication the proposed approaches achieved state-of-the-art results in different computer graphics and vision applications such as shape descriptors and correspondence

    Machine Intelligence for Advanced Medical Data Analysis: Manifold Learning Approach

    Get PDF
    In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated. In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data. Next, a manifold learning-based scale invariant global shape descriptor is introduced. The proposed descriptor benefits from the capability of Laplacian Eigenmap in dealing with high dimensional data by introducing an exponential weighting scheme. It eliminates the limitations tied to the well-known cotangent weighting scheme, namely dependency on triangular mesh representation and high intra-class quality of 3D models. In the end, a novel descriptive model for diagnostic classification of pulmonary nodules is presented. The descriptive model benefits from structural differences between benign and malignant nodules for automatic and accurate prediction of a candidate nodule. It extracts concise and discriminative features automatically from the 3D surface structure of a nodule using spectral features studied in the previous work combined with a point cloud-based deep learning network. Extensive experiments have been conducted and have shown that the proposed algorithms based on manifold learning outperform several state-of-the-art methods. Advanced computational techniques with a combination of manifold learning and deep networks can play a vital role in effective healthcare delivery by providing a framework for several fundamental tasks in image and shape processing, namely, registration, classification, and detection of features of interest
    • …
    corecore