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Abstract

The past decade in computer vision research has witnessed the re-emergence
of artificial neural networks (ANN), and in particular convolutional neural net-
work (CNN) techniques, allowing to learn powerful feature representations from
large collections of data. Nowadays these techniques are better known under
the umbrella term deep learning and have achieved a breakthrough in perfor-
mance in a wide range of image analysis applications such as image classification,
segmentation, and annotation.

Nevertheless, when attempting to apply deep learning paradigms to 3D shapes
one has to face fundamental differences between images and geometric objects.
The main difference between images and 3D shapes is the non-Euclidean nature
of the latter. This implies that basic operations, such as linear combination or
convolution, that are taken for granted in the Euclidean case, are not even well
defined on non-Euclidean domains. This happens to be the major obstacle that
so far has precluded the successful application of deep learning methods on
non-Euclidean geometric data.

The goal of this thesis is to overcome this obstacle by extending deep learning
tecniques (including, but not limiting to CNNs) to non-Euclidean domains. We
present different approaches providing such extension and test their effectiveness
in the context of shape similarity and correspondence applications. The proposed
approaches are evaluated on several challenging experiments, achieving state-of-
the-art results significantly outperforming other methods.

To the best of our knowledge, this thesis presents different original contribu-
tions. First, this work pioneers the generalization of CNNs to discrete manifolds.
Second, it provides an alternative formulation of the spectral convolution opera-
tion in terms of the windowed Fourier transform to overcome the drawbacks of
the Fourier one. Third, it introduces a spatial domain formulation of convolution
operation using patch operators and several ways of their construction (geodesic,
anisotropic diffusion, mixture of Gaussians). Fourth, at the moment of publication
the proposed approaches achieved state-of-the-art results in different computer
graphics and vision applications such as shape descriptors and correspondence.
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Chapter 1

Introduction

1.1 Motivation

Shape analysis deals with the problem of defining automatic algorithms able
to analyze, process, and classify 3D shapes. In other words, it aims to make
computers able to “understand” 3D objects.

To pursue this ambitious goal, shape analysis research covers various as-
pects related to 3D shapes, ranging from reconstruction [NIH+11] to registration
[LSP08; CK15], recognition [SZPY12], and retrieval [KLM+12], just to name a
few. Interestingly, all these different applications boil down to two basic problems:
defining a concept of shape similarity, and finding a correspondence between
shapes.

The common way to tackle such problems is to consider local descriptors. A
local descriptor assigns to a point on the shape a vector in some multi-dimensional
feature space representing the local structure of the surface around that point.
In this way, the problem of defining whether two points are similar or not boils
down to a simple vector comparison.

Typically, one wishes a descriptor that is discriminative (highlight distinctive
attributes), robust (invariant with respect to noise and deformations), compact
(use a small number of dimensions), and computationally efficient.

Figure 1.1 shows the typical classes of noise and deformations an ideal descrip-
tor should be robust to. The most common class of deformations is represented by
quasi-isometric deformations, modelling the different poses a shape can assume
(same shape, different poses). A more challenging class of deformations is repre-
sented by the class of non-isometric deformations, where shapes can be affected by
elastic deformations (different shapes, different poses). Moreover, with the recent
development of 3D acquisition technologies, a new class of deformations which

1
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Isometric Non-isometric Partial Different
representation

Figure 1.1. A common requirement for shape descriptors and correspondence ap-
plications is the robustness to some classes of deformations. Here we depicted the
most interesting ones. From left to right: isometric deformations, non-isometric
deformations, partial views, and different representations (in this case, a point
cloud, which is a different representation w.r.t. the triangular meshes on its left).

is imperative to consider is related to acquisition artifacts such as missing parts,
geometric, and topological noise. Finally, local descriptors should be independent
from the representation of the shape: ideally we would like to be able to compare
e.g. triangular meshes with point clouds.

Traditional approaches define local descriptors according to hand-crafted
axiomatic models exploiting specific properties of the 3D shapes, such as invariant
properties of surface normals [JH99; ZBVH09; STDS14] or spectral properties
[SOG09; GBAL09; ASC11].

The increasing complexity and variety of the deformations considered makes
the construction of axiomatic models rather elusive: to cope with these new
requirements new paradigms should be considered.

The growth of publicly available 3D shape data brings the attention to machine
learning approaches which allow learning invariance to complex transformations
from examples (“modelling by example” paradigm). Simply put, while it is hard
to model what makes a man look like a man, one can get many examples of man
shapes and use a sufficiently complex generic model to learn the “man model”
from the data.
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Inspired by the incredible success that deep learning methods have brought to
speech recognition, language translation and natural language processing [HS97;
GSC99; GFGS06; GLF+09; WSC+16; BGLL17], as well as to computer vision
[LKF10; CMMS11; CMS12; CGGS12; KSH12; CGGS13; FCNL13; TYRW14; SZ14;
SGS15; HZRS16], it appears natural to use such techniques in shape analysis
applications as well.

However, so far these techniques did not see almost any usage in the shape
analysis community. The main reason resides in the fact that while speech, images,
or video can be modelled as signals defined on, respectively, 1D, 2D, and 3D
Euclidean domains, shapes are represented as non-Euclidean domains. The non-
Euclidean nature of such data implies that there are no such familiar properties
as global parametrization, common system of coordinates, vector space structure,
or shift invariance. Consequently, basic operations such as linear combination
or convolution that are taken for granted in the Euclidean case are not even
well-defined on non-Euclidean domains.

This is the major obstacle that so far has precluded deep learning methods
from producing a breakthrough in shape analysis applications as well. The goal
of this thesis is to overcome this difficulty by extending deep learning techniques,
and in particular convolutional neural networks, to non-Euclidean domains in
the form of 3D shapes.

1.2 Related work

Shape descriptors There is a plethora of literature on hand-crafted local de-
scriptors, and we refer the reader to a recent survey for a comprehensive overview
[LGB+13]. Below we will briefly review the ones most pertinent to this thesis.

Early works on shape descriptors such as spin images [JH99], shape distri-
butions [OFCD02], and integral volume descriptors [MCH+06] were based on
extrinsic structures that are invariant under Euclidean transformations.

The following generation of shape descriptors used intrinsic structures such
as geodesic distances [EK03] that are preserved by isometric deformations.

Another class of approaches proposed to extend successfull image descrip-
tors such as SIFT [Low04], HOG [DT05], MSER [MCUP04], and shape context
[BMP00] to non-Euclidean domains (see e.g. [ZBVH09; DMAMS10; KBLB12],
respectively).

Spectral descriptors exploit the geometric properties arising from the eigen-
functions and eigenvalues of the Laplace-Beltrami operator of the surface [BBG94;
CL06; Lév06]. Popular methods include shapeDNA [RWP06], global point sig-
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nature (GPS) [Rus07], heat kernel signatures (HKS) [SOG09; GBAL09], their
scale-invariant version (SI-HKS) [BK10], wave kernel signatures (WKS) [ASC11],
and heat kernel maps [OMMG10].

Following the recent trend in the image analysis domain, where hand-crafted
descriptors are abandoned in favour of learning approaches, several machine
learning frameworks have been proposed in the geometry processing community
as well. In particular, Litman and Bronstein [LB14] showed that heat and wave
kernel signatures [SOG09; GBAL09; ASC11] can be considered as particular
parametric families of transfer functions applied to the Laplacian eigenvalues
and proposed to learn an optimal transfer function leading to optimal spectral
descriptors. Finally, Corman et al. [COC14] proposed to learn suitable descriptors
providing optimal correspondence through the functional maps framework.

Shape correspondence Traditional correspondence approaches try to find a
point-wise matching between (a subset of) the points on two or more shapes.

Minimum-distortion methods establish the matching by minimizing some
structure distortion, which can include similarity of local features [OMMG10;
ASC11; ZBVH09], geodesic distances [MS05; BBK06; CK15], diffusion distances
[CLL+05], a combination thereof [TKR08], or higher-order structures [ZWW+10].
Typically, the computational complexity of such methods is high, and there have
been several attempts to alleviate the computational complexity using hierarchical
[SY11] or subsampling [TBW+11] methods. Several approaches formulate the
correspondence problem as quadratic assignment and employ different relaxations
thereof [Ume88; LH05; RBA+12; CK15; KKBL15].

Embedding methods try to exploit some assumption on the shapes (e.g. ap-
proximate isometry) in order to parametrize the correspondence problem with
a small number of degrees of freedom. Elad and Kimmel [EK01; EK03] used
multi-dimensional scaling to embed the geodesic metric of the matched shapes
into a low-dimensional Euclidean space, where alignment of the resulting canon-
ical forms is then performed by simple rigid matching (ICP) [CM92; BM92].
The works of [MHK+08; SK14] used the Laplacian eigenfunctions as embedding
coordinates and performed matching directly in the eigenspace. Lipman et al.
[LD11; KLCF10; KLF11] used conformal embeddings into disks and spheres to
parametrize correspondences between homeomorphic surfaces as Möbius trans-
formations.

As opposed to point-wise correspondence methods, soft correspondence ap-
proaches assign a point on one shape to more than one point on the other.
Several methods formulated soft correspondence as a mass-transportation prob-
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Extrinsic Intrinsic

Figure 1.2. Illustration of the difference between extrinsic and intrinsic deep
learning methods on geometric data. Left: extrinsic methods such as volumetric
CNNs [WSK+15] treat 3D geometric data in its Euclidean representation. Such a
representation is not invariant to deformations (e.g., in the example above, the
filter that responds to features on a straight cylinder would not respond to a bent
one). Right: in an intrinsic representation, the filter is applied to some data on
the surface itself, thus being invariant to deformations.

lem [Mém11; SNB+12]. Ovsjanikov et al. [OBCS+12] introduced the functional
correspondence framework, modeling the correspondence as a linear operator
between spaces of functions on two shapes, which has an efficient representation
in the Laplacian eigenbases. This approach was extended in several follow-up
works [PBB+13; KBBV15; ADK16; RCB+17].

Finally, a recent trend is to use machine learning techniques, such as random
forests, to learn correspondences [SSK+13; RRBW+14].

Extrinsic deep learning Many deep learning techniques successfully working
on images were tried “as is” on 3D geometric data, represented for this purpose in
some way “digestible” by standard frameworks. Su et al. [SMKLM15] used CNNs
applied to range images obtained from multiple views of 3D objects for retrieval
and classification tasks. Wei et al. [WHC+16] used view-based representation
to find correspondence between non-rigid shapes. Wu et al. [WSK+15] used
volumetric CNNs applied to rasterized volumetric representation of 3D shapes.

The main drawback of such approaches is their treatment of geometric data
as Euclidean structures (see Figure 1.2). First, for complex 3D objects, Euclidean
representations such as depth images or voxels may lose significant parts of the
object or its fine details, or even break its topological structure (in particular, due to
computational reasons, the volumetric CNNs [WSK+15] used a 64⇥64⇥64 cube,
allowing only a very coarse representation of 3D geometry). Second, Euclidean
representations are not intrinsic, and vary as the result of pose or deformation of
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the object. Achieving invariance to shape deformations, a common requirement
in many applications, is extremely hard with the aforementioned methods and
requires complex models and huge training sets due to the large number of
degrees of freedom involved in describing non-rigid deformations.

1.3 Main contribution

The main contribution of our work is a principled framework, called intrinsic deep
learning, allowing to extend deep learning techniques, and in particular CNNs, to
non-Euclidean data in the form of non-rigid 3D shapes.

In this thesis, we present different instances of the intrinsic deep learning
framework. For each one of them we highlight its advantages and drawbacks
and evaluate its performance in shape descriptors, retrieval, and correspondences
tasks.

Chapter 5 presents an intrinsic CNN construction called localized spectral con-
volutional neural network (LSCNN) [BMM+15]. LSCNN is a generalization of
the spectral convolutional neural network (SCNN) framework [BZSL13; HBL15],
which resorts to a Fourier transform to define the convolution in the spectral
domain. In LSCNN, instead, we propose an alternative formulation of the spec-
tral convolution operation on non-Euclidean manifolds in terms of windowed
Fourier transform [SRV16] rather than the traditional Fourier transform of SCNN.
Since the definition of the Fourier transform on non-Euclidean manifolds is basis-
dependent, SCNN filters learned on a shape are not generalizable to another one.
One of the key advantages of LSCNN over SCNN is that the introduction of the
windowed Fourier transform overcomes such drawback and allows to learn filters
generalizable across shapes sharing some common geometric structure (i.e. which
bases does not differ arbitrary). The spectral formulation of LSCNN allows its
application to different shape representations, such as meshes and point clouds.
A drawback of this approach is its memory and computation requirements, as
each window needs to be explicitly produced.

Chapter 6 presents a category of intrinsic CNNs where the extension of the
convolution operation on non-Euclidean manifolds occurs in the spatial domain,
rather than in the spectral one. The first key contribution of this chapter consists in
the interpretation of the convolution operation as correlation between a learnable
filter and a local representation of the signal analogous to pixels windows on
images, called patch. The second key contribution is the definition of the charting
procedure allowing to extract such patches as an operator acting point-wise on the
signal defined on the manifold, called patch operator. Different patch operators
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lead to different methods and can deal with different manifold discretizations.
In particular we present four different intrinsic deep learning methods: GCNN
[MBBV15], ADD [BMR+16], ACNN [BMRB16], and MoNet [MBM+17], which we
will briefly overview in the following.

Geodesic convolutional neural network (GCNN) [MBBV15] is characterized by
a geodesic patch operator extracting the patches in the form of a local system of
geodesic polar coordinates similar to [KBLB12]. Being a spatial approach, GCNN
does not suffer from the limitations of spectral approaches (SCNN [BZSL13;
HBL15], LSCNN [BMM+15]) in terms of generalization across different domains.
GCNN suffers from two main drawbacks: the charting procedure is limited to
meshes only and there is no guarantee that the patches extracted are always
topologically meaningful.

Anisotropic diffusion descriptors (ADD) [BMR+16] allows to learn optimal
anisotropic spectral descriptors, i.e. an extension of the optimal spectral de-
scriptors [LB14] capturing local directional structures as well. One of the main
advantages of ADD over OSD is that anisotropy allows to disambiguate intrinsic
symmetries.

Anisotropic convolutional neural network (ACNN) [BMRB16] employs the same
anisotropic diffusion kernels introduced in [BMR+16] but as spatial weighting
functions, to define an anisotropic patch operator extracting a local intrinsic
representation of functions defined on the manifold. Unlike ADD, ACNN is a con-
volutional neural network architecture. Compared to the geodesic patch operator,
the anisotropic patch operator construction is much simpler, does not depend
on the injectivity radius of the manifold, and is not limited to triangular meshes.
Overall, ACNN combines all the best properties of the previous approaches without
inheriting their drawbacks.

Mixture model convolutional neural network (MoNet) [MBM+17] is the first
unified framework allowing to generalize CNN architectures to non-Euclidean
domains (graphs and manifolds) and learn local, stationary, and compositional
task-specific features. The main contribution of MoNet is the formulation of the
patch operator as a local weighted average of the signal with a set of learnable
kernels. We show that previous intrinsic CNN methods, such as GCNN and ACNN,
can be casted as particular instances of MoNet corresponding to patch operators
with fixed hand-crafted kernels rather than learnable ones.

In Chapter 7, we show the application of the intrinsic deep learning construc-
tions (Chapters 4, 5, and 6) to the problem of learning discriminative and robust
local shape descriptors. A key contribution of this chapter is the formulation of
the problem of learning local shape descriptors in terms of the siamese framework.
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Intrinsic deep learning methods achieve state-of-the-art results on a variety of
challenging datasets, significantly outperforming the other approaches.

Finally, in Chapter 8 we show the application of the intrinsic deep learning
constructions (Chapters 4, 5, and 6) to the problem of learning dense correspon-
dences between deformable shapes. We rely on the definition of the problem of
learning correspondences as a classification problem to an abstract label space,
as shown by Rodolà et al. [RRBW+14]. Intrinsic deep learning methods achieve
state-of-the-art results on some of the most difficult recent correspondence bench-
marks.

Remarkably, the works presented in this thesis were among the first in the
emerging field of geometric deep learning, dealing with techniques attempting to
generalize (structured) deep neural models to non-Euclidean domains such as
graphs and manifolds.

1.4 Publications

This thesis is mainly based on the publications listed below:

• F. Monti⇤, D. Boscaini⇤, J. Masci, E. Rodolà, J. Svoboda, M. M. Bronstein,
Geometric deep learning on graphs and manifolds using mixture model CNNs,
Proc. CVPR 2017 (⇤ indicates equal contribution) · oral presentation

• D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, Learning shape corre-
spondence with anisotropic convolutional neural networks, Proc. NIPS, pp.
3189–3197, 2016

• D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, D. Cremers, Anisotropic
spectral descriptors, Computer Graphics Forum 35(2), pp. 431–441, 2016 ·
oral presentation at EG 2015

• J. Masci⇤, D. Boscaini⇤, M. M. Bronstein, P. Vandergheynst, Geodesic con-
volutional neural networks on Riemannian manifolds, International IEEE
Workshop on 3D Representation and Recognition (3dRR), 2015 · oral pre-
sentation

• D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, P. Van-
dergheynst, Learning class-specific descriptors for deformable shapes using
localized spectral convolutional networks, Computer Graphics Forum 34(5),
pp. 13–23, 2015 · oral presentation at SGP 2015
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The author contributed to several other papers during his PhD studies, which
are not included in this dissertation for the sake of the presentation coherence:

• D. Boscaini, D. Eynard, D. Kourounis, M. M. Bronstein, Shape-from-operator:
recovering shapes from intrinsic operators, Computer Graphics Forum 34(2),
pp. 265–274, 2015 · oral presentation at EG 2015

• D. Boscaini, U. Castellani, A sparse coding approach for local-to-global 3D
shape description, The Visual Computer, 2014

• D. Boscaini, R. Girdziusas, M. M. Bronstein, Coulomb shapes: using electro-
static forces for deformation-invariant shape representation, Eurographics
Workshop on 3D Object Retrieval (3DOR), pp. 9–15, 2014
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Chapter 2

Background

In this chapter we provide a rigorous definition and a formal derivation of the
necessary mathematical tools to describe the contributions of this thesis. For a
comprehensive treatise of the related topics we refer the reader to [DC76; DCF92;
BBI01; Ros97].

2.1 Intuition

The intuitive way to think about a 3D shape is as the boundary surface of a
three-dimensional object: think of such a surface as made by an infinitely thin
elastic material that adapts to the geometry of the underlying 3D object and is
able to “follow” its deformations.

There exist two main categories of shapes, depending on which deformations
they allow: rigid shapes (e.g. furnitures, mechanical objects), and non-rigid
shapes (e.g. animals, humans). As the name implies, rigid shapes allow only rigid
(or Euclidean) deformations such as rotations and translations, while non-rigid
shapes allow a much wider category of deformations (e.g. isometric, conformal).
If we think to the 3D shape of a man, examples of non-rigid deformations include
different poses, heights and musculatures. In this thesis we are interested in the
more challenging category of non-rigid shapes. In the following we will refer to
shape and non-rigid shape as synonyms.

Data on 3D shapes are represented as functions or vector fields defined over
their surface. Examples of such data include geometric information (e.g. the
surface curvature), semantic information (e.g. names of the shape parts), or color
information (surface texture).

11
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2.2 Differential geometry

2.2.1 Manifolds

A d-dimensional manifold X is a topological space where each point x 2 X has a
neighborhood Ux that is homeomorphic to a d-dimensional Euclidean space. Such
a homeomorphism ' : Ux ! Rd is called chart. If the transition between charts
from overlapping neighborhoods is smooth, then X is called smooth manifold.

Let x 2 X be a point on the manifold and let �1 : (�✏1,✏1)! X , �2 : (�✏2,✏2)!
X be two curves on the manifold passing through x , i.e. �1(0) = �2(0) = x . Such
curves are said equivalent if and only if there exists a chart ' : Ux ! Rd such that
(' � �1)0(0) = (' � �2)0(0). A tangent vector to the manifold X at the point x is
defined as the equivalence class of smooth curves on X passing through x . The
tangent space at X in x , denoted by TxX , is defined as the set containing the
tangent vectors at x 2 X and does not depend on the choice of the chart '. The
disjoint union of tangent spaces at all points is referred to as the tangent bundle
and denoted by TX .

A geometric realization of a manifold as a subset of an ambient space Rd 0

is called embedding and the manifold is said to be embedded in that space. An
embedded manifold X ⇢ Rd 0 can be realized by a smooth function  : U ✓ Rd !
Rd 0 , mapping intrinsic coordinates u = (u1, . . . , ud) to global ones x = (x1, . . . , xd 0).
If the function  is provided, tangent vectors to the embedded manifold X at
the point x= (u) can be defined as the derivatives @

@ ui
 (u), i = 1, . . . , d. If the

derivatives @
@ u1
 (u), . . . , @

@ ud
 (u) are linearly independent, they form a basis for

the tangent space T (u)X . The vector n(x) orthogonal to TxX is the normal of X
at x.

3D shapes can be modeled as 2-dimensional smooth manifolds X embedded
in R3, possibly with boundary @X .

2.2.2 Riemannian metric

A Riemannian metric is an inner product h·, ·iTxX : TxX ⇥ TxX ! R between
tangent vectors at x 2 X which depends smoothly on x .

On an embedded manifold X ✓ Rd 0 , the Riemannian metric admits the closed
form expression

hv,wiT (u)X = v>Gw,

where v,w 2 T (u) and the matrix G is the first fundamental form, i.e. a d ⇥ d
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positive semi-definite matrix G= (gi, j), s.t.

gi, j(u) =
⌧
@

@ ui
 (u),

@

@ uj
 (u)

�
.

The Riemannian metric allows performing local measurements of angles,
distances, and volumes on the manifold X . For instance, the length of a curve
�: [0,1]! X , can be defined as

`(�) =
Z 1

0

q
h�0(t),�0(t)iT�(t)X d t,

while the d-dimensional volume element is given by

dµ= |G|1/2du1 . . . dud .

A manifold equipped with a Riemannian metric is called a Riemannian mani-
fold.

2.2.3 Intrinsic and extrinsic properties

Quantities which are expressible entirely in terms of the first fundamental form,
and therefore independent on the way the surface is embedded in the ambient
space, are called intrinsic. Intrinsic properties are particularly interesting because
they are invariant to isometric (metric preserving) deformations of the manifold.

Conversely, properties related to the specific embedding of the manifold in
the ambient space are called extrinsic and can be defined in terms of the second
fundamental form.

For 2-dimensional embedded manifolds, the second fundamental form de-
scribes how the surface locally differs from a plane. For the point x 2 X it can be
represented as the 2⇥ 2 matrix H= (hi, j), i, j = 1,2, s.t.

hi, j =
⌧

@ 2

@ ui@ uj
 (x),n(u)

�
,

where n(x) is the normal vector at x and is defined as

n(x) =
@
@ u1
 (u)⇥ @

@ u2
 (u)

k @@ u1
 (u)⇥ @

@ u2
 (u)k

.

The eigenvalues Km, KM of the second fundamental form H are called princi-
pal curvatures, while the corresponding eigenvectors vm,vM are called principal
curvature directions and form an orthonormal basis on the tangent plane.
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2.3 Calculus on manifolds

As we saw in the beginning of the chapter, data on non-Euclidean manifolds
can be defined as functions defined thereon. The principal way to study such
functions is to extend classical calculus tools to these non-Euclidean structures.

2.3.1 Functional spaces on manifolds

Functions on manifolds can be divided in two categories: a scalar field is a smooth
function f : X ! R, while a vector field F : X ! Rd associates to each point
x 2 X a vector F(x) 2 Rd in some d-dimensional Euclidean space. Among the
different vector fields, a tangent vector field F : X ! TX maps points x 2 X on
the manifold to tangent vectors F(x) 2 TxX . The notion of tangent vector field
allows to generalize the classical notion of derivation to non-Euclidean manifolds
by providing a formal definition of infinitesimal displacements on the manifold
(the equivalent of x 7! x + d x in R).

We denote by L2(X ) the Hilbert space of L2 scalar fields on the manifold X ,
where the inner product between two functions f , g 2 L2(X ) is defined as

h f , giL2X =
Z

X
f (x)g(x)d x .

Similarly, we denote by L2(TX ) the Hilbert space of L2 tangent vector fields on
the manifold, and with

hF, GiL2(TX ) =
Z

X
hF(x), G(x)iTxX d x

the inner product between tangent vector fields. In both cases d x denotes the
volume element induced by the Riemannian metric.

2.3.2 Intrinsic gradient and divergence operators

The differential of f is an operator d f : TX ! R acting on tangent vector fields:
at each point x , the differential can be represented as a linear form d f (x) =
hr f (x), ·iTxX which takes as inputs tangent vectors F(x) 2 TxX and produces
scalars. The input tangent vector F(x) models a small displacement around x ,
while the output scalar d f (x)F(x) = h f (x), F(x)iTxX measures how the function
f changes because of such displacement, and can be thought of as an extension
of the notion of the classical directional derivative.
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The operator r f : L2(X )! L2(TX ) is called intrinsic gradient and can be
interpreted as an extension of the classical gradient in the sense that it provides
the direction (tangent vector on TxX ) in which f changes the most at point x .

The intrinsic divergence div F : L2(TX )! L2(X ) can be defined as the adjoint
operator (up to a sign) of the intrinsic gradient, in the sense that

hF,r f iL2(TX ) = h�div F, f iL2(X ). (2.1)

In summary, the intrinsic gradient is an operator acting on scalar fields and
producing tangent vector fields, while the intrinsic divergence is an operator
acting on vector fields and producing scalar fields.

2.3.3 Laplace-Beltrami operator

The Laplacian (or, more precisely, the Laplace-Beltrami operator) � : L2(X ) !
L2(X ) can be defined by combining the intrinsic gradient and divergence opera-
tors, � f = �div (r f ), where f 2 L2(X ) is a scalar field on the manifold.

The Laplacian plays a crucial role in signal processing and machine learning on
non-Euclidean domains: first, its eigenfunctions generalize the classical Fourier
basis to manifolds, allowing to perform spectral analysis on them; second, it
models different physical phenomena on the manifold, such as heat diffusion;
third, it is intrinsic, therefore it is invariant to isometric deformations of the
manifold. In the following paragraph we will provide more details about the
Laplacian most relevant properties for this thesis.

2.4 Spectral analysis on manifolds

The Laplacian is a self-adjoint positive semi-definite operator, therefore (on a
compact domain) it admits an eigendecomposition

��i = �i�i, i = 1,2, . . . (2.2)

with real eigenvalues �1 < �2  . . . and orthogonal eigenfunctions {�i}i�1,
where the orthogonality is intended w.r.t. the standard L2 inner product, i.e.
h�i,� jiL2(X ) = �i, j, where

h�i,� jiL2(X ) =
Z

X
�i(x)� j(x) d x .
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In particular, the eigenfunctions orthogonality stems from the self-adjointness
of the Laplacian, i.e.

h f ,�giL2(X ) = h f ,�divrgiL2(X )
(†)
=hr f ,rgiL2(TX )
= hrg,r f iL2(TX )
= hg,�divr f iL2(X )
= hg,� f iL2(X ),

where in (†) we use the fact that �div is adjoint to r.
The non-negativity of the eigenvalues, instead, stems from its positive semi-

definiteness,

h f ,� f iL2(X ) =
Z

X
f (x)� f (x) d x

=
Z

X
kr f (x)k2 d x

� 0,

because of the non-negativity of the integrand.
The set of the Laplacian eigenvalues is known as its spectrum. In general,

quantities expressed in terms of the Laplacian eigenvalues and eigenfunctions
are commonly referred to as spectral.

If the boundary @X of the manifold X is non empty, the Equation (2.2) should
be endowed with additional boundary conditions, such as Dirichlet boundary
conditions �i(x) = 0, or Neumann boundary conditions hr�i(x),n(x)i = 0,
where x 2 @X and n denotes the normal vector to the boundary.

2.4.1 Fourier basis and transform

The Laplacian eigenfunctions form a basis that spans L2(X ), which can be in-
terpreted as a generalization of the standard Fourier basis to the non-Euclidean
domain X ([Tau95; LZ10]).

In fact, by noting that

� d2

d x2
ei!x =!2ei!x ,

where i denotes the imaginary unit, it is easy to verify that the elements ei!x of
the Fourier basis on R are the eigenfunctions of the Euclidean Laplacian operator
�d2/d x2.
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It is important to emphasize that the basis formed by the Laplacian eigenfunc-
tions is intrinsic due to the intrinsic construction of the Laplacian operator.

By resorting to the interpretation of the Laplacian eigenfunctions as the Fourier
basis of L2(X ), we can decompose any function f 2 L2(X ) into its Fourier series
as

f (x) =
X

i�1

h f ,�iiL2(X )�i(x), (2.3)

where the Fourier coefficients f̂i = h f ,�iiL2(X ) can be thought of as the forward
Fourier transform, while the inverse Fourier transform can be obtained as the
summation

P
i�1 f̂i�i(x).

2.4.2 Spectral convolution

The convolution theorem states that the convolution between two functions can
be expressed as the product of their Fourier transforms, in the sense that

÷f ⇤ g = bf · bg,

where f̂ denotes the Fourier transform of f . By resorting to this interpretation
as a definition rather than a property and by replacing the classical forward and
inverse Fourier transforms with the ones introduced above, we can generalize the
convolution operation to non-Euclidean domains as

( f ⇤ g)(x) =
X

i�1

h f ,�iiL2(X )hg,�iiL2(X )�i(x).

The main drawback of this definition of the convolution operation w.r.t. the
classical one is the lack of shift-invariance. As a result, the spectral convolution
between the signal f and a filter g is position-dependent, i.e. it can vary drastically
at different points.

2.5 Heat diffusion on manifolds

As already mentioned in Section 2.3.3, the Laplacian appears in many differential
equations describing different physical phenomena. In particular, in this section
we will focus on the heat diffusion equation, describing the heat propagation on
manifolds.



18 2.6 Discretization

2.5.1 Isotropic heat diffusion

If we think about the manifold X as being made of an ideal material with constant
heat conduction at every point, the heat diffusion on X is governed by the isotropic
heat equation

ft(x , t) = �c� f (x , t) = �div (cr f (x , t)) , (2.4)

where f (x , t) denotes the temperature at point x at time t, the proportion coeffi-
cient c is referred to as the thermal diffusivity constant, and appropriate boundary
conditions are applied if necessary. Equation (2.4) is a mathematical description
of the Newton’s cooling law, stating that the rate of change of the temperature of
an object (lhs) is proportional to the difference between its own temperature and
the temperature of the surrounding (rhs).

Given some initial heat distribution f0(x) = f (x , 0), the solution of heat
equation (2.4) at time t is obtained by applying the heat operator H t = e�t� to
the initial condition f0, obtaining

f (x , t) = H t f0(x) =
Z

X
f0(x 0) ht(x , x 0) d x 0, (2.5)

where ht(x , x 0) is called the heat kernel.
In the Euclidean case, the heat kernel is shift-invariant, i.e. ht(x , x 0) = ht(x �

x 0), therefore the solution of the heat equation (2.5) can be obtained as the
convolution f (x , t) = ( f0 ⇤ ht)(x). In the more general non-Euclidean case, the
heat kernel is not anymore shift-invariant and Equation (2.5) can be interpreted
as a generalized convolution.

In the spectral domain, the heat kernel has a closed form solution and can be
expressed as

ht(x , x 0) =
X

i�1

e�t�i�i(x)�i(x 0). (2.6)

2.6 Discretization
In the continuous domain, 3D shapes are modelled as two-dimensional manifolds
(Section 2.2.1), data on such 3D shapes is described in terms of functions defined
thereon (Section 2.3.1), and interesting properties of such data can be processed
by operators such as the Laplacian (Section 2.3.3).

In practical applications, however, we need to provide discrete approximations
of such continuous quantities: 3D shapes are be represented by discrete structures,
while functions and operators acting on them are represented by vectors and
matrices, respectively.
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2.6.1 Discrete manifolds

There exist different discretizations and, depending on the specific task, one is
preferable to another. In this thesis we will focus on three discretizations: point
clouds, triangular meshes, and raster scans.

The starting point for any discretization procedure consists in a sampling
of the continuous surface X at n points x1, . . . , xn. What distinguishes differ-
ent discretizations is the set of additional structures considered on top of such
sampling.

A point cloud is the most basic manifold discretization and just consists of
embedding coordinates x1, . . . ,xn 2 R3 for each sample.

A triangular mesh is a topological representation that can be defined as a
triplet (V ,E ,F ), where the set of vertices V = {1, . . . , n} contains the indices of the
sampling {x1, . . . , xn}, vertices are connected by edges E , and edges are connected
by triangular faces F such that if (i, j, k) 2 F , then (i, j), (i, k), (k, j) 2 E .

To be a valid discretization of a manifold, a triangular mesh should satisfy the
following properties: the faces incident to every vertex form a closed or an open
fan, every edge must be shared by exactly two triangular faces; if the manifold has
a boundary, any boundary edge must belong to exactly one triangle. A triangular
mesh satisfying such properties is called manifold triangular mesh.

An embedding of a mesh can be provided by assigning some embedding
coordinates x1, . . . ,xn 2 R3 to its vertices. The geometric realization of a triangular
mesh through an embedding in the three-dimensional Euclidean space can be
thought as a polyhedral surface with triangular faces approximating the underlying
continuous manifold X .

Raster scans are a particular kind of manifold triangular mesh, where the
embedding coordinates of the sampling x1, . . . , xn are specified as the depth
values of a partial view of the 3D shape sampled over a regular grid, i.e. xi =
(u, v, f (u, v)), where f (u, v) is the depth of the point (u, v) = (n�u, m�v), n, m 2
N. Raster scans are particularly relevant discretizations because they are the
typical data captured by 3D cameras, such as Microsoft Kinect and Intel RealSense.

2.6.2 Discrete functions and operators

A real-valued function f : X ! R can be discretized by sampling its values
over the vertices x1, . . . , xn and can be represented as the n-dimensional vector
f= ( f (x1), . . . , f (xn))

>.
Discrete operators acting on n-dimensional vectors can be defined as n⇥ n

matrices. The goal of this section is to provide a discretization of the Laplacian



20 2.6 Discretization

using the finite elements method.
Any function f 2 L2(X ) can be approximated with the linear combination

f (x) =
X

i

fi⇣i(x), (2.7)

where fi = f (xi), and ⇣i(x) are piecewise linear hat functions, i.e.

⇣i(x) =

®
1 if x = xi,

0 otherwise.

In particular, given the function g(x) =� f (x), we have

g(x) =
X

i

gi⇣i(x). (2.8)

The weak form of Equation (2.8) can be obtained as

hg(x),⇣ j(x)i=
X

i

gih⇣i(x),⇣ j(x)i. (2.9)

By Green’s identity (or integration by parts) we can rewrite the left term of
Equation (2.9) as

hg(x),⇣ j(x)i= h� f ,⇣ j(x)i= �hr f ,r⇣ j(x)i, (2.10)

and by plugging Equation (2.7) in Equation (2.10), we obtain

h� f ,⇣ j(x)i= �hr f ,r⇣ j(x)i= �
X

i

fihr⇣i(x),r⇣ j(x)i| {z }
�wi, j

= (W f ) j.

The right term of Equation (2.9), instead, can be rewritten as

gi h⇣i(x),⇣ j(x)i| {z }
mi, j

= (Mg) j.

By replacing the terms in Equation (2.9) with the ones just derived, we get
W f =Mg, or in other terms g =M�1W f = L f , where the matrix L represents the
discretization of the Laplacian operator � (Section 2.3.3). The matrix W = (wi, j)
is called stiffness matrix, while the matrix M= (mi, j) is called mass matrix.

Stiffness matrix entries are defined as wi, j = �hr⇣i(x),r⇣ j(x)i. On the
triangle (i, j, k) the linear hat function ⇣i(x) is equal to 0 on the edge x j � xk and
increases to 1 on the vertex xi. Therefore r⇣i(x) is constant and points towards
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xi

x j

xk xh↵i j �i j

Figure 2.1. Notations: edge i j has length `i j. Angles ↵i j and �i j are opposite to
edge i j. Triangle ik j has area Ai jk.

the vertex i from the opposite edge x j � xk. Denoted with hi the distance from
the edge x j � xk to the vertex xi, we have kr⇣i(x)k = 1/hi and by using basic
trigonometry arguments we can conclude that

kr⇣i(x)k=
1
hi
=
kx j � xkk

2Ai jk
,

which implies

hr�i(x),r� j(x)i=
kx j � xkk

2Ai jk

kxi � xkk
2Ai jk

cos✓ ,

where ✓ is the angle between r⇣i(x) and r⇣ j(x), and Ai jk is the area of the
triangle i jk.

Now ↵i j = ⇡� ✓ , therefore cos✓ = cos (⇡�↵i j) = � cos↵i j, therefore

hr⇣i(x),r⇣ j(x)i= �
kx j � xkk

2Ai jk

kxi � xkk
2Ai jk

cos↵i j.

Observing that kxi � xkk can also be written as hj/ sin↵i j, we obtain

hr⇣i(x),r⇣ j(x)i= �
kx j � xkk

2Ai jk

hj

2Ai jk
cot↵i j.

Now kx j � xkkhj = 2Ai jk, therefore

hr⇣i(x),r⇣ j(x)i= �
cot↵i j

2Ai jk
.

Similarly, on the other triangle (i, j, h), we have

hr⇣i(x),r⇣ j(x)i= �
cot�i j

2Ai jh
.
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Therefore, we can conclude that

wi j =
1
2
(cot↵i j + cot�i j).

The integral in the mass matrix definition,

mi j =
Z

X

⇣i(x)⇣ j(x)d x ,

can be approximated by a sum over the mesh triangles T 2 T

mi j =
X

T2T

Z

T

⇣i(x)⇣ j(x)d x . (2.11)

Since the integrand vanishes on all the triangles that do not contain the edge
(i, j), Equation (2.11) boils down to

mi j =
Z

Ti jk

�i(x)� j(x)d x +
Z

Ti jh

�i(x)� j(x)d x .

By using a Gaussian quadrature rule, we obtainZ

Ti jk

⇣i(x)⇣ j(x)d x ⇡
Ai jk

3

�
⇣i(x1)⇣ j(x1) + ⇣i(x2)⇣ j(x2) + ⇣i(x3)⇣ j(x3)

�
,

where x1, x2, x3, which are simply the midpoints of the edges of Ti jk.
Since ⇣i are simple linear functions over each triangle, the previous quadrature

rule leads to

mi j =
X

T2N (i)\N ( j)

®Ai jk

6 , if i = j,
Ai jk

12 , otherwise,

where N (i),N ( j) are the 1-ring neighbourhood of i, j, respectively.
Typically the mass matrix is lumped to obtain the diagonal matrix A =

diag(a) = diag(a1, . . . , an), where

ai =
1
3

X

jk:i jk2F
Ai jk

is the local area element at vertex i.
In summary, the discrete version of the Laplacian is an n⇥ n matrix L = A�1W,

where W is the cotangent weights matrix and A is the lumped mass matrix.

The eigendecomposition of the Laplacian operator L= A�1W is defined as

W� = A�⇤,

where �= (�1, . . . ,�n) is an n⇥ n matrix whose columns containins the eigen-
vectors of L and ⇤ = diag(�1, . . . ,�n) is the diagonal matrix containing the
corresponding eigenvalues of L.
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2.7 Spectral descriptors
Early works on shape descriptors such as spin images [JH99], shape distributions
[OFCD02], and integral volume descriptors [MCH+06] were based on extrinsic
structures that are invariant under Euclidean transformations.

Extrinsic information turns out to be quite poor when working with non-rigid
shapes: a simple change of pose of a person leads to a completely different
extrinsic structure.

For this reason, in the context of non-rigid shapes, the attention moved to
intrinsic descriptors, and in particular to spectral descriptors.

Spectral descriptors are based on the Laplacian eigendecomposition and their
popularity is owed to several nice properties. First, they are intrinsic by construc-
tion and thus invariant to isometric deformations. Second, they are efficiently
computable. Third, they can be constructed on shapes in different representations
such as meshes or point clouds, provided a valid discretization of the Laplacian
for such representations is available.

Notable examples in this family include heat kernel signature [SOG09; GBAL09]
and wave kernel signature [ASC11], which we will review in the following para-
graphs.

2.7.1 Heat kernel signature

Sun et al. [SOG09] and Gebal et al. [GBAL09] proposed to construct intrinsic
descriptors by considering the diagonal of the heat kernel (2.6),

ht(x , x) =
X

i�1

e�t�i�2
i (x)

also known as the autodiffusivity function. The physical interpretation of autodif-
fusivity is the amount of heat remaining at point x after time t.

Different diffusion times capture different geometric contents. For instance,
for small diffusion times, the autodiffusivity ht(x , x) is related to the Gaussian
curvature K(x) by virtue of the Taylor expansion

ht(x , x) =
1

4⇡t
+

K(x)
12⇡

+O(t).
Sun et al. [SOG09] and Gebal et al. [GBAL09] defined the heat kernel signature

(HKS) of dimension q at point x by sampling the autodiffusivity function at some
fixed times t1, . . . , tq,

f(x) =
Ä
ht1
(x , x), . . . , htq

(x , x)
ä>

. (2.12)
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Figure 2.2. The HKS is defined as the application of low-pass filters to the
Laplacian eigenfunctions. Top: Plot of such low-pass transfer functions ⌧(�) =
e�t� for different values t1, . . . , tQ of the diffusion time t. Bottom: Visualization
of the HKS corresponding to the transfer functions above.

A notable drawback of HKS stemming from the use of low-pass filters is poor
spatial localization (by the uncertainty principle, good localization in the Fourier
domain results in a bad localization in the spatial domain).

2.7.2 Wave kernel signature

Aubry et al. [ASC11] considered a different physical model of a quantum particle
on the manifold, whose behaviour is governed by the Schrödinger equation,

Å
i�+

@

@ t

ã
 (x , t) = 0, (2.13)

where  (x , t) is the complex wave function capturing the particle behaviour.
Assuming that the particle oscillates at frequency � drawn from a probability

distribution ⇡(�), the solution of (2.13) can be expressed in the Fourier domain
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Figure 2.3. The WKS is defined as the application of band-pass filters to the Lapla-
cian eigenfunctions. Top: Plot of such band-pass transfer functions ⌧(�) = ⇡⌫(�)
for different values ⌫1, . . . ,⌫q of the mean frequency ⌫. Bottom: Visualization of
the WKS corresponding to the transfer functions above.

as
 (x , t) =

X

i�1

ei�i t⇡(�i)�i(x).

The probability of finding the particle at point x is given by

p(x) = lim
T!1

Z T

0

| (x , t)|2d t =
X

i�1

⇡2(�i)�2
i (x), (2.14)

and depends on the initial frequency distribution ⇡(�).
Aubry et al. [ASC11] suggested to consider a log-normal frequency distribution

⇡⌫(�) = exp

✓
(log⌫� log�)2

2�2

◆

with mean frequency ⌫ and standard deviation�. The corresponding q-dimensional
wave kernel signature (WKS) is defined as

f(x) =
Ä
p⌫1
(x), . . . , p⌫q

(x)
ä>

, (2.15)
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Figure 2.4. The OSD is defined as the application of parametric filters to the
Laplacian eigenfunctions, whose parameters can be learned resorting to metric
learning techniques. Top: Optimal transfer functions learned from examples.
Bottom: Visualization of the OSD corresponding to the transfer functions above.

where p⌫(x) is the probability (2.14) corresponding to the initial log-normal fre-
quency distribution with mean frequency ⌫, and ⌫1, . . . ,⌫q are some logarithmically-
sampled frequencies.

2.7.3 Optimal spectral descriptor

Litman and Bronstein [LB14] noticed that a generic q-dimensional spectral de-
scriptor can be defined as

f(x) =
X

i�1

⌧(�i)�2
i (x)⇡

kX

i=1

⌧(�i)�2
i (x), (2.16)

where ⌧(�) =
�
⌧1(�), . . . ,⌧q(�)

�>
is a bank of “transfer functions” acting on the

Laplacian eigenvalues. Different transfer functions capture different spectral
properties and lead to different spectral descriptors.



27 2.7 Spectral descriptors

In particular, HKS [SOG09; GBAL09] and WKS [ASC11] are special cases of
Equation (2.16) corresponding to the choice of low-pass filters

⌧t(�) = e�t�

and band-pass filters

⌧⌫(�) = exp

✓
�(log⌫� log�)2

2�2

◆
,

respectively.
Since the two most popular spectral descriptors, HKS [SOG09; GBAL09] and

WKS [ASC11], differ only in the choice of the filter ⌧, Litman and Bronstein
[LB14] proposed to consider a parametric family of filters expressed as

⌧l(�) =
mX

l 0=1

al,l 0�l 0(�), (2.17)

in the B-spline basis �1(�), . . . ,�m(�), where al,l 0 , l = 1, . . . , q, l 0 = 1, . . . , m, are
the parametrization coefficients.

Plugging Equation (2.17) into Equation (2.16), one can express the qth com-
ponent of the spectral descriptor as

fl(x) =
mX

l 0=1

al,l 0

X

i�0

�l 0(�i)�2
i (x)

| {z }
gl0 (x)

, (2.18)

where
g(x) = (g1(x), . . . , gm(x))

> , (2.19)

is called geometry vector and depends only on the intrinsic geometry of the shape.
Equation (2.18) provides a parametrization of a spectral descriptor (2.16) in

terms of the q⇥m matrix of coefficients A= (al,l 0) and can be written in matrix
form as f(x) = Ag(x).

Instead of resorting to hand-crafted models to drive the choice of the param-
eter matrix A, Litman and Bronstein [LB14] proposed to learn one from data.
In particular, they showed that learning such parameters can be casted as a
Mahalanobis-type metric learning problem, where task-specific loss is minimized
on a suitable training set. The descriptors obtained with the learned parameters
are called optimal spectral descriptors (OSD).
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2.8 Shape correspondence

Another basic problem in shape analysis consists in defining shape correspondence.
A correspondence between two shapes is a mapping from the vertices of one
shape to the vertices of the other one.

Traditional approaches, such as blended intrinsic maps [KLF11], provide the
correspondence between two shapes as a point-wise map.

Recently, Ovsjanikov et al. [OBCS+12] proposed to work at a more abstract
level by considering correspondences between functions defined on the manifolds
rather than finding a match between the vertices (Figure 2.5). Such framework
is called functional maps and in the following paragraph we will provide more
details about it.

2.8.1 Functional maps

Let X and Y be two manifolds and let us denote by t : X ! Y a bijective point-
wise correspondence between them. The functional map T : L2(X )! L2(Y) is
defined as

T ( f ) = f � t�1,

where f 2 L2(X ) and T ( f ) 2 L2(Y). Figure 2.5 provides a visualization of the
quantities involved in the functional map definition.

Interestingly, the standard point-wise correspondence t : X ! Y can be recov-
ered from the functional map T by considering Dirac’s delta functions centered
at the sampling x1, . . . , xn 2 X .

Mapping functions rather than points gives a simple algebraic structure to the
problem. In particular, the functional map T is linear:

T (↵ f + � g) = (↵ f + � g) � t�1

= ↵( f � t�1) + �(g � t�1)
= ↵T ( f ) + �T (g),

for scalars ↵,� 2 R and functions f , g 2 L2(X ).
As anticipated above, the Laplacian eigenfunctions form the Fourier basis

for the L2 functional space on the manifold. Therefore, if we denote by � =
(�1, . . . ,�n) and  = ( 1, . . . , n) the Fourier bases on X and Y , respectively,
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x•

t(x)•
t

f
T ( f )T

Figure 2.5. Comparison between point-wise correspondence and functional
maps. Top: a point-wise correspondence t : X ! Y maps a point x 2 X to a
point t(x) 2 Y . Bottom: a functional map T : L2(X )! L2(Y) maps a function
f 2 L2(X ) on the cat to a function T( f ) 2 L2(Y) on the dog. Functions are
depicted with red blobs.

we can express the functional map T using the Fourier expansion as

T ( f ) = T

ÇX

i�1

h f ,� iiL2(X )� i

å

=
X

i�1

h f ,� iiL2(X )T (� i)

=
X

i�1

h f ,� iiL2(X )
X

j�1

hT (� i), jiL2(Y)| {z }
ci, j

 j

=
X

i, j�1

h f ,� iiL2(X )ci, j j,

where ci, j = hT (� i), jiL2(Y).
Usually the series of the previous equation is truncated by considering only
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f

g

⇡ a1 + a2 + · · · + ak

⇡ b1 + b2 + · · · + bk

#
T
#

#
C>
#

⇡  k �>k

Figure 2.6. A functional map T: L2(X )! L2(Y) can be defined in the spectral
domain as a change of basis matrix C, translating Fourier coefficients a = (ai)
expressed in the basis � to Fourier coefficients b= (bi) in the basis  .

the first k elements,

T ( f )⇡
kX

i, j=1

h f ,� iiL2(X )ci, j j.

In the spectral domain, the functions f and T ( f ) can be represented as the
vectors a = (a1, . . . , ak) and b = (b1, . . . , bk), containing the respective Fourier
coefficients. According to this notation, the previous equation becomes

bj =
X

i

ai ci, j,

where the k ⇥ k matrix C = (ci, j) is independent of f and is determined by the
bases �, , and the map T .

In the discrete setting, the previous equation becomes

Tf=  C�>AX f⇡  kC�
>
k AX f= Tkf, (2.20)

where f is a n-dimensional vector representing the function f , AX is a matrix
containing the local area elements of the manifold X , �, are the eigenbases
of the Laplacian,  k,�k are the truncated eigenbases containing only the first k
eigenvectors, and Tk can be thought as a rank k approximation of the matrix T.
Figure 2.6 shows a visualization of the quantities involved in Equation (2.20).



31 2.8 Shape correspondence

Now let us assume that we can provide a set of q corresponding functions,
represented by nX ⇥ q and nY ⇥ q matrices F = (f1, . . . , fq) and G = (g1, . . . ,gq)
satisfying TF = G. Ovsjanikov et al. [OBCS+12] showed that, under this assump-
tion, the functional map Tk can be found by solving a linear system in the matrix
C,

 kC
>
k�
>
k AXF= G,

or, alternatively,
G>AY k = F>AX�kC.

Assuming q � k, this system is overdetermined and can be solved in the least
square sense.
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Chapter 3

Deep Learning on Euclidean data

3.1 Introduction to machine learning

Machine learning is the branch of computer science that deals with the problem
of developing algorithms able to “learn” from data. A machine learning algorithm
is said to learn from data if it is able to build a model that explains the data
without being explicitly programmed through specific programming instructions
implementing arbitrary axiomatic models. Machine learning is therefore able to
overcome the limitations of the traditional axiomatic modelling by introducing a
more flexible data-driven approach. This ability is extremely relevant given the
large amount of publicly available data (big data) we have to deal with nowadays,
making these methods even more important.

3.1.1 Examples of machine learning tasks

By leveraging such data-driven modelling, machine learning is able to tackle
problems which are otherwise difficult or infeasible to solve by specific hand-
crafted algorithms. Axiomatic models limitations may include lack of knowledge
on the task or the impossibility to model axiomatically invariance to certain noise,
just to name a few.

Among the different tasks that machine learning can solve, the most common
ones are:

• Classification, i.e. the problem of identifying to which of k different cate-
gories an observation belongs to. In more detail, a classification algorithm
provides a function f : Rn! {1, . . . , k} assigning to a n-dimensional input
vector x an integer number y = f (x) representing one of the k categories.

33
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If we consider a dataset containing images of birds, an example of a clas-
sification task is the identification of the bird species. In such example,
the input x is an image of a bird (reshaped as an n-dimensional vector by
stacking the pixel brightness values of each color channel) and the output
y is an integer value identifying the species.

In some cases the distinction between the different classes may be rather
fuzzy. As a result, we may not be interested in an unique assignment but
in a weaker classification. In such cases, the classification algorithm can
be modified to output a probability distribution over the k different classes
rather than a single class index, i.e. f : Rn! Rk. This variant is referred to
as soft classification.

• Regression, i.e. the problem of predicting continuous values given some
input features. In more details, a regression algorithm provides a function
f : Rn! Rm assigning to an n-dimensional input vector x an m-dimensional
output vector y= f (x).

An example of a regression problem is the estimation of house prices from
input features such as square footage, number of bedrooms and bathrooms,
etc.

• Synthesis, i.e. the problem of generating new samples that resemble the
input data. For instance, in the context of 3D shapes, one may be interested
in automatic ways to generate novel examples, rather than asking an artist
to create them manually.

3.1.2 Unsupervised and supervised learning algorithm

The typical ingredient in machine learning approaches is the training set, i.e.
the set of data over which the algorithm is allowed to learn the parameters of a
parametric model.

Depending on which kind of information are contained in the training set,
we can distinguish between the two most broad categories of machine learning
algorithms: unsupervised learning and supervised learning algorithms.

In the unsupervised learning setting, the training set is composed of samples�
fi 2 L2

�
Rd

� 
i2I drawn from a possibly unknown data distribution. The goal of

unsupervised learning algorithms is to infer useful properties of said data from
its samples during the so called training stage.

In the supervised setting, instead, we are also given some additional infor-
mation associated with each element of the training set, such as labels. Usually
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a label constitutes the desired output value when the algorithm is given in in-
put the sample associated with it. The training set is thus formed by the pairs��

fi 2 L2
�
Rd

�
, yi 2 Y

� 
i2I where each sample fi is associated with a label yi.

The typical assumption is that there exists an unknown function y : L2(Rd)! Y
from which the labels yi are sampled from, i.e. such that yi = y( fi). The goal
of supervised learning algorithms is to recover the unknown function y or, said
differently, to predict the correct labels corresponding to unseen samples. The
label space Y depends on the application considered. With reference to the
notation of Section 3.1.1, in the case of classification Y is a discrete space with
cardinality equal to the number of classes, i.e. |Y |= k. For regression, instead,
Y = Rm. In the rest of this thesis we will focus our attention mainly on supervised
learning problems.

3.1.3 Training

Typically, the model we aim to learn can be represented as a parametric function
U⇥, where ⇥ represents the parameter set.

The learning process, usually referred to simply as training, can be casted as
an optimization problem of the model parameters ⇥ by minimizing a cost function
` on the training set:

min
⇥

X

i2I

`(U⇥( fi), yi),

where the choice of ` depends on the application at hand. For instance, `(x , y) =
kx � yk.

The main goal of the training process is to find optimal parameters

⇥⇤ = argmin
⇥

X

i2I

`(U⇥( fi), yi),

such that the corresponding model U⇥⇤ generalizes well on previously unseen
data, not just on the training set.

As pointed out by [GBC16], this constitutes a major difference between ma-
chine learning and optimization: in a typical optimization problem, we just want
to reduce the error on the training set, called training error. Here, instead, we
also want the generalization error on a new sample, called test error, to be low.

More specifically, once the optimal parameters are estimated on the training
set, the generalization ability of the machine learning algorithm is tested by
measuring the test error on a disjoint dataset, called test set.

If the model is sufficiently complex and the training set is representative
enough of the underlying data distribution, one expects the parametric function
U⇥ to approximate the unknown function y , i.e. to find such ⇥ that y ⇡ U⇥.
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Figure 3.1. Influence of the model capacity in determining the correct polynomial
fitting the training data, here represented by the black dots. In this toy example,
the training data were sampled from a quadratic function. Left: a linear model
does not even fit the training data, suffering from underfitting. Center: a quadratic
model has the correct capacity to both fit the training data and generalizing well
enough to unseen points. Right: a polynomial of degree 9 suffers from overfitting:
the model fits correctly the training points but the underlying quadratic behaviour
is not grasped. Figure reproduced from [GBC16].

However, two problems may arise:

• underfitting, i.e. the model is not able to capture the main factors of variation
of the underlying training data, and, as a result, it cannot reduce the training
error;

• overfitting, i.e. the model just tries to fit the training data rather than
learning the underlying data distribution, resulting in poor generalization.
Overfitting occurs in models with small training error but big test error.

How to avoid these two pathological cases is one of the central problems
in machine learning. In particular, underfitting happens when the model is not
complex enough or, said differently, when it has too few parameters with respect
to the size of training data. Overfitting, instead, may happens when the model is
too complex. For example, if the model has a number of parameters greater or
equal to the observations in the training set, it can simply “memorize” the training
samples rather than predicting the distribution from which they were sampled.

More precisely, the informal notion of model complexity used in the previous
examples has a more formal counterpart in the notion of capacity of the model,
i.e. the class of functions a model can represent. A model with low capacity is
more prone to underfitting, while a model with high capacity is more likely to
suffer from overfitting. By modifying the capacity of the model one can avoid
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such pathological behaviours. A model performs best when its capacity is suitable
for the complexity of the task it is asked to solve and the size of the training set.
See Figure 3.1 for a toy example about the influence of the capacity of the model
on its generalization capability.

It is important to note that the notion of capacity of a model is wider than
just its number of parameters. In particular, the most common way to modify the
capacity of a machine learning model is through regularization, i.e. by adding
some constraints on the class of functions the model can span.

3.2 Support vector machines
One of the most effective supervised learning approaches is represented by support
vector machines [CV95]. A support vector machine, or simply SVM, aims to provide
a separating hyperplane between two categories of data.

More precisely, let us consider a training set of the form
�
xi 2 Rd , yi 2 {�1,1}

 
i2I ,

where the training samples xi are thought as points in a d-dimensional vector
space and the labels yi take only two values depending on which one of the two
classes xi belongs to. In such settings, a hyperplane takes the form

hw,xi+ b, (3.1)

where w 2 Rd , b 2 R represent the “slope” and the “intercept” of the hyperplane,
respectively.

A hyperplane naturally separates the data domain in two semispaces and
can thus be used to separate data in two classes: given a hyperplane, indeed, a
decision function can be defined as y = sign (hw,xi+ b), where a sample x is
assigned to a class (y = 1) or the other (y = �1) depending on which side of the
hyperplane it falls into.

The basic idea behind linear SVMs is to exploit such property of hyperplanes
to build the model

U⇥(x) = sign (hw,xi+ b), (3.2)

where ⇥ = {w, b}. During training, the parameters w, b are learned in order
to find the best separating hyperplane, i.e. the hyperplane with the maximum
margin of separation between training points.

Figure 3.2 (b) shows a successful application of the SVM algorithm in the
context of binary classification. The two classes are represented by white and
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Figure 3.2. Visualization of the effect of the kernel trick on a classification problem
between two classes of white and black dots. Left: to correctly separate the
training data in two classes, a highly non-linear separation hyperplane is needed.
Right: after the nonlinear mapping learned by the SVM, the optimal separation
between the two classes can be achieved by a simple linear hyperplane.

black dots, respectively. The separating hyperplane is represented with a bold
black line, while the thin gray lines represent its separation margin. It is evident
that the SVM separating hyperplane does not only separate the two classes of
data correctly, but, among all the separating hyperplanes, it is the one with the
higher separation margin.

In most cases, however, data are not linearly separable, thus making a linear
function not suitable for separating them successfully. Figure 3.2 (a) shows one
of such cases in the context of a binary classification problem. In this example,
the correct separation between the two classes can only be achieved by a highly
nonlinear function.

To overcome this issue, Boser and colleagues [BGV92] introduced the kernel
trick. The kernel trick consists in mapping the original finite dimensional data
(Figure 3.2 (a)) in a much higher dimensional space by means of a nonlinear
mapping ⇠: Rd ! Rd 0 , d 0 � d, where they will be easier to separate through a
linear hyperplane (Figure 3.2 (b)).

This can be accomplished by noticing that Equation (3.1) can be rewritten as

b+
X

i2I

↵ihx,xii, (3.3)

where xi are the training samples and ↵ = (↵i)i2I is a vector of coefficients,
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and by replacing the inner product hx,xii with a more generic kernel k(x,xi) =
h⇠(x),⇠(xi)i, where ⇠ is the given nonlinear mapping.

As a result, exploiting the kernel trick, we can define the nonlinear SVM model
as

U⇥(x) = sign

Ç
b+

X

i2I

↵ik(x,xi)

å
, (3.4)

where ⇥ = {↵, b}.
The nonlinear SVM model is equivalent to the application of the model pre-

sented in Equation (3.2) after a preprocessing step where the input data are
mapped to a higher dimensional space through ⇠. In this interpretation, the
application of the nonlinear function ⇠ can be thought to as a feature extraction
step, where ⇠(x) represents the d 0-dimensional feature associated with the d-
dimensional sample x. Figure 3.2 (b) shows the result of applying the nonlinear
mapping ⇠ to the data shown on the left: in the new, higher-dimensional space
the data admits a linear separation.

It is important to note that, even if U⇥(x) is nonlinear with respect to the
original samples x, it is linear with respect to the optimization parameters ↵, b
and features ⇠(x), which are fixed and do not take part in the optimization.
This constitutes a big advantage of SVM because it allows to exploit convex
optimization techniques during learning. As a result, SVMs are guaranteed to
converge to the global optimum.

SVMs, however, suffer from two major drawbacks. The first one resides in the
fact that the nonlinear mapping ⇠ is fixed and is not optimized during learning.
As a result, the quality of the SVM model (3.4) depends on the quality of the
nonlinear mapping itself, which should be tailored for the specific application
taken into consideration. The second drawback is the computation cost of the
model (3.4), which is linear in the number of training samples since each training
sample xi contributes to the cost function with the term ↵ik(x,xi). As a result,
SVMs does not scale well with the size of the training set.

Deep learning approaches have been developed to overcome such issues. For
instance, contrary to SVMs, deep learning techniques, such as neural networks,
do not rely on a preprocessing step extracting features ⇠(x) from the input data
x, but they allow to learn such features directly from the data.

3.3 Challenges motivating deep learning
In Section 3.1.3 we saw how the effectiveness of a machine learning algorithm
depends on its generalization capacity. In order to achieve good generalization, a
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machine learning algorithm should be able to exploit not only the information
contained in the training data, but also the prior knowledge available on the
current problem.

In practice, such prior knowledge is expressed in terms of properties of the
output model or priors. A prior can be either explicit, e.g. a constraint or a
regularization term in the optimization problem, or implicit, when the algorithm
is biased towards some class of functions. In both cases, imposing some priors
on a machine learning algorithm corresponds to restricting the class of functions
from which the algorithm is allowed to learn the output model by preferring those
sharing the desired properties. Implicit priors are more interesting because they
allow to understand the specificity of the given algorithm, while extrinsic ones
can be imposed to any algorithm.

The most common intrinsic prior is local constancy. The idea behind local
constancy is that if the model U⇥ provides a good prediction for the point x, we
can expect such prediction to be good also in the neighbourhood of x. More
formally, a model U⇥ is said locally constant if U⇥(x)⇡ U⇥(x+ ✏) for any input x
and small variation ✏.

Most traditional machine learning algorithms rely solely on this property to
achieve a good generalization. Unfortunately, this becomes a problem when the
number of dimensions in the data increases.

The reason behind the insufficiency of the local consistency prior to deal with
high-dimensional data depends on a phenomenon known as curse of dimensional-
ity. For a comprehensive review of subject we refer the reader to Bellman’s book
[Bel61]. In the following, instead, we will provide a brief explanation.

Let us consider a d-dimensional input sample x= (x1, . . . , xd), and let us say
that each of its entries xi, i = 1, . . . , d, may assume v possible values. Then we
have O(vd) possible configurations ([GBC16]). In other words, the number of
possible configurations increases exponentially when the data dimension increases.
In order to achieve good generalization, we need to have at least a training
sample for each possible configuration. In practice, however, training sets have
fixed size and when the data dimension increases, training samples become
increasingly sparse in the configuration space. As a result, if we rely only on the
local consistency prior we do not have enough information to generalize well on
the configuration space left uncovered by the training samples.

Interestingly, deep learning approaches do not rely only on the local constancy
prior but introduce additional priors, which allow them to perform well even on
tasks involving high dimensional data. In particular, the common assumption
behind deep learning approaches, and in particular artificial neural networks,
is the definition of the models as a composition of simpler factors, acting as a
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prior. More details about deep learning methods and priors will be provided in
the following.

3.4 Deep Learning

Most traditional machine learning algorithms, such as the SVMs presented in
Section 3.2, cannot deal directly with raw data but require a preprocessing step
where such raw data are mapped into proper data representations, called features,
from which a model is built.

This is a major drawback because building a hand-crafted model extracting
the most suitable feature representation for the given data or application requires
advanced domain expertise and careful design.

To overcome this drawback, a category of machine learning algorithms known
as representation learning allows to learn features directly from raw data, without
requiring any hand-crafted feature extraction stage.

Deep learning is a particular class of representation learning, where the learn-
able features are modelled as a composition of many simple transformations,
called layers. Each of these layers act as a different feature representation, there-
fore the output features of a deep learning algorithm exhibit multiple levels of
abstraction [LBH15].

The number of layers needed to approximate the target model is known as the
depth of the model. In order to approximate very complex models, deep learning
algorithms need to compose together many different layers. This is the reason
behind the term “deep learning”.

The key aspect of deep learning approaches is that the features extracted
by each layer are learned from data through a general-purpose learning proce-
dure rather than being computed by axiomatic models as in traditional machine
learning algorithms.

3.4.1 Artificial neural networks

Artificial neural networks are one of the most prominent deep learning algorithms.
An artificial neural network (ANN) is a parametric function U⇥ mapping the input
data f(x) to the output features g(x), i.e. g(x) = U⇥(f(x)).

The term network stems from the fact that the model U⇥ is defined as a
composition of different layers, representing differentiable functions. In the
technical jargon, the input data f(x) is called input layer, the output feature map
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Figure 3.3. Graphs connecting the layers of a toy ANN with only one hidden
layer. Left: in a feedforward neural network the connections between layers does
not form loops. As a result, the information flows from the input to the output.
Right: a recurrent neural network admits feedback connections. In this example,
the output of the hidden layer is fed back into the network again.

g(x) is called output layer, and the intermediate transformations H (i) between
the input and output layers are called hidden layers.

The model U⇥ is typically associated with a graph describing how such layers
are connected together. If the connections between the layers forms a directed
acyclic graph, the ANN constitutes a feedforward neural network. If, instead,
the layers are connected by a directed cyclic graph we obtain a recurrent neural
network, of which LSTM [HS97] is the most prominent example.

Figure 3.3 shows the difference between feedforward and recurrent networks
in terms of the possible connections between the layers in the case of a toy ANN
composed of only one hidden layer.

In the next section, we will delve into feedforward models, while the topic of
recurrent models goes beyond the purpose of this thesis.

3.4.2 Feedforward neural networks

A feedforward neural network (FNN) is an artificial neural network where the
information is allowed to flow only in one direction: from the input f(x) to the
output g(x), passing trough the intermediate transformations H (i), i = 1, . . . , k.

More specifically, a FNN can be defined as the model

g(x) = U⇥(f(x))

= (H (k)
⇥(k)
� · · · �H (2)

⇥(2)
�H (1)

⇥(1)
)(f(x)),

where the ith hidden layer H (i)
⇥(i)

is a parametric function with parameters ⇥(i).
The FNN parameters are defined as the collection of the parameters of the

hidden layers, i.e. ⇥ = {⇥(1), . . . ,⇥(k)}. The number k of hidden layers represents
the depth of the model. If k is big enough the model is considered deep, otherwise
it is considered shallow. Information such as how many hidden layers to consider
and how to connect them, e.g. wether we want just to stack them or to connect
them in more exotic ways, contributes to define the architecture of a FNN.
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Figure 3.4. Visualization of fully connected layers. Left: a single fully connected
layer where the weights affecting the first input unit are highlighted. Right: a
FNN composed of three fully connected layers. The output of a fully connected
layer is given in input to the following fully connected layer. As a result, the
weights W(2),W(3) of the second and third layer, respectively, are not applied on
the input data f(x), but rather on the intermediate representations g(1),g(2).

Typically, hidden layers are defined as fully connected layers. A fully connected
layer g(x) = F⇥(f(x)) takes the form

g(x) = ⇠ (Wf(x) + b) ,

gl(x) = ⇠

Ç pX

l 0=1

wl,l 0 fl 0(x) + bl

å
,

(3.5)

where the p-dimensional input data f(x) = ( f1(x), . . . , fp(x)) is mapped to the
q-dimensional output features g(x) =

�
g1(x), . . . , gq(x)

�
by means of the affine

transformation Wf(x)+b followed by a pointwise non-linearity ⇠, called activation
function.

The affine transformation Wf(x)+b is composed of a linear term, represented
by the matrix W= (wl,l 0), l = 1, . . . , q, l 0 = 1, . . . , p, and a bias term b= (bl), l =
1, . . . , q. Overall, such affine transformation can be interpreted as the application
of a bank of filters to the input function f(x).

Advantageously, such filters can be learned from data during training. More
precisely, the learnable parameters of a fully connected layer are the weight matrix
W and the bias vector b, which for simplicity are concatenated into the parameter
set ⇥ = {W,b}.

Figure 3.4 shows the typical visualization of fully connected layers showing
how the weights wl,l 0 contribute to the transformation of the input data. The
entries of the input and output vectors f(x),g(x) are called units and are repre-
sented with black dots. The weights wl,l 0 of the linear transformation described
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Figure 3.5. Most common activation functions. Left: the logistic sigmoid activa-
tion function is defined as ⇠(x) = 1/(1+ e�x). Center: the hyperbolic tangent
activation function, i.e. ⇠(x) = tanh x . Right: the rectified linear unit (ReLU)
activation function, defined as ⇠(x) =max (0, x).

by the matrix W are represented as arrows connecting the unit on which they are
applied to the output unit they produce. The term “fully connected” arise from
the fact that each input element is connected to each output element.

Activation functions are fixed non-linear transformations applied point-wise
to the affine term Wf(x) + b. Among the most common activations functions we
can find s-shaped functions such as the hyperbolic tangent (Figure 3.5, left) and
the logistic sigmoid (Figure 3.5, center). Another possible choice is to consider
piecewise linear functions. In the recent years, the most common choice as
activations function is the rectifying linear units (ReLU) [NH10], i.e. ⇠(x) =
max(0, x) (Figure 3.5, right).

In summary, a fully connected layer g(x) = F⇥(f(x)) is a non-linear transfor-
mation of the input f(x). By composing together different fully connected layers,
a FNN

g(x) = (F⇥(k) � · · · � F⇥(2) � F⇥(1))(f(x))

can extract very complex features g(x) from the input data f(x).
One of the most interesting properties of FNN is stated by the universal ap-

proximation theorem [HSW89; Cyb89]. The universal approximation theorem
says that a FNN with a linear output layer and at least one hidden layer with an
activation function similar to the three presented above, can approximate any
continuous functions on compact subsets of Rd .

In other words, a FNN with a single layer can represent a wide variety of
interesting functions. However, the theorem does not state anything whether
the parameters representing such functions can be learned during the training
procedure or not. As noticed by [GBC16], the learning procedure may fail to find
the correct parameters for two reasons:
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• if the capacity of the model is not adequate, then it may suffer from overfit-
ting or underfitting, thus approximating the wrong function;

• the nonlinearity of a FNN makes the optimization of the parameters a non-
convex problem, therefore we do not have any guarantees of convergence
to the desired parameters.

Another problem is related to the fact that the layer required to approximate
the target function may be too large, thus impractical to implement.

Practitioners found that using deep models with smaller layers rather than
shallow models with large layers help reducing the number of units required to
approximate the desired function and show better generalization properties.

3.5 Training deep models

In Section 3.1.3 we saw how to cast the training procedure of a supervised
learning algorithm as an optimization problem. More specifically, denoted by U⇥

the model constructed by the supervised learning algorithm, and given a training
set {( fi, yi)}i2I , the parameters ⇥ can be learned by solving

min
⇥

X

i2I

`(U⇥( fi), yi), (3.6)

where the cost function ` should be selected accordingly to the desired application.
Regression tasks usually consider a cost function of the form

`(U⇥( fi), yi) =
X

i2I

kU⇥( fi)� yik2,

which promotes the feature U⇥( fi) to be as similar as possible to the target yi.
In case of classification, instead, the typical cost function is the multinomial

regression loss
`(U⇥( fi), yi) = �

X

i2I

log U⇥( fi),

where the output U⇥( fi) can be interpreted as a probability distribution over the
classes yi. The term log U⇥( fi) represents the Kullback-Leibler divergence between
the probability distribution produced by the model U⇥( fi) and the ground-truth
distribution �yi

. Thus, minimizing the multinomial regression loss coincides with
penalizing for the deviation of the probability distribution predicted by the model
from the groundtruth.
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Once the most appropriate cost function is selected, the solution of the opti-
mization problem (3.6) can be found by gradient descent techniques.

Unfortunately, due to the non-convexity of the optimization problem associated
with the training of a FNN, we cannot expect the gradient descent to converge to
the global minimum. In most cases we cannot even expect the optimization to
reach a good local minima. The possibility for the gradient descent algorithm to
be trapped in a poor local minimum was one of the main critiques against FNNs
(and deep learning in general) in the 1990s. Nowadays it is widely regarded
that local minima are rarely a problem in deep models, since the quality of the
corresponding model is very similar regardless of the initial condition.

The goal of this section is to provide all the necessary details about the gradient
descent techniques that can solve the optimization procedure associated with the
training of a FNN.

3.5.1 Back-propagation

The main ingredient in a gradient descent method is the computation of the
gradient itself. The mathematical derivation of the gradient of a deep model
composed of several nonlinear layers may be quite difficult. Fortunately, it can be
easily computed with a method called backpropagation [Lin70; Lin76].

In a FNN, the input data f is passed through different hidden layers to obtain
the output features g. This is called forward propagation. During training, the
features g are then used to evaluate the cost function `.

The backpropagation algorithm allows information to flow in the opposite
direction, i.e. from the cost function to the input data through the hidden layers,
to compute the gradient. More precisely, the backpropagation algorithm computes
the partial derivatives of the output units w.r.t. the input units of each intermediate
layer and then uses the chain rule to assemble the gradient of the cost function.

Let us consider a two-layer FNN g = F⇥(2) (F⇥(1) (f)) where the first hidden layer
is defined as h= F⇥(1)(f) and the second one is g = F⇥(2)(h). Then, according to
the chain rule we have

@ g
@ fi
=
X

j

@ g
@ hj

@ hj

@ fi
,

where the term @ hj/@ fi computes the derivative of the output units of the first
layer with respect to the input units, and the term @ g/@ hj computes the derivative
of the output units of the second layer w.r.t. its input units (the output units of
the first layer).

To compute the gradient @ g/@ fi, the backpropagation algorithm starts from
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the derivative of the output layer g with respect to itself, i.e. @ g/@ g = 1, then
stores the multiplication between it and the partial derivatives for each layer of
the network until reaching the input units fi, thus obtaining the desired gradient.

3.5.2 Stochastic gradient descent

Cost functions used by machine learning problems, such as the ones presented at
the beginning of Section 3.5, often involve a summation of terms evaluated over
the training samples, i.e.

`(⇥) =
X

i2I

L( fi, yi,⇥
(i)).

This means that the traditional gradient descent algorithm requires the com-
putation of the gradient on the entire training set I at each iteration,

r⇥`(⇥) =
X

i2I

r⇥(i) L( fi, yi,⇥
(i)).

Unfortunately, this is impractical for deep learning related applications, where
the typical training set varies from millions to billions of samples. The stochastic
gradient descent algorithm is preferred, instead.

The key insight behind stochastic gradient descent is that the gradient can
be thought as an expectation over some distribution of training data. Therefore
it can be estimated by using only a small portion of such training data, called
minibatch.

At each step, the stochastic gradient descent algorithm extracts a minibatch
{ f j} j2J , J ⇢ I , by a uniform sampling of the training set and then computes an
estimation g of the gradient r⇥`(⇥) as

g=
X

j2J

L( f j, yj,⇥
( j)).

Once the gradient is estimated, the parameters are updated by the classical
gradient descent formula,

⇥ = ⇥� ✏g,

or variations thereof.

3.6 Convolutional neural networks
Convolutional neural networks [Fuk80; LBBH98] are a particular kind of feedfor-
ward neural networks specialized in processing Euclidean data, i.e. data that has
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a regular grid structure. Goodfellow et al. [GBC16] defines such data as having a
known, grid-like topology, while LeCun et al. [LBH15] speak of data in the form
of multiple arrays.

Examples of Euclidean data include:

• speech or audio signals, which can be described as the sequence of samples
taken at regular time intervals specified by a 1D regular grid and can be
stored in a 1D array;

• images, represented as the intensity values sampled on a 2D regular grid of
pixels, one for each colour channel;

• volumetric images, such as medical images, represented in terms of the
volumetric occupancy of a 3D regular grid of voxels.

A convolutional neural network (CNN) is a FNN containing at least a convolu-
tion layer as hidden layer. A convolution layer replaces the matrix multiplication
operation contained in the affine term of the hidden layer with the convolution
operation.

More precisely, a convolutional layer g(x) = C⇥(f(x)) acts on a p-dimensional
input f(x) = ( f1(x), . . . , fp(x)) by applying a bank of filters W = (wl,l 0), l = 1, . . . , q,
l 0 = 1, . . . , p and an activation function ⇠,

gl(x) = ⇠

Ç pX

l 0=1

( fl 0 ⇤wl,l 0)(x)

å
, (3.7)

producing a q-dimensional output g(x) = (g1(x), . . . , gq(x)).
For 1D Euclidean data, the convolution between the signal f (x) and the filter

w(x) is defined as the function s(x) s.t.

s(x) = ( f ⇤w)(x) =
Z

f (x � x 0)w(x 0)d x 0. (3.8)

In the discrete case, the function s, f , w are represented by the arrays s = (si), f =
( fi),w= (wi), respectively, and the Equation (3.8) becomes

si =
1X

h=�1
fi�hwh.

The discrete convolution can be extended to higher dimensional data as well.
For instance, for 2D Euclidean data, it can be defined as

si, j =
1X

k=�1

1X

h=�1
fi�h, j�kwh,k. (3.9)
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Figure 3.6. Discrete convolution between a 3⇥4 image f and a 2⇥2 filter W. The
intensities of the pixels of the image f are denoted with the variables a, b, . . . , l,
while the filter W is specified through the learnable parameters {↵,� ,�,�}. The
output of the discrete convolution is a 2⇥ 3 feature map s obtained as a local
re-weighting of the pixels in the image on the left with the learnable filter weights.
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Figure 3.7. Max pooling on a 2⇥ 2 neighbourhood of a 4⇥ 4 image f gives in
output a 2⇥2 feature map g. Pixels of the same colour in the image f are mapped
into the pixel with the correponding color in the feature map g. Numbers in the
pixels denote intensity values.

Figure 3.6 shows an application of Equation (3.9) to images.
As suggested by the formulas above, the convolution operation can be inter-

preted as a cross-correlation between the input data f and the filter w. As we will
see later in Chapter 6, this is the main intuition leading to the spatial extension of
the convolution layer to non-Euclidean data, which constitutes one of the main
contributions of this thesis.

The other building block that characterizes CNNs is the pooling layer. A pooling
layer g(x) = P(f(x)) computes a subsampling of the input function f(x) and can
be defined as

gl(x) = k fl(x 0) : x 0 2N (x))kLp , l = 1, . . . , q, (3.10)
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where N (x) is a neighborhood around x . Depending on which Lp-norm is con-
sidered, different samplings are obtained: the case p = 1 correspond to average-
pooling, the case p = 2 to mean-pooling and the case p =1 to max-pooling. A
pooling layer is a fixed layer, i.e. it does not contain learnable parameters. The
only hyperparameter of a pooling layer is the size of the neighborhood N (x).
The role of the pooling layer is to aggregate the information over a whole neigh-
bourhood in a single feature summarizing their statistics. Figure 3.7 shows an
application of max-pooling to images.

A CNN g(x) = U⇥(f(x)) is constructed by composing together convolutional
and (optionally) pooling layers, obtaining a generic hierarchical representation

g(x) = (C⇥(k) � P � · · · � C⇥(2) � C⇥(1))(f(x)),

with parameters ⇥ = {⇥(k), . . . ,⇥(1)}, where ⇥(i) represents the parameters of the
ith convolutional layer. By alternating between convolution and pooling layers, a
CNN extracts hierarchical feature representations.

3.6.1 Properties of convolutional neural networks

In Section 3.2 we saw how local consistency is a typical prior shared by most
traditional machine learning algorithms. Deep learning, and in particular FNNs
(Section 3.4), imposes an additional prior by constructing models through com-
position of factors. CNNs do not only share both these priors but, advantageously,
impose three additional ones: local filters, parameter sharing, and invariant/e-
quivariant representation. By leveraging these priors, CNNs avoid the curse of
dimensionality phenomenon presented in Section 3.3. In the following, we will
go through each of these three properties.

Local filters As we saw in Section 3.4.2, fully connected layers are defined by
the matrix multiplication Wf where the matrix W is full, which implies that every
input unit is connected with every output units (Figure 3.8, left). Convolutional
layers, instead, are characterized by the convolution between an input function f
and a filter bank W. Usually the filters W have a local support significantly smaller
than the one of the input data. For instance, when dealing with images, the filter
occupies a small window of pixels, e.g. a 5⇥ 5 window. Figure 3.6 shows the
results of the convolution between an image of size 3⇥4 with a filter of size 2⇥2.

Local filters result in sparse connections between input and output units,
resulting in a drastic reduction of the parameters the model has to learn: a fully
connected layer with dense connections between p input units and q output units



51 3.6 Convolutional neural networks

w3,1w3,1 w3,2w3,2 w3,3w3,3 w3,4w3,4 w3,5w3,5

f1 f2 f3 f4 f5

s1 s2 s3 s4 s5

w3,2w3,2 w3,3w3,3 w3,4w3,4

f1 f2 f3 f4 f5

s1 s2 s3 s4 s5

w1,3w1,3 w2,3w2,3 w4,3w4,3 w5,3w5,3w3,3w3,3

f1 f2 f3 f4 f5

s1 s2 s3 s4 s5

w2,3w2,3 w4,3w4,3w3,3w3,3

f1 f2 f3 f4 f5

s1 s2 s3 s4 s5

Figure 3.8. Connections from input to output units in a fully connected layer
(on the left) and a convolutional layer (on the right). In this toy example, we
consider a 5-dimensional input f= ( f1, . . . , f5) and a convolution filter of width
3. Connections are represented by arrows. Each connection corresponds to
a learnable weight wi, j, where i, j are the index of the input and output units,
respectively. Top: visualization about how input units affect the output units. In
particular, we highlight the output units si affected by the input unit f3. In the
fully connected layer on the left f3 influences all the output units s1, . . . , s5, while
in the convolution layer on the right f3 influences only a small portion of output
units, i.e. s2, s3, s4. Bottom: visualization about how output units are affected by
the input units. In particular, we highlight the input units fi that contribute to the
output unit s3. In the fully connected layer on the left s3 is influenced by all the
input units f1, . . . , f5, while in the convolution layer on the right s3 is influenced
only by a small portion of output units, i.e. f2, f3, f4. Figure reproduced from
[GBC16].

has p⇥ q parameters; a convolutional layer, instead, connects each output unit
with a fixed number k⌧ p of input units, resulting in k⇥ q parameters.

Figure 3.8 compares dense connections of a fully connected layer with sparse
connections in a convolution layer in terms on how the connectivity influences
input and output units respectively.

In a single convolution layer, an output unit is affected only by a limited
number of input units because of the locality of the filters. If, instead, we increase
the depth of the model by composing together multiple convolution layers, the
units of deeper layers are influenced by a larger portion of the input units, as
shown in Figure 3.9.
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Figure 3.9. A two-layer convolutional neural network. The first convolution layer
maps the input f = ( f1, . . . , f5) to an intermediate feature map h = (h1, . . . , h5).
The second one maps the vector h = (h1, . . . , h5) to the output feature map
g = (g1, . . . , g5). A unit in a shallow layer is affected only by few input units, e.g.
h3 is affected only by f2, f3, f4. A unit in a deep layer, instead, is affected by more
input units, e.g. g3 is affected by f1, . . . , f5. Figure reproduced from [GBC16].

Parameter sharing A fully connected layer learns a parameter wi, j for each
input unit fi, i = 1, . . . , p, and output unit g j, j = 1, . . . , q. To the contrary, the
parameters of the filters of a convolutional layers are shared, which means that the
parameters of the convolutional filter applied to a certain input unit are assumed
to be the same for each other input unit of the same layer.

For example, if we consider as input data an image, this means that a fully
connected layer learns a different set of parameters for each pixel, while a convo-
lutional layer learns a single set of parameters on the whole image.

This is particularly interesting when dealing with image analysis applications,
where the goal is usually the understanding of the content of the given image.
In an image, local features are likely to be repeated in different locations. For
instance if a specific edge or corner appears in a location, we expect to find it in
other locations of the same image as well. Therefore, if a local filter detects such
edge or corner, we are interested in applying the same filter for each other pixel
in the image, rather than learning a different filter for each location.

Thanks to parameter sharing, the number of parameters in a convolutional
layer further reduces from k⇥ q to only k: a significant improvement w.r.t. the
p⇥ q parameters of a traditional fully connected layer.

Invariant/equivariant representation Let us consider the translation operator
Tv f (x) = f (x � v), x , v 2 Rd , acting on function f 2 L2(Rd). A function y is
invariant to Tv if y(Tv f ) = y( f ), it is equivariant to Tv if y(Tv f ) = Tv y( f ).
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Figure 3.10. Left: object classification is a typical task that benefits from translation
invariance. In this example, two images containing the same cat are provided,
but the position of the cat differs. Despite the position of the cat in the image
we would like our model to predict in both cases the correct class. Right:
semantic segmentation, instead, requires translation equivariance. If we want
to correctly segment the images on the left, the foreground prediction should
change accordingly to the translation of the cat. Translation invariance in this
case will produce a completely wrong segmentation.

Translation invariance is required in applications where the presence of certain
features is more important than their precise location, e.g. in object classification
tasks, where one does not care where a certain object is localized in an image,
but just if it is present or not (Figure 3.10, left).

Translation equivariance, instead, is a much stronger property because it
requires the output features to ‘adapt’ to the translation of the input data. A
typical task that requires translation equivariance is object localization, where
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Figure 3.11. Handwritten digits from the famous MNIST dataset. Each row
corresponds to different samples of the same digit. Each sample is written by a
different person, with different handwriting style.

one wants to predict the position of a certain object in an image. Another typical
application is semantic segmentation, where one tries to partition the image into
semantically meaningful parts and classify them (Figure 3.10, right).

The convolution operation is equivariant to translation, while the pooling
operation makes the model invariant to small translations. As a result, CNNs
can leverage both translation invariance and equivariance, depending on how
convolutional and pooling layers are combined together.

This is an extremely important property because it means that the features
learned by a CNN are robust to small translations of the input: e.g. the features
learned on an image ⌦(i, j) are consistent also on the image ⌦0(i, j) = ⌦(i � 1, j),
where every row is shifted by one pixel.

Advantageously, Mallat [Mal12] proved that, for specific choices of the con-
volutional operator and activation function, CNNs can achieve also deformation
invariance. A deformation can be formally defined as the operator L⌧ acting on
functions f 2 L2(Rd) s.t. L⌧ f (x) = f (x �⌧(x)), where ⌧: Rd ! Rd is a smooth
vector field. Deformations can model local translations, rotations, and viewpoint
change. Figure 3.11 shows a practical example of deformations in the case of
handwritten digits from the famous MNIST dataset.



Chapter 4

Frequency domain intrinsic deep
learning methods

In this chapter, we present two methods allowing to extend the convolution
operation to non-Euclidean data in the form of graphs by resorting to the spectral
definition of the convolution operation.

The first method was proposed by Bruna and colleagues [BZSL13; HBL15] and,
to the best of our knowledge, was the first attempt to generalize CNNs to graphs
by replacing the traditional convolutional layer with a spectral convolutional
layer, implementing the spectral definition of the convolution operation. The
second method, proposed by Defferard et al. [DBV16], provides an efficient
spectrum-free extension of the former approach.

These approaches have severe limitations in the context of shape analysis
applications, because they do not allow to transfer the parameters learned on a
domain to a different one. However, they are quite relevant for this thesis because
they gave us the inspiration and motivation for developing of our contributions
in this field.

4.1 Spectral methods

The convolution theorem states that the convolution between two functions
f , h 2 L2(R) can be expressed in the spectral domain as the product of their
Fourier transforms, in the sense that

( f ⇤ h)(x) = F�1 (F ( f (x)) ·F (h(x))) , (4.1)

where F denotes the classical Fourier transform, and F�1 its inverse.

55
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Frequency-domain methods exploit this fundamental property of the convolu-
tion operation to extend it to non-Euclidean domains.

In particular, by replacing the classical Fourier transform in Equation (4.1)
with the generalized one introduced in Section 2.4.2, frequency-domain methods
allow to define the convolution between two functions f , h 2 L2(X ) as

( f ⇤ h)(x) =
X

i�1

h f ,�iiL2(X )hh,�iiL2(X )�i(x), (4.2)

where �i is the ith eigenfunction of the Laplacian on X .
The terms h f ,�iiL2(X ), hh,�iiL2(X ) act as a forward Fourier transform on the

functions f , h 2 L2(X ) by computing their Fourier coefficients ai, bi, respectively.
The multiplication between such coefficients creates new coefficients ci = ai bi

corresponding to the spectral representation of the convolution function, which
is then mapped back to the spatial domain by the inverse Fourier transformP

i�1 ci�i(x).
For practical applications, the series in Equation (4.2) is truncated and only

the first k terms are considered, i.e.

( f ⇤ h)(x)⇡
kX

i=1

h f ,�iiL2(X )hh,�iiL2(X )�i(x). (4.3)

One of the key differences of such a construction from the classical convolution
operation is the lack of shift-invariance. In terms of signal processing, Equation
(4.3) can be interpreted as a position-dependent filter. While parametrized by a
fixed number of coefficients in the frequency domain, the spatial representation
of the filter can vary dramatically at different points.

4.1.1 Spectral convolutional neural networks

Spectral convolutional neural networks (SCNN) [BZSL13] exploit the generalized
definition of convolution presented in Equation (4.3) to extend the convolutional
neural network framework to graph-structured data.

In order to extend CNNs to non-Euclidean data, one has to redefine their
building blocks, i.e. the convolution and pooling layers, in order to make them
compatible with manifold data.

In particular, Bruna et al. [BZSL13; HBL15] proposed to replace the traditional
convolutional layer of a classical Euclidean CNN (Section 3.6), with a spectral
convolutional layer implementing the spectral convolution of Equation (4.3), and
to replace the traditional pooling layer with a graph coarsening operation.
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Since the graph coarsening can be computed with an off-the-shelf algorithm,
it is worth to focus the attention on the spectral convolutional layer, instead.

The spectral convolutional layer is defined as

gl = ⇠

Ç pX

l 0=1

�kWl,l 0�
>
k fl 0

å
, (4.4)

where the n⇥ p and n⇥ q matrices F = (f1, . . . , fp) and G = (g1, . . . ,gq) represent
the p- and q-dimensional input and output signals sampled on the vertices of the
graph, the n⇥ k matrix �k represents the Fourier eigenbasis of L2(X ) containing
only the first k Laplacian eigenvectors, Wl,l 0 is a k⇥ k diagonal matrix of spectral
multipliers representing a filter in the frequency domain, and ⇠ is a nonlinear
activation function applied vertex-wise.

More specifically, the k-dimensional vector �>k fl 0 contains the Fourier coeffi-
cients ai = hfl 0 ,�iiL2(X ), i = 1, . . . , k, resulting from the forward Fourier transform
applied to the input signal fl 0 . The convolutional filter (the function h in Equa-
tion (4.3)) is represented in the spectral domain through its Fourier coefficients
bi = hh,�iiL2(X ), i = 1, . . . , k, which are stored in the diagonal of the k⇥ k matrix
Wl,l 0 . Given the coefficients ai, bi, the Fourier coefficients ci = ai bi, i = 1, . . . , k,
of the convolution function are computed by the term Wl,l 0�

>
k fl 0 . Finally, the

multiplication between such term and the Fourier eigenbasis �k produces an
n-dimensional vector representing the convolution function in the spatial domain.

The operations described above are repeated for each dimension l 0 = 1, . . . , p
of the input signal. The contribution of each input dimension is averaged and
passed through a point-wise non-linear activation function ⇠ to obtain the output
gl .

Usually, a bank of q filters is considered, obtaining an n-dimensional output
vector gl for each filter Wl,l 0 , l = 1, . . . , q.

In summary, a spectral convolutional layer has pqk learnable parameters:
for each input dimension l = 1, . . . , p, and each filter l 0 = 1, . . . , q, we have
k parameters (the Fourier coefficients of the filter). Assuming that k = O(n)
Laplacian eigenvectors are kept, a spectral convolutional layer (4.4) requires
pqk =O(n) parameters to train.

In order to reduce the risk of overfitting, it is important to adapt the learning
complexity to reduce the number of free parameters of the model. On Euclidean
domains, this is achieved by learning convolutional kernels with small spatial
support, which enables the model to learn a number of parameters independent
of the input size (Section 3.6).

The SCNN filters, however, are not defined in the spatial domain but only their
spectral representation is provided. Interestingly, Bruna and colleagues [BZSL13;
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Figure 4.1. A smooth spectral filter ⌧(�) (black thick line) can be defined as a
linear combination of the smooth kernel functions �1(�), . . . ,�k(�) (colored thin
lines).

HBL15] showed that the locality prior can be enforced in the SCNN framework too
by restricting the class of spectral multipliers to those corresponding to localized
filters. This way, the number of parameters of the convolutional layer (4.4)
becomes independent upon the size of the input, which is the case of classical
Euclidean CNNs.

The Parseval’s identity provides a key intuition about how to constrain the
parameter space. In particular, in the Euclidean setting, it states that

Z 1

�1
|x |2k| f (x)|2d x =

Z 1

�1

����
@ k f̂ (!)
@!k

����
2

d!,

which suggests that localization in space is equivalent to smoothness in the
frequency domain.

Following this intuition, Bruna et al. [BZSL13; HBL15] proposed to parametrize
SCNN filters using a smooth spectral transfer function ⌧(�), i.e.

W(�) =

2
4
⌧(�1)

. . .
⌧(�k)

3
5 ,

where the Laplacian eigenvalues {�1, . . . ,�k} play the role of frequencies.
In particular ⌧(�) can be defined as a linear combination of smooth kernel

functions �1(�), . . . ,�q(�),

⌧(�i) =
qX

j=1

↵ j� j(�i) = (B↵)i, (4.5)
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Domain: X X Y
Basis: � �  
Signal: f �W�>f  W >f

Figure 4.2. An illustration of the poor generalization of spectral filtering across
non-Euclidean domains. Left: a function defined on a manifold. Middle: result of
the application of a filter in the frequency domain on the same manifold. Right:
the same filter applied on the same function but on a different (nearly-isometric)
domain produces a completely different result.

where B = (bi, j) = (� j(�i)) is a k ⇥ q fixed interpolation kernel containing the
functions �i as columns and ↵ = (↵1, . . . ,↵q)> is the vector of q interpolation
coefficients, representing the filter parameters. A typical choice for the kernel
functions (� j), j = 1, . . . , q, consists in B-splines.

As a result, the weight matrix of the spectral convolutional layer of a SCNN
with smooth spectral multipliers becomes

diag(Wl,l 0) = B↵l,l 0 , (4.6)

where l, l 0 are the indexes of the input and output dimensions, respectively.
Unfortunately, SCNNs suffer from two major drawbacks:

• the computation of the forward and inverse Fourier transforms requires
the multiplications with matrices �> and �, respectively, which have O(n2)
complexity;

• the filters are basis-dependent, which means that they do not generalize
across domains. In other words, if we learn a filter w.r.t. a basis on one
domain, and then try to apply it on another domain with another basis, the
result could be very different (see Figure 4.2).
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4.2 Spectrum-free methods
Spectrum-free methods deal with the first drawback of SCNNs [BZSL13; HBL15],
allowing to define the convolution operation on non-Euclidean data without
explicitly requiring the cumbersome Laplacian eigendecomposition.

From the orthogonality of the Laplacian eigenfunctions, it follows that a
polynomial of the Laplacian operator acts as a polynomial on its eigenvalues, i.e.

⌧↵(�) = �⌧↵(⇤)�>. (4.7)

The key idea behind spectrum-free methods is to leverage relation (4.7)
to replace the spectral construction of the filters in Equation (4.5), with the
polynomial expansion

⌧↵(�) =
rX

j=1

↵ j�
j. (4.8)

Since the Laplacian is a local operator (acting on 1-ring neighborhoods),
the action of its jth power is constrained to j-ring neighborhoods. As a conse-
quence, the linear combination of powers of the Laplacian (4.8) is still limited
to r-ring neighborhoods around each vertex. It follows that this representation
automatically yields localized filters.

4.2.1 Chebyshev convolutional neural networks

Chebyshev convolutional neural networks (ChebNet) [DBV16] are a particular kind
of spectrum-free methods where the polynomial ⌧↵ is defined by the recursive
family of Chebyshev polynomials

T0(�) = 1,

T1(�) = �,

Tj(�) = 2�Tj�1(�)� Tj�2(�).
(4.9)

More specifically, Defferard et al. [DBV16] proposed to consider spectral filters
of the form

g↵(�) =
r�1X

j=1

↵ j Tj(�̃) =
r�1X

j=1

↵ j�Tj(⇤̃)�>,

where �̃ = 2��1
n � � I is the rescaled Laplacian such that its eigenvalues ⇤̃ =

2��1
n ⇤ � I are in the interval [�1,1] rather than [0,�n]. This transformation

is necessary because the Chebyshev polynomials form an orthogonal basis on
[�1, 1].
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The application of the spectral filter to a signal f is given by

g↵(�) =
r�1X

j=1

↵ j Tj(�̃)f.

If we denote with f̂ = Tj(�̃)f, from the recurrence relation (4.9) it follows
that

f̂
(0)
= f,

f̂
(1)
= �̃f,

f̂
( j)
= 2�̃f̂

( j�1) � f̂
( j�2)

,

which means that ChebNet spectral filters require r multiplications between n⇥ n
sparse matrices, resulting in a total complexity of O(nr).

In summary, ChebNet [DBV16] has two important advantages over SCNN
[BZSL13; HBL15]. First, it does not require an explicit computation of the Lapla-
cian eigenvectors. Second, it has computational complexity O(nr) instead of
O(n2).

Unfortunately, ChebNet does not solve the second drawback of SCNN: filters
learned with ChebNet still do not generalize well across very different domains.
This is a major issue for shape analysis tasks we aim to solve, where one has to
compare filters on different shapes.

In the following, we will see how our contributions allowed to define methods
able to generalize well across domains by introducing alternative extensions of
the convolution operation resorting to a frequency transformation different from
the Fourier one (Chapter 5) and to charting-based methods (Chapter 6).
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Chapter 5

Hybrid frequency-spatial intrinsic
deep learning methods

In the previous chapter, we saw how frequency methods don’t generalize well
across different domains. A possible way to overcome this difficulty is by replacing
the generalized Fourier transform with a different transformation, as proposed
in our paper [BMM+15]. The material presented below is mainly based on such
contribution.

5.1 Windowed Fourier transform
One of the notable drawbacks of classical Fourier analysis is its lack of spatial
localization: by virtue of the uncertainty principle, a signal that is localized in the
spatial domain has poor frequency localization, and viceversa. Figure 5.1 shows
such phenomenon in the case of 1D signals.

In classical signal processing, this problem is overcome by localizing frequency
analysis in a window g, leading to the definition of the windowed Fourier transform
(WFT, also known as short-time Fourier transform in signal processing).

Given a function f 2 L2(R) and some window g 2 L2(R) localized at zero,
the classical WFT is defined as

(S f )(x ,!) =
Z 1

�1
f (x 0)g(x � x 0)e�i!x 0d x 0.

The WFT is a function of two variables: the spatial location of the window x
and the modulation frequency !. The choice of the window function g allows to
control the tradeoff between spatial and frequency localization (wider windows
result in better frequency resolution).
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Figure 5.1. Visualization of the uncertainty principle on 1D signals. Red curves
represent functions defined on the spatial domain, blue curves represent their
Fourier transforms. Despite the fact that the high-frequency content of the func-
tions in the second and third row is localized (around x = 0), their Fourier
transforms do not allow to recover such information.

Figure 5.2 shows the application of the WFT to the signals depicted in Figure
5.1 for different choices of the window g. Contrary to the Fourier transforms
reported in Figure 5.1, a WFT with a sufficiently narrow window (third row)
allows to localize the high frequency content of the signal.

Interestingly, the WFT can be interpreted as an inner product with a translated
and modulated window,

(S f )(x ,!) = h f , M!Tx giL2(R), (5.1)

where Tx and M! denotes the translation and modulation operator, respectively.
The translated and modulated window gx ,! = M!Tx g is referred to as the WFT
atom.

In the Euclidean setting, the translation operator is defined simply as (Tx 0 g)(x) =
g(x � x 0), while the modulation operator amounts to a multiplication by a Lapla-
cian eigenfunction (M!g)(x) = ei!x f (x). The action of modulation amounts to
translation in the frequency domain, i.e. ÷M!0 g = ĝ(!�!0).

Unfortunately, in the non-Euclidean setting, the translation to a point x 0

(x 7! x � x 0) is not even well defined.
In their seminal work, Shuman et al. [SRV16] showed how to generalize such

notions to graphs, while in the paper [BMM+15] we showed how to extend them



65 5.1 Windowed Fourier transform

�⇡ 0 ⇡
0

1

�⇡ 0 ⇡
!0

�⇡ 0 ⇡
0

1

�⇡ 0 ⇡
!0

�⇡ 0 ⇡
0

1

�⇡ 0 ⇡
!0

Figure 5.2. Visualization of the windowed Fourier transform of 1D signals f (x)
for different choices of the window g(x). The signals are represented by solid
red curves, the windows are represented by dashed black curves and the WFT is
represented on the right in the white-blue colormap. If the window is too wide
(first row) the WFT boils down to the classical Fourier transform. If, instead, the
window is more localized (second and third row), the WFT allows to extract
more information w.r.t. the traditional Fourier transform depicted in Figure 5.1.

to 3D shapes.
Translation to a point x 0 2 X can be replaced by convolution with a delta-

function �x 0 centered at x 0, yielding

(Tx 0 g)(x) = (g ⇤�x 0)(x)

=
X

i�1

hg,�iiL2(X )h�x 0 ,�iiL2(X )�i(x)

=
X

i�1

hg,�iiL2(X )�i(x 0)�i(x).

Note that, in general, such a translation is not shift-invariant: the window
Tx g change when x 2 X changes (see Figure 5.3).

The modulation operator, instead, can be defined as (Mj f )(x) = � j(x) f (x),
where � j is the jth eigenfunction of the Laplacian.

Combining the two operators together, the WFT atom on non-Euclidean mani-
folds becomes

gx 0, j(x) = (Mj Tx 0 g)(x)

= � j(x)
X

i�1

hg,�iiL2(X )�i(x)�i(x 0),
(5.2)
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ĝ2

0 0.010.020.03
0

0.05
0.10
0.15
0.20

eigenvalues

Figure 5.3. Examples of different WFT atoms gx ,k using different windows (top
and bottom rows; window Fourier coefficients are shown on the left), shown in
different localizations (second and third columns) and modulations (fourth and
fifth columns).

where the window is defined in the frequency domain by its Fourier coefficients
hg,�iiL2(X ). Figure 5.3 shows a visualization of different examples of such atoms
on a gorilla shape.

Finally, by analogy with the Euclidean case (5.1), Shuman et al. [SRV16]
showed that the WFT of a signal f 2 L2(X ) can be defined as

(S f )(x 0, j) = h f , gx 0, jiL2(X )

=
X

i�1

hg,�iiL2(X )�i(x 0)h f ,�i� jiL2(X ).
(5.3)

5.2 Localized spectral convolutional neural networks

In our paper [BMM+15], we exploited the WFT (5.3) as an alternative to the
Fourier transformation considered by the SCNN framework proposed by Bruna
et al. [BZSL13; HBL15] in order to extend the convolution operation to non-
Euclidean data.

The key intuition behind the LSCNN framework [BMM+15] the following one.
Given a signal f , the WFT (S f )(x , j) performs a local filtering around the point x
by extracting the response of the function f at the frequency j.
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By collecting the WFTs (S f )(x , j) for different frequencies j = 1, . . . , k, it is
possible to extract a local representation of the input signal f around the point x ,
acting similarly to the pixels’ window extracted by traditional Euclidean CNNs on
images. The only difference between the pixels’ window extracted from images
and the WFT-based representation is that the first one is a spatial representation
extracting the signal of each pixel in a neighbourhood of x , while the second one is
a frequency representation of a signal that is localized by means of multiplication
by a window g.

Once the local representation of the function f around the point x is ex-
tracted, the convolution operation can be defined as cross-correlation between
such representation of the signal and a filter expressed in the same representation.

Localized spectral convolutional neural networks (LSCNN), presented in our
paper [BMM+15], are an extension of traditional Euclidean CNNs where the
convolutional layer g(x) = C⇥(f(x)) is defined as

gl(x) =
pX

l 0=1

kX

j=1

wl, j,l 0 |(Sfl 0)(x , j)|, (5.4)

where the n⇥ p and n⇥ q matrices f= (f1, . . . , fp) and g= (g1, . . . ,gq) represent
the p- and q-dimensional input and output signals on the vertices of the shape,
and W= (wl, j,l 0) is a p⇥ k⇥ q tensor representing the learnable weights.

The Laplacian eigenfunctions are defined up to sign, i.e. �(±�) = �(±�).
Thus, even isometric domains might have different Laplacian eigenfunctions. In
order to obtain convolutional filters which exhibit good generalization across
different domains, the convolutional layer (5.4) applies an absolute value to the
WFT in order to reduce its dependence on the eigenfunctions sign.

The WFT (Sfl 0)(x , j) depends on the choice of the window g. As we saw in
Equation (5.2), typically the window g is specified in the frequency domain by
providing its Fourier coefficients ĝi = hg,�iiL2(X ), i = 1, . . . , k. If we consider
fixed windows, then the learnable parameters of the convolutional layer (5.4)
are represented by the convolutional filters ⇥ = {W}.

Advantageously, LSCNN [BMM+15] allows to consider also learnable windows
defined in the spectral domain as

�l 0(�) =
mX

l=1

al,l 0�l(�), (5.5)

where �1, . . . ,�m represents a fixed smooth basis in the frequency domain, such as
the B-spline basis, and the q⇥m matrix A = (al,l 0) contains the learnable weights
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Figure 5.4. Example of a family of windows ĝ1, . . . , ĝp learned by the LSCNN
framework on a standard shape dataset. The numbers on the x axis denote the
eigenvalue indices.

that define the windows. Figure 5.4 depicts the behaviour of the windows (5.5)
once the training procedure has been completed.

By replacing the fixed window of Equation (5.3) with the learnable one in
Equation (5.5), the WFT becomes

(Sfl 0)(x 0, j) =
X

i�1

�l 0(�i)�i(x 0)h f ,�i� jiL2(X ), (5.6)

where a different window �l 0 is learned for each input dimension l 0 = 1, . . . , p.
The parameters of the LSCNN convolutional layer (5.4) with a learnable

window (5.5) are ⇥ = {W,A}.

It is important to notice that the WFT definition (Equation (5.3)) depends
only on the Laplacian eigenfunctions.

On the one hand, this implies that the same framework can be used for any
shape representation (e.g. mesh and point clouds): the specific representation of
the shape influences only the Laplacian discretization.

On the other hand, however, the features extracted by the LSCNN convolu-
tional layer (5.4) depend on the Laplacian eigenfunctions. This implies that such
features are robust across shapes only if their Laplacian eigenbases, up to known
ambiguities, do not differ arbitrarily. In practice, this implies that LSCNNs are
effective in tasks involving shapes that share a common geometric structure (e.g.
different males, animals from a common species).

We hypothesize that if one tries to deal with a class of shapes that is too
broad (e.g. all mechanical objects, or all living things), the advantage of LSCNN
[BMM+15] over hand-crafted descriptors such as HKS [SOG09; GBAL09] and
WKS [ASC11] will diminish, and it is likely that we will learn these descriptors.
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From the computational standpoint, a notable disadvantage of the WFT-based
LSCNN construction is the need to explicitly produce each window, which results
in high memory and computational requirements.
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Chapter 6

Spatial intrinsic deep learning
methods

Frequency methods (Chapter 4) provide a generalization of CNNs to non-Euclidean
domains by performing the convolution operation in the spectral domain. The
main drawback of these approaches is their limitation to a single domain, which
is too restrictive for shape analysis tasks, where typical problems involve more
than one shape, such as in the case of learning correspondences between two
shapes.

Hybrid methods (Chapter 5), such as LSCNN [BMM+15], are an extension
of the spectral method developed by Bruna et al. [BZSL13; HBL15] using the
windowed Fourier transform (WFT) [SRV16] on manifolds. Due to the localiza-
tion properties of the WFT, this method shows better generalization abilities than
SCNN, however, it might have problems in the case of strongly non-isometric
deformations due to the variability of the Laplacian eigenfunctions. The drawback
of LSCNN approach [BMM+15] is high memory and computational requirements,
since the WFT-based construction requires the explicit computation of each win-
dow.

This motivates the need to resort to an alternative generalization of the
traditional convolutional layer in the spatial domain. This chapter shows our
contributions to the field of spatial methods by presenting the material of our
papers [MBBV15; BMR+16; BMRB16; MBM+17].

On a Euclidean domain, due to shift-invariance, the convolution can be thought
of as passing a template at each point of the domain and recording the correlation
of the template with the function at that point. If we consider images as our
prototypical Euclidean data, this operation amounts to extracting a (typically
square) patch of pixels, multiplying it element-wise with a template and summing
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Euclidean Non-Euclidean

Figure 6.1. Comparison between the patch extraction on an image and on a
shape (non-Euclidean domain). Left: The patch on an image is represented by a
square (5⇥ 5) grid of pixels. Due to the shift-invariance of Euclidean data, the
operation of extracting such patch is always the same at any position on the
image. Right: On non-Euclidean manifolds, the lack of global coordinate system
implies that the patch should be represented in local coordinates, while the lack
of shift-invariance implies that the patch extraction is position-dependent.

up the results, then moving to the next position in a sliding window manner
(Figure 6.1, left). Shift-invariance implies that the very operation of extracting
the patch at each position is always the same.

One of the major problems in applying the same paradigm to non-Euclidean
domains is the lack of shift-invariance, implying that the patch operator extracting
a local patch would be position-dependent. Furthermore, the lack of a meaningful
global parametrization on manifolds forces to represent the patch in some local
intrinsic system of coordinates (Figure 6.1, right).

Our contributions [MBBV15; BMR+16; BMRB16; MBM+17] share a common
construction of the patch operator, which we briefly overview. The patch operator
can be represented by defining a set of weighting functions v1(x , ·), . . . , vk(x , ·)
localized to positions near x . Extracting a patch amounts to averaging the function
f at each point by these weights,

Dj(x) f =
Z

X
f (x 0)vj(x , x 0)d x 0, j = 1, . . . , k, (6.1)
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Figure 6.2. Construction of local geodesic polar coordinates on a manifold. Left:
examples of local geodesic patches. Middle and right: example of angular and
radial weighting functions, respectively (red denotes larger weights).

providing for a spatial definition of an intrinsic equivalent of convolution

( f ⇤ h)(x) =
X

j

h j Dj(x) f , (6.2)

where hj denotes the filter coefficients applied on the patch extracted at each
point. Overall, Equations (6.1) and (6.2) act as a kind of non-linear filtering
of f , and the patch operator D is specified by defining the weighting functions
v1, . . . , vk.

The big advantage of the spatial formulation of the intrinsic convolution (6.2)
over the spectral one presented in Chapters 4 and 5 is the fact that the spatial
formulation allows to learn localized filters by construction.

In the following, we will present the methods published in our papers [MBBV15;
BMR+16; BMRB16; MBM+17]. Such methods essentially differ in the choice of
the weighting functions v1, . . . , vk of the patch operator (6.1).

6.1 Geodesic convolutional neural networks

Geodesic convolutional neural network (GCNN) [MBBV15] was the first work
trying to tackle the problem of extending CNNs to 3D shapes by extending the
convolution operation in the spatial domain with the introduction of a patch
operator (6.1).
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Intrinsic polar system of coordinates In particular, in the paper [MBBV15], we
propose to define the patch operator as a combination of Gaussian weights defined
on a local intrinsic polar system of coordinates.

Given a point x on a shape X , the local intrinsic polar system of coordinates
specifies the coordinates of the surrounding points in terms of radial and angular
components (⇢(x),✓ (x)).

The radial coordinate is constructed as ⇢-level sets {x 0 : dX (x , x 0) = ⇢} of
the geodesic distance function dX for ⇢ 2 [0,⇢max], where ⇢max is the radius
of the geodesic disc. If the radius ⇢max of the geodesic ball B⇢max

(x) = {x 0 2
X : dX (x , x 0) ⇢max} is sufficiently small w.r.t. the local convexity radius of the
manifold, then the resulting ball is guaranteed to be a topological disc. Empirically,
we see that choosing a sufficiently small ⇢max ⇡ 1% of the geodesic diameter of
the shape produces valid topological discs.

The angular coordinate ✓ (x) is constructed as a set of equispaced geodesics
� (x ,✓ ) emanating from x in direction ✓ in a way that they are perpendicular
to the geodesic distance level sets. Note that the choice of the origin of the
angular coordinate is arbitrary. We denote by �✓ the angle interval between the
geodesics.

Figure 6.2 (left) shows the local intrinsic polar system of coordinates con-
structed following the previous procedure for different vertices of a shape.

Geodesic patch operator and convolution Once the intrinsic polar system of
geodesic coordinates is extracted, the geodesic patch operator is defined as

(D(x) f )(✓ ,⇢) =
Z

X
f (x 0)v⇢,✓ (x , x 0)d x 0 (6.3)

where the weighting functions

v⇢,✓ (x , x 0) =
v⇢(x , x 0)v✓ (x , x 0)

R
X v⇢(x , x 0)v✓ (x , x 0)d x 0

are obtained as the (normalized) product between the angular weighting functions

v✓ (x , x 0) = e�d2
X (� (x ,✓ ), x 0)/2�2

✓ ,

and the radial weighting functions

v⇢(x , x 0) = e�(dX (x ,x 0)�⇢)2/2�2
⇢ .

Figure 6.2 (center and right) shows an example of angular and radial weights
v✓ , v⇢, respectively.
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Figure 6.3. Construction of local geodesic polar coordinates on a triangular
mesh. Shown clock-wise: division of 1-ring of vertex i into n✓ equi-angular bins;
propagation of a ray (bold line) by unfolding the respective triangles (marked in
green).

Once the patch operator (6.3) is computed, we can regard D(x) f as a patch
extracting the content of the signal f around the point x 2 X . On such local
representation, the geodesic convolution is defined as

( f ⇤w)(x) =
Z 2⇡

0

Z ⇢max

0

w(✓ ,⇢)(D(x) f )(✓ ,⇢)d⇢d✓ , (6.4)

where w(✓ ,⇢) is a learnable filter applied on the patch.
In GCNN [MBBV15], we exploit such definition of geodesic convolution to

define the geodesic convolution layer

gl(x) =
pX

l 0=1

(fl 0 ⇤wl,l 0)(x),

where the n⇥ p and n⇥ q matrices f= (f1, . . . , fp) and g= (g1, . . . ,gq) represent
the p- and q-dimensional input and output signals on the vertices of the shape,
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W = (wl,l 0) is a p⇥q matrix representing the learnable weights and the convolution
is understood in the sense of (6.4).

Discrete patch operator On triangular meshes, a discrete local system of geodesic
polar coordinates has n✓ angular and n⇢ radial bins.

Starting with a vertex xi, we first partition the 1-ring of xi by n✓ rays into
equi-angular bins, aligning the first ray with one of the edges (Figure 6.3).

Next, we propagate the rays into adjacent triangles using an unfolding proce-
dure resembling the one used by Kimmel and Sethian [KS98], producing poly-lines
that form the angular bins (see Figure 6.3). Radial bins are created as level sets
of the geodesic distance function computed using fast marching [KS98].

We represent the discrete patch operator as an n✓n⇢n⇥ n matrix D applied
to a vector n⇥ p sampling the p-dimensional input signal on the mesh vertices
and producing a patch n✓n⇢ ⇥ 1 (which can be arranged as the matrix n✓ ⇥ n⇢
representing a polar histogram) for each input dimension l = 1, . . . , p. The matrix
D is very sparse since only the values of the function at a few nearby vertices
contribute to each local system of geodesic polar coordinates.

Angular ambiguity One of the main drawbacks of such definition of the patch
operator is the ambiguity of the angular coordinate origin: if the origin of the
angular coordinate changes from point to point, the resulting patches will suffer
from a misalignment along the angular axis. As a result, even patches corre-
sponding to close points x , y 2 X , y 2 N (x) will result in arbitrary different
representations.

To overcome this problem, in the paper [MBBV15] we proposed a two-stages
solution: first, a geodesic convolution layer computes the geodesic convolution
result for all n✓ rotations of the filters,

g�✓l (x) =
pX

l 0=1

(fl 0 ⇤w�✓l,l 0 )(x), (6.5)

where w�✓l,l 0 (✓ ,⇢) = wl,l 0(✓ +�✓ ,⇢) are the coefficients of the pth filter in the
qth filter bank rotated by �✓ = 0, 2⇡/n✓ , . . . , 2⇡(n✓ � 1)/n✓ . Second, an angular
max pooling procedure is considered. Angular max-pooling can be implemented
by a fixed layer that computes the maximum over the filter rotations,

gl(x) =max
�✓

g�✓l (x), (6.6)

where g�✓l (x) is the output of the geodesic convolution layer (6.5).
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The combination of the two stages described above leads to the following
alternative definition of the geodesic convolution

( f ⇤w)(x) = max
�✓2[0,2⇡)

Z 2⇡

0

Z ⇢max

0

w(✓ +�✓ ,⇢)(D(x) f )(✓ ,⇢) d⇢d✓ , (6.7)

where the maximum over �✓ is necessary to remove the ambiguity of the choice
of the origin of the angular coordinate.

6.2 Anisotropic diffusion descriptors
One of the notable drawbacks of spectral descriptors discussed in Section 2.7 is
the fact that they are isotropic, i.e. they ignore directional information. Such
directional information, however, may carry important hints about the local
structure of the surface (essential for the construction of a good feature descriptor).
Furthermore, intrinsic descriptors are ambiguous under intrinsic symmetries:
given an intrinsic symmetry ⌘ : X ! X , an intrinsic descriptor f 2 L2(X ) is
invariant to it, i.e. f �⌘ = f.

Anisotropic diffusion descriptors (ADD) [BMR+16] are a class of direction-
sensitive spectral features descriptors defined by applying some learnable filters
over anisotropic diffusion kernels on meshes and point clouds, which we will
present below.

Isotropic heat diffusion In Section 2.5, we saw how the heat propagation on a
shape X is governed by the heat diffusion equation (2.4). In particular, given as
initial heat distribution a delta function centered on x 2 X , the heat distribution
on X after some time t is represented by the heat kernel ht(x , ·).

The heat diffusion equation (2.4) tacitly assumes that the heat conduction
properties of the manifold are constant at every point. As a result, the heat kernel
ht(x , ·) is isotropic, i.e. it diffuses equally in all directions (Figure 6.4, leftmost).
The diffusion time t acts as a parameter influencing the spread of the kernel.

Anisotropic heat diffusion If, instead, the heat conductivity properties of the
shape X changes from point to point, the heat equation takes the more general
form

ft(x , t) = �div (A(x)r f (x , t)) , (6.8)

where A(x) is the thermal conductivity tensor (in case of two-dimensional mani-
folds, a 2⇥ 2 matrix applied to the intrinsic gradient in the tangent plane at each
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Figure 6.4. Visualization of different heat kernels on meshes (top row) and point
clouds (bottom row). Red colours represent high values. Leftmost: example of
an isotropic heat kernel. Remaining: examples of anisotropic heat kernels for
different rotation angles ✓ and anisotropy coefficient ↵.

point). This formulation allows modeling an anisotropic heat flow, i.e. a position-
and direction-dependent heat flow.

Andreux et al. [ARAC14] proposed to consider anisotropic diffusion on shapes
driven by the surface curvature. For each point x 2 X , a basis for the tangent
plane Tx X is formed by considering the principal curvature directions vm(x),vM(x)
(minimum and maximum curvature directions, respectively). With respect to
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this basis, Andreux et al. [ARAC14] proposed to define the thermal conductivity
tensor as

A↵(x) =

 ↵(KM(x))

 ↵(Km(x))

�
(6.9)

with ↵(x) = 1/(1+↵|x |). Such a thermal conductivity tensor drives the diffusion
in the direction of the maximum curvature: the parameter ↵ controls the degree
of anisotropy (↵ = 0 corresponds to the classical isotropic case), and the amount
of diffusion depends on the extrinsic principal curvatures Km(x), KM(x).

In our papers [BMR+16; BMRB16] instead, we proposed to consider a more
general thermal conductivity tensor of the form

A↵,✓ (x) = R✓ (x)

↵

1

�
R>✓ (x), (6.10)

where the 2 ⇥ 2 matrix R✓ (x) performs a rotation by an angle ✓ w.r.t. to the
maximum curvature direction vM(x), and ↵ > 0 is a parameter controlling the
degree of anisotropy (↵= 1 corresponds to the classical isotropic case).

Anisotropic Laplacian We refer to the operator

�↵,✓ f (x) = �div(A↵,✓ (x)r f (x)) (6.11)

as the anisotropic Laplacian, and denote by {�↵,✓ ,i,�↵,✓ ,i}i�0 its eigenfunctions
and eigenvalues, respectively.

Note that, strictly speaking, the anisotropic Laplacian (6.11) is not intrinsic:
it depends on the principal curvature direction. If Formula (6.10) is used and we
consider all the possible rotations ✓ 2 [0, 2⇡), the Laplacian is intrinsic up to the
choice of the origin of the angular coordinates ✓ .

In the works [BMR+16; BMRB16], we showed that this ambiguity can be
removed by fixing the angular coordinates origin using as reference direction the
principal curvature direction vM .

Anisotropic heat kernels By analogy with the spectral definition of isotropic
heat kernels (2.6), the anisotropic heat kernel can be defined as

h↵,✓ ,t(x , x 0) =
X

i�1

e�t�↵,✓ ,i�↵,✓ ,i(x)�↵,✓ ,i(x 0), (6.12)

where �↵,✓ ,i and �↵,✓ ,i are the eigenfunctions and eigenvalues of the anisotropic
Laplacian �↵,✓ , respectively. The only difference with Equation (2.6) is the fact
that the anisotropic heat kernel h↵,✓ ,t depends on two additional parameters, the
anisotropy coefficient ↵ and the rotation angle ✓ . Figure 6.4 shows some examples
of anisotropic heat kernels computed at different rotations ✓ and anisotropies ↵.
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Figure 6.5. Illustration of the intrinsic symmetry ambiguity. Left: two symmetric
points on a shape (white) and the anisotropic heat kernels for different ✓ computed
at these points (similar colors encode similar angles). Right: the values of HKS
(top) and anisotropic HKS (bottom) computed at two symmetric points (solid and
dotted curves). Note that HKS is fully ambiguous (both curves coincide), while
anisotropic HKS allows to distinguish between symmetric points (one curve is
the reflection of the other).

Anisotropic HKS By analogy with the HKS definition [SOG09; GBAL09] (Sec-
tion 2.7.1), we define an anisotropic version of the HKS, called anisotropic HKS, by
considering the diagonal values h↵,✓ ,t(x , x) of the anisotropic heat kernel (6.12)
and sampling t and ✓ at values t1, . . . , tq and ✓1, . . . ,✓s, respectively (↵ is used as
a fixed parameter).

It is important to notice that since we use the principal curvature direction
vM as the origin ✓ = 0 of the angular coordinate, and since the curvature is
an extrinsic property, our descriptor is not ambiguous under bilateral intrinsic
symmetry. In fact, intrinsic symmetry ⌘ reflects the angular coordinate, f✓ �⌘ = f�✓
(here f✓ (x) = h↵,✓ ,t(x , x)). This phenomenon is illustrated in Figure 6.5.

Anisotropic spectral filters Anisotropic HKS descriptors show that anisotropic
spectral kernels carry rich information about local shape structures.

The basic idea behind ADD [BMR+16] is to replace the low-pass filters rep-
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Figure 6.6. Example of a simple single-layer neural network architecture im-
plementing the anisotropic descriptors proposed in our paper [BMR+16]. The
inputs are spectral decompositions of anisotropic Laplacians with anisotropy ↵
at angle ✓1, . . . ,✓s w.r.t. the principal curvature direction. In the spectral stage,
a learnable spectral bank of p filters (shared for all the s directions) is used to
create ps directed kernels. ⇠ denotes the ReLU nonlinearity. The dimensionality
reduction stage then reduces the descriptor to q output dimensions. Deeper
architectures may contain additional layers in both stages.

resenting the heat kernels (which are not necessarily best suited for some ap-
plications) with learnable filters which can be trained to fit the desired applica-
tion. More specifically, in the paper [BMR+16], we propose to learn non-linear
anisotropic descriptors using deep (non-convolutional) neural networks with a
tailored architecture similar to the one depicted in Figure 6.6.

The key innovation of ADD [BMR+16] is the so-called anisotropic spectral filter
(ASF) layer. An anisotropic spectral filter layer takes in input the first k eigenvalues
and eigenvectors of the anisotropic Laplacians �↵l✓l0 for different anisotropies
(↵l)l=1,...,r and equally-spaced rotation angles (✓l 0)l 0=1,...,✓s

and performs the spectral
filtering

fl,l 0,m(x) =
kX

i=1

⌧m(�↵l✓l0 i)�
2
↵l✓l0 i

, (6.13)

for m= 1, . . . , p, l = 1, . . . , r, and l 0 = 1, . . . , s, where the filter transfer functions
⌧m(�) are parametrized as in Equation (4.5) and are learned.

The filters are shared across all rotations and anisotropies, resembling the
shared connectivity of CNNs and allowing to reduce the number of degrees of
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freedom in the model, thus reducing the chance of overfitting.
Finally, ADD [BMR+16] is a general framework which includes, as particular

cases, HKS [SOG09; GBAL09], WKS [ASC11] and OSD [LB14]. HKS corresponds
to a single ASF layer with fixed lowpass filters, WKS corresponds to the same
fixed layer but with band-pass filters, and OSD to a single learnable ASF layer
without non-linearities.

6.3 Anisotropic diffusion convolutional neural networks
In the follow-up work, called anisotropic diffusion convolutional neural networks
(ACNN) [BMRB16], we considered the same anisotropic construction of ADD
[BMR+16] but as an alternative definition of the patch operator, to extend the
convolution operation to non-Euclidean manifolds.

The key idea of ACNN [BMRB16] is to consider the anisotropic heat kernels
(6.12) as the local weighting functions for the construction of the anisotropic
patch operator

(D(x) f )(✓ , t) =

R
X h↵,✓ ,t(x , x 0) f (x 0)d x 0
R
X h↵,✓ ,t(x , x 0)d x 0

,

for some fixed anisotropy level ↵> 1, which is a hyperparameter of the model.
This way, the values of f around the point x are mapped to a local system of
coordinates (✓ , t) that behave like a polar system (t denotes the scale of the heat
kernel, while ✓ its orientation). As a result, the anisotropic diffusion convolution
is defined as

( f ⇤w)(x) =
Z 2⇡

0

Z tmax

0

w(✓ , t)(D(x) f )(✓ , t) d td✓ . (6.14)

It is important to notice that, unlike the arbitrarily oriented geodesic patches
of GCNN [MBBV15], which require the additional angular max pooling operation
to avoid ambiguities, in the ACNN construction [BMRB16] we can simply use the
principal curvature direction vM as the reference origin of the angular coordinate
✓ = 0.
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The anisotropic convolutional layer of ACNN [BMRB16] is defined as

gl(x) =
pX

l 0=1

(fl 0 ⇤Wl,l 0)(x),

where the convolution is intended in the sense of Equation (6.14). Here fl 0 ,
l 0 = 1, . . . , p, is the p-dimensional input signal, Wl,l 0 are the learnable coefficients
of the pth filter in the qth filter bank, and gl , l = 1, . . . , q is the q-dimensional
output feature.

Such an approach has a few major advantages compared to previous intrinsic
CNN models. First, being a spectral construction, our patch operator can be
applied to any shape representation (like LSCNN and unlike GCNN). Second,
being defined in the spatial domain, the patches and the resulting filters have a
clear geometric interpretation (unlike LSCNN). Third, our construction accounts
for local directional patterns (like GCNN and unlike LSCNN). Fourth, the heat
kernels are always well defined independently of the injectivity radius of the
manifold (unlike GCNN).

6.4 Mixture model convolutional neural networks

GCNN [MBBV15] and ACNN [BMRB16] are both charting-based methods and
differ in the way the local weighting functions of their patch operators are con-
structed. Rather than proposing yet another hand-crafted patch operator, in the
follow-up paper [MBM+17], called mixture model convolutional neural networks
(MoNet), we proposed to learn the optimal patch operator from examples, leading
to the first general spatial-domain framework for deep learning on non-Euclidean
domains.

The key contribution of MoNet [MBM+17] is to further parametrize the weight-
ing functions v1, . . . , vk of the patch operator in Equation (6.1) in terms of local
coordinates defined on the manifold X . More in detail, given a point x 2 X , we
denote by N (x) the neighborhood of x . To each point x 0 2N (x) we associate
a d-dimensional vector of pseudo-coordinates u(x , x 0). In these coordinates, we
define a weighting function v⇥(u) = (v1(u), . . . , vJ(u)), which is parametrized by
some learnable parameters ⇥.

The patch operator can therefore be written in the following general form

Dj(x) f =
Z

X
vj(u(x , x 0)) f (x 0), j = 1, . . . , k (6.15)
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Radial coordinate ⇢ Angular coordinate ✓

Figure 6.7. Intrinsic local polar coordinates ⇢,✓ on the manifold around a point
on the shape, marked in white.

where k represents the dimensionality of the extracted patch. A spatial general-
ization of the convolution operation to non-Euclidean domains is then given by
the template-matching procedure of Equation (6.2).

The two key choices in the MoNet construction [MBM+17] are the pseudo-
coordinates u and the weighting functions v1(u), . . . , vk(u). In particular, as
pseudo coordinates u we considered a system of polar geodesic coordinates
similar to the one depicted in Figure 6.8.

For what concerns weighting functions, instead, rather than using fixed hand-
crafted ones, we consider parametric kernels with learnable parameters. In
particular, we found that a convenient choice is

vj(u) = exp
Å
�1

2
(u�µ j)

>⌃�1
j (u�µ j)

ã
, (6.16)

where ⌃ j and µ j are learnable d ⇥ d and d ⇥ 1 covariance matrix and mean
vector of a Gaussian kernel, respectively. Formula (6.16) can thus be interpreted
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Table 6.1. Several CNN-type geometric deep learning methods on manifolds can
be obtained as a particular setting of [MBM+17] with an appropriate choice of the
pseudo-coordinates and weight functions in the definition of the patch operator.
x denotes the reference point (center of the patch) and y a point within the
patch. In the table below, x denotes the Euclidean coordinates on a regular grid.
↵̄, �̄⇢, �̄✓ and ū j, ✓̄ j, j = 1, . . . , k denote fixed parameters of the weight functions.

Method u(x , y) Weight function vj(u), j = 1, . . . , k

CNN x(x , y) = x(y)� x(x) �(u� ū j)

GCNN ⇢(x , y),✓ (x , y) exp
Å
�1

2(u� ū j)>
⇣
�̄2
⇢

�̄2
✓

⌘�1
(u� ū j)

ã

ACNN ⇢(x , y),✓ (x , y) exp
⇣
�1

2u>R✓̄ j
( ↵̄ 1 )R>✓̄ j

u
⌘

GCNN ACNN MoNet

Figure 6.8. Patch operator weighting functions vi(⇢,✓ ) used in different general-
izations of convolution on the manifold (hand-crafted in both GCNN and ACNN
and learned in MoNet). All kernels are L1-normalized; red curves represent the
0.5 level set.

as a Gaussian mixture model (GMM), which is the reason behind the name
of this approach. We further restrict the covariances to have diagonal form,
resulting in 2d parameters per kernel, and a total of 2kd parameters for the patch
operator. Finally, once the weights (6.16) are computed, the patch operator can
be computed as shown in Equation (6.15).

Learning not only the filters but also the patch operators provides additional
degrees of freedom to the MoNet architecture, which makes it currently the
state-of-the-art approach in several applications.

It is also easy to see that this approach generalizes the previous models, which
can be obtained as particular setting of the MoNet framework with appropriate
definition of u and vj(u), j = 1, . . . , k, as shown in Table 6.1. For example, GCNN
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Method Representation Input Generalizable Filters Directional
OSD [LB14] Mesh, point cloud Geometry Yes Spectral No
ADD [BMR+16] Mesh, point cloud Geometry Yes Spectral Yes
SCNN [BZSL13] Graph Any No Spectral No
LSCNN [BMM+15] Mesh, point cloud Any Yes Spectral No
GCNN [MBBV15] Mesh Any Spatial Yes Yes
ACNN [BMRB16] Mesh, point cloud Any Yes Spatial Yes
MoNet [MBM+17] Any Any Yes Spatial Yes

Table 6.2. Comparison of different machine learning methods. The MoNet
[MBM+17] method combines all the best properties of the other models. Note that
OSD and ADD are local spectral descriptors operating with intrinsic geometric
information of the shape and cannot be applied to arbitrary input, unlike the
convolutional models.

and ACNN can be obtained as a particular case of MoNet by considering fixed
Gaussian kernels as weighting functions and local polar geodesic coordinates
(⇢,✓ ) as local pseudo-coordinates.

Figure 6.8 shows a comparison between the hand-crafted kernels of GCNN
and ACNN (left and center) and the ones learned by MoNet (right).

Finally, Table 6.2 provides a comparison between the properties of the different
machine learning methods presented so far in this thesis, with a particular atten-
tion to the intrinsic deep learning we developed. The MoNet model [MBM+17] is
the most generic one and combines all the best properties of the other models.



Chapter 7

Learning shape descriptors with
intrinsic deep learning

In Chapters 4, 5, and 6, we proposed different extensions of the traditional
Euclidean convolutional layer (3.7) to non-Euclidean data, called intrinsic convo-
lutional layers.

Intrinsic convolutional layers was the missing piece that prevented deep learn-
ing to spread and succeed in shape analysis applications as well: Euclidean CNNs
can, indeed, be extended to manifold data by replacing the standard convolutional
layer with intrinsic ones. We refer to the resulting architecture as intrinsic CNNs
to distinguish it from the traditional one.

In this chapter, we provide an experimental evaluation of the performance of
intrinsic CNNs on challenging synthetic and real data in a basic problem of shape
analysis: shape similarity. More precisely, we will test the performance of intrinsic
CNNs in the problem of learning local shape descriptors and in the problem of
learning global shape descriptors for shape retrieval. In particular, for the first
problem we report the results from our papers [BMM+15; MBBV15; BMR+16],
while for shape retrieval we show the results published in [MBBV15].

In the next chapter we will provide an experimental evaluation of the per-
formance of intrinsic CNNs on another basic problem of shape analysis: shape
correspondence. In particular, we will show the results achieved by our methods
[MBBV15; BMR+16; BMRB16; MBM+17].

Resorting to machine learning methods allows to develop models that can
adapt to the specific task with minimal manual adjustments, contrary to what
happens for hand-crafted methods (Figure 7.1).

Finally, we show that the proposed deep models allow to learn state-of-the-art
features with superior performances on both other (shallower) machine learning
and hand-crafted models.

87
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...

Similarity Correspondence

Figure 7.1. Left: features used for shape similarity tasks should be specific to a
shape within a class, allowing to correctly distinguish between different people
denoted by red, blue, and green dots, respectively. In this case we are showing
the features corresponding to the noses of three people. Ideally, each nose
should have distinguishable features since they belong to different people. Right:
To the contrary, correspondence should ideally manifest invariance across the
shape class: to be able to correctly identify the three noses marked in red as
the corresponding part on the three shapes, their features should be as close as
possible (i.e. independent on the specific person). Hand-crafting the right feature
for each application is a very challenging task.

7.1 Intrinsic convolutional neural networks
Intrinsic CNNs are the extension of traditional Euclidean CNNs to manifold data
by replacing traditional convolutional layers with intrinsic convolutional ones.
As a result, an intrinsic CNN is a deep model defined as the composition of
several of such layers and, possibly, some additional ones. The layers are applied
subsequently, i.e. the output of the previous layer is used as input into the
subsequent one (Figure 7.2).

The prototypical intrinsic CNN is thus a non-linear hierarchical parametric
function of the form

U⇥(f) = (F⇥(k) � C⇥(k�1) � F⇥(k�2) � · · · � C⇥(1)) (f), (7.1)

where ⇥(i), i = 1, . . . , k, represent the parameters of the ith layer. The parameters
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Figure 7.2. A simple example of an intrinsic convolutional neural network
architecture. The network takes as input an off-the-shelf m-dimensional hand-
crafted local shape descriptor for each vertex, then a linear dimensionality
reduction layer is applied to reduce the input dimension to p < m, followed by a
ReLU non-linearity. Finally, an intrinsic convolutional layer (e.g. the geodesic
convolution layer (6.4)) with q banks of p filters is followed by an angular max
pooling layer to remove the ambiguity of the choice of angular coordinate origin,
which produces a q-dimensional output feature for each vertex.

of the intrinsic CNN U⇥ are defined by collecting the parameters of each layer, i.e.
⇥ = {⇥i : i = 1, . . . , k}.

Typically, fully connected layers F⇥ (3.5) and intrinsic convolutional layers
C⇥ are considered, but other ad-hoc layers may be considered as well. In the
following, we will provide more details about the specific architectures employed
by each of the contributions [BMM+15; MBBV15; BMR+16].

Figure 7.2 shows a toy example of an intrinsic CNN architecture U⇥(f) =
C⇥(2)(P⇥(1)(f)) composed of a fully connected layer P⇥(1) and an intrinsic convolu-
tional layer C⇥(2) (more specifically, C⇥(2) is composed of a geodesic convolutional
layer (6.7) followed by a fixed angular max-pooling layer (6.6)).

The model U⇥ is applied point-wise to the m-dimensional input data f(x) =
( f1(x), . . . , fm(x)) and produces some point-wise q-dimensional output features
g(x) = (g1(x), . . . , gq(x)) by minimizing some task-specific optimization problem.

Typically, as input data f we consider some simple descriptor capturing the
geometric content of the shape. Examples include geometry vectors (2.19) [LB14]
and signatures of histograms of orientations (SHOT) [STDS14]. Alternatively, as
input signal f(x) one may consider the x yz-coordinates of the shape vertices, as
well as the components of the normal vectors n(x) = (n1, n2, n3). If the texture of
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Figure 7.3. Local descriptors on two different poses of the same shape at three
points marked in red, green, and blue. Similar colours encode descriptors from
corresponding points. Solid lines represent the descriptors on the shape on the
left, dashed lines the ones of the shape on the right.

the shape is provided, then the RGB-values corresponding to each vertex can be
considered as the input signal, similarly to what happens with natural images.

In the following, we will see how intrinsic CNNs can be applied to two basic
problems in shape analysis: local shape descriptors and shape retrieval.

7.2 Learning local shape descriptors

The point-wise application of an intrinsic CNN to some input feature vector f(x)
creates a feature map g(x) that can be regarded to as a dense local descriptor for
the points x 2 X .

Ideally, a local descriptor should be as similar as possible at correspond-
ing points across a collection of shapes, and as dissimilar as possible at non-
corresponding points.

Such situation is illustrated in Figure 7.3, where the descriptors of the points
highlighted by red, green, and blue spheres are represented by the curves of the
corresponding color on the right. Solid curves correspond to the descriptors on
the shape on the left, dashed curves to descriptors of the rightmost one. Solid and
dashed curves are very similar and curves of different colors are very different:
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this is an ideal behaviour for local descriptors. To simulate such behaviour, we
need to consider suitable training set and cost function.

Training set In the works [BMM+15; MBBV15; BMR+16] we assumed to be
provided with examples of points (x , x+) from different shapes that are known
to be similar, as well as pairs of points (x , x�) known to be dissimilar. More
specifically, the training set is formed by the collection of pairs of similar points
T+ = {(x , x+)}, called positives, and the collection of pairs of dissimilar points
T� = {(x , x�)}, called negatives. With reference to Figure 7.3, the positive set T+
would be formed by pairs of the same color, while the negative set T� would be
formed by pairs of dissimilar colors. The most straightforward way to obtain such
training sets is from known correspondences between some of the shapes in the
collection.

Cost function Given such training set, our goal is to make the output g(x) =
(U⇥(f))(x) of the intrinsic CNN (7.1) as similar as possible at positives and as
dissimilar as possible at negatives across a collection of shapes.

For this purpose, we can consider a siamese network configuration [SP93;
BGL+94; HCL06; SSTF+14] composed of two identical copies of the same intrinsic
CNN model U⇥ (7.1) sharing the same parametrization. During training, optimal
parameters of U⇥ are estimated by minimizing the siamese loss

L(⇥) = (1� �)L+(⇥) + �L�(⇥), (7.2)

where

L+(⇥) = 1
|T+|

|T+|X

i=1

kU⇥(fi)� U⇥(f
+
i )k2, (7.3)

and

L�(⇥) = 1
|T�|

|T�|X

i=1

�
µ� kU⇥(fi)� U⇥(f

�
i )k

�2

+ , (7.4)

are the positive and negative losses, respectively. Here, � 2 [0, 1] is a parameter
trading off between the positive and negative losses, the margin µ is a scalar
hyperparameter of the model and (·)+ =max{0, ·}.

The siamese loss (7.2) can be interpreted as follows: the positive loss (7.3) tries
to minimize the distance between the output features corresponding to positive
points, while the negative loss (7.4) tries to maximize the distance between
features corresponding to negative points. To avoid a trivial solution, the negative
loss accounts for a margin term µ representing the maximum value allowed
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for the distance between features corresponding to negative points. Once such
distance reaches the margin µ, the contribution of that term to the optimization
vanishes.

7.2.1 Performance evaluation

Once the training procedure is completed and the optimal parameters ⇥⇤ are
obtained, we can evaluate the performance of the descriptors obtained by the
model U⇥⇤ on the test set.

We consider both a qualitative and a quantitative evaluation of the descriptor
performance.

The qualitative evaluation consists in showing the similarity map of the learned
descriptors. A similarity map depicts the Euclidean distance in the descriptor
space between the descriptor at a selected point, called reference point, and the rest
of the points on the same shape as well as on other shapes. Usually, different kind
of noises are considered to better assess the descriptor robustness. The distances
are represented in a red-blue colormap, where small distances are represented by
cold colors, while large distances are represented by hot colors. Ideal descriptors
produce a distance map with small values localized around the reference point
and large values elsewhere.

The quantitative evaluation consist in measuring the descriptor performance
according to three metrics: the cumulative match characteristic (CMC), the re-
ceiver operator characteristic (ROC), and the Princeton protocol ([KLF11]). The
CMC evaluates the probability of a correct correspondence among the k nearest
neighbours in the descriptor space, as a function of the parameter k. The ROC
measures the percentage of positive and negative pairs falling below various
thresholds of their distance in the descriptor space (true positive and negative
rates, respectively). The Princeton protocol measures the quality of the correspon-
dence obtained by matching nearest neighbours in the descriptor space. More
specifically, it measures the percentage of correct matches at most r-geodesically
distant from the groundtruth correspondence, for different values of the geodesic
radius r. The percentage of perfect matches coincides with the value r = 0.

7.2.2 Datasets

To test the performances of LSCNNs we considered two public-domain datasets
of scanned human shapes: SCAPE [ASK+05] and FAUST [BRLB14], and the
synthetic human shapes of the public-domain dataset TOSCA [BBK08]. SCAPE
[ASK+05] contains 71 different poses of the same male person, while FAUST
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[BRLB14] contains 10 subjects (both male and female) in 10 different poses
each for a total of 100 shapes. The latter is the most recent and particularly
challenging, given a high variability of non-isometric deformations as well as
significant variability between different human subjects. The meshes in SCAPE
were resampled to 12.5K vertices, whereas for FAUST we used the registration
meshes (⇡ 7K vertices) without further pre-processing. In addition we scaled all
shapes to have unit geodesic diameter. In both datasets, groundtruth point-wise
correspondence between the shapes was known for all points.

Each dataset was split into disjoint training, validation, and test sets. On the
FAUST dataset subjects 1� 7 were used for training (10 poses per subject, a total
of 70 shapes), subject 8 (10 shapes) for validation, and subjects 9� 10 for testing
(total of 20 shapes). On SCAPE, we used shapes 20� 29 and 50� 70 for training
(total 31 shapes), five different shapes for validation, and the 40 remaining shapes
for testing.

TOSCA contains two male subjects (Michael and David) and a female subject
(Victoria) in different poses. The meshes from TOSCA were resampled to 10K
vertices. In this case, the ground-truth correspondence is not known, therefore
we considered TOSCA only as a test set.

The positive and negative sets of vertex pairs required for training were
generated on the fly, to keep the storage requirements for the training algorithm,
via uniform stochastic sampling. Each point on the first shape has only a single
groundtruth match (given by the known one-to-one correspondence) and is
assigned to one out of n� 1 possible negatives: first, sample two shapes, then
form the positive set with all corresponding points, and finally, form the negative
set with first shape vertices and a random permutation of the ones of the second
shape.

This strategy differs from [LB14] who considered only points on the same
shape. The advantage of our sampling strategy is that it allows learning invariance
also across several poses and subjects.

7.2.3 LSCNN experiments and results

Architectures In our experiments we considered as input data m = 150-dimensional
geometry vectors, computed according to Equation (2.18) using B-spline bases
[LB14].

We considered two different configurations of the LSCNN model. The first
one, denoted with LSCNN1, consists of a fully connected layer (reducing the
dimensionality of the m= 150-dimensional input descriptors to p = 16 dimen-
sions), followed by an intrinsic convolutional layer producing q = 16-dimensional
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descriptors. In this configuration, the intrinsic convolutional layer employs a fixed
WFT Gaussian window �(�) = e��

2/�2
with � = 10�5. The parameters of LSCNN1

that are learned are ⇥ = {(wqp), (wqpk)}, where wqp are the parameters of the
fully connected layer (3.5) and wqpk are the parameters of the WFT layer (5.4).
The second one, denoted with LSCNN2, is similar to LSCNN1 with the difference
that now the WFT windows are also learned. In particular, we learn a different
WFT window for each dimension for a total of 16 windows. The WFT windows
are parametrized according to Equation (2.18). The learnable parameters of
LSCNN2 are the same of LSCNN1 with the addition of the B-spline coefficients
(↵pm) (2.18) of the learnable WFT windows, i.e. ⇥ = {(wqp), (wqpk), (↵pm)}.

Interestingly, the hand-crafted spectral descriptors HKS [SOG09; GBAL09],
WKS [ASC11], and the learnable descriptors OSD [LB14] can be thought as
particular instances of the LSCNN framework corresponding to particular choices
of the parameters ⇥. In particular, HKS can be implemented as a fixed fully
connected layer where the weights are represented by low-pass filters �t(�) = e�t�,
WKS can be implemented as a fixed fully connected layer where the weights
are represented by band-pass filters �⌫,�(�) = e(log⌫�log�)/2�2

, and OSD can be
implemented as a linear fully connected layer, i.e. a fully connected layer (3.5)
without the activation function ⇠. Thus, if the training set is informative enough
and the training is performed correctly, descriptors learned with LSCNNs can
perform only better than the above.

Results We compared the performance of LSCNN to HKS [SOG09; GBAL09],
WKS [ASC11], OSD [LB14], and a single layer GCNN [MBBV15], denoted with
GCNN1, using the settings provided by the respective authors. Additionally, we
compared LSCNN also to a network FC1 consisting of a single non-linear fully
connected layer: FC1 is compatible with OSD, with the addition of a ReLU non-
linearity at the output. To make the comparison fair, all the descriptors were
q = 16-dimensional as in [LB14].

To better assess the quality of the descriptors produced by LSCNN, Figures 7.4
and 7.5 show a qualitative evaluation of the descriptor robustness in terms of the
similarity map (Section 7.2.1) on meshes and point clouds, respectively. Point
clouds were obtained by sampling FAUST meshes using the FPS algorithm [HS85].
The WFT on point clouds is computed using the graph Laplacian. Our approach
shows a good trade-off between localization (similar to HKS) and accuracy (less
spurious minima than WKS and OSD), as well as robustness to different kinds of
noise.

Figures 7.6–7.9 show a quantitative evaluation of the descriptors quality
according to the metrics presented in Section 7.2.1 for different configurations



95 7.2 Learning local shape descriptors

Heat Kernel Signature (HKS)

Wave Kernel Signature (WKS)

Optimal Spectral Descriptor (OSD)

Single-layer Geodesic Convolutional Neural Nework (GCNN)

Localized Spectral Convolutional Neural Network (LSCNN)

Figure 7.4. Distance map in the descriptor space. The descriptor of a point
on the knee of the leftmost shape (white dot) is compared to the descriptors
of all other points on the same and on other shapes (which have undergone
various transformations of increasing complexity). Shown left-to-right: reference
shape from FAUST dataset, different pose of the same shape, different subject
in the same dataset, two shapes from SCAPE dataset, Gaussian noise, heavy
subsampling, voxelization noise, topological noise (glued fingers and missing
parts). Small distances in the descriptor space correspond to cold colors, large
distances to hot colors. An ideal descriptor should produce a distance map with
small values localized around the knee and large values elsewhere.
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Heat Kernel Signature (HKS)

Wave Kernel Signature (WKS)

Localized Spectral Convolutional Neural Network (LSCNN)

Figure 7.5. Distance map in the descriptor space (similar to the one presented in
Figure 7.4) for point clouds descriptors. In this case, the reference point is on the
left hand of the leftmost shape and its descriptor is compared to all other points
on the same shape and on other shapes from different datasets (the first four
from SCAPE and the rest from FAUST datasets). Small distances in the descriptor
space correspond to cold colors, large distances to hot colors. An ideal descriptor
should produce a distance map with small values localized around the left hand
and large values elsewhere.

of the training and testing sets. We observe that LSCNN1 and LSCNN2 perform
comparably (slightly better) to GCNN1 and significantly outperform all other
approaches. Interestingly, FC1 performs better than OSD, thanks to the non-
linearity of the ReLU activation function.

7.2.4 GCNN experiments and results

Architectures As input and output settings we considered the same ones of
LSCNN experiments 7.2.3.
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Figure 7.6. Performance of descriptors trained on a subset of FAUST dataset and
tested on a disjoint subset of FAUST dataset.
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Figure 7.7. Performance of descriptors trained on a subset of FAUST dataset and
tested on SCAPE dataset.
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Figure 7.8. Performance of descriptors trained on a subset of SCAPE dataset and
tested on a disjoint subset of SCAPE dataset.
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Figure 7.9. Performance of descriptors trained on a subset of SCAPE dataset and
tested on FAUST dataset.

Two different configurations of the GCNN model were considered. The first
one, denoted with GCNN1 (150-dim input, FC16, GC16, AMP), consists of a
fully connected layer performing a dimensionality reduction of the m = 150-
dimensional geometry vectors in input to obtain p = 16-dimensional features in
output, followed by a geodesic convolutional layer with a bank of q = 16 filters
and an angular max pooling (Figure 7.2). The second one, GCNN2 (150-dim
input, FC16, GC16, AMP, FC16) further applies another fully connected layer at
the end of the chain.

Results Figures 7.10 and 7.11 show a qualitative evaluation of the descriptor
robustness in terms of the similarity map (Section 7.2.1) of two different reference
points. GCNN descriptors manifest both good localization (better than HKS)
and are more discriminative (less spurious minima than WKS and OSD), as
well as robust to different kinds of noise, including isometric and non-isometric
deformations, geometric and topological noise, different sampling, and missing
parts.

Figure 7.12 shows a quantitative evaluation in terms of the metrics presented
in Section 7.2.1. We observe that GCNN descriptors significantly outperform
other descriptors, and that the more complex model (GCNN2) further boosts
performance.

In order to evaluate the generalization capability of the GCNN model, in Figure
7.13 the descriptors learned on FAUST dataset were tested on TOSCA shapes. We
see that the learned model transfers well to a new dataset.
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Heat kernel signature (HKS)

Wave kernel signature (WKS)

Optimal spectral descriptor (OSD)

GCNN

Figure 7.10. Normalized Euclidean distance between the descriptor at a reference
point on the shoulder (white sphere) and the descriptors corresponding to the
other points for different transformations (shown left-to-right: near isometric
deformations, non-isometric deformations, topological noise, geometric noise,
uniform/non-uniform subsampling, missing parts). Cold and hot colors represent
small and large distances, respectively; distances are saturated at the median
value. Ideal descriptors would produce a distance map with a sharp minimum at
the shoulder and no spurious local minima at other locations.

7.2.5 ADD experiments and results

Architectures The ADD framework is a (non-convolutional) deep model which
takes in input the anisotropic eigenvectors and eigenvalues, as described in
Equation (6.13). In the case where only a single anisotropy value is considered,
we use ↵ = 50, while for the case where multiple anisotropies are considered we
use the values ↵= 0, 25, and 50.
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Heat kernel signature (HKS)

Wave kernel signature (WKS)

Optimal spectral descriptor (OSD)

GCNN

Figure 7.11. Same qualitative evaluation of Figure 7.10 for a reference point on
the groin of the leftmost shape (indicated with a white sphere).
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Figure 7.12. Performance of descriptors trained on a subset of FAUST dataset and
tested on a disjoint subset of FAUST dataset.

For the single anisotropy case, we considered different configurations corre-
sponding to increasingly complex architectures:

• ADD1 (SC + FC16) is a single layer model corresponding to a stack channel
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Figure 7.13. Performance of descriptors trained on FAUST dataset and tested on
TOSCA dataset.

SC which just stacks the input channels ordered by angle and anisotropy
values followed by a fully convolutional layer producing q = 18-dimensional
features,

• ADD2 (ASF256 + ReLU + SC + FC16) is a two-layer architecture, that
applies an anisotropic spectral filtering layer with a bank of 256 filters and
a ReLU non-linearity before ADD1,

• ADD3 (ASF256 + ReLU + ASF256 + ReLU + SC + FC512 + ReLU + FC16)
is a four-layer architecture representing a more complex model.

Architectures with multiple anisotropies in input are denoted by mADD1, mADD2
and mADD3, respectively.

Results Figure 7.14 shows a quantitative evaluation of the performance of the
descriptors produced with the different architectures presented above in terms of
the metrics presented in Section 7.2.1. The descriptors performance is measured
according to two different settings: the symmetric setting (solid lines) considers
symmetric points as correct matches, while the asymmetric setting (dashed lines)
considers symmetric points as incorrect matches.

As expected, deep models achieve better performance than shallow ones and
models with multiple anisotropies performs better than the ones with single
anisotropy. Overall, the model mADD3 achieve the best performance.

Figure 7.15 shows a qualitative evaluation of the anisotropic spectral descrip-
tors constructed with the mADD3 architecture in terms of a similarity map from
a point on the right shoulder of the leftmost shape to other points of the same
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Figure 7.14. Performance of different architectures of our anisotropic descriptor
according to symmetric (solid) and asymmetric (dashed) settings. Training and
testing were done on disjoint sets of the FAUST dataset.

Figure 7.15. Qualitative evaluation of our mADD3 descriptors on meshes. Shown
is the normalized Euclidean distance between the descriptor at a reference point
on the shoulder (white point) and the descriptors corresponding to the other
points for different transformations. Cold and hot colors represent small and
large distances, respectively; distances are saturated at the median value. Ideal
descriptors would produce a distance map with a sharp minimum at the right
shoulder and no spurious local minima at other locations.

shape as well as other shapes from the FAUST dataset. Descriptors learned with
ADD manifest good localization and specificity, and, remarkably, they are not
ambiguous to symmetry contrary to spectral descriptors, LSCNN, and GCNN
constructions (compare with Figures 7.4 and 7.10).

Finally, Figure 7.16 shows a quantitative evaluation of the descriptors produced
with ADD3 and mADD3 architectures and compares them with hand-crafted
spectral descriptors, such as HKS and WKS, as well as with learnable ones, such
as OSD, LSCNN, and GCNN. Anisotropic constructions (ADD3 and mADD3)
outperform all the other descriptors and manifest significantly smaller drop in
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Figure 7.16. Performance of different descriptors measured using CMC (left),
ROC (center), and Princeton protocol for nearest-neighbor correspondence (right);
higher curves correspond to better performance. Symmetric (solid) and asymmet-
ric (dashed) settings are shown. Learnable descriptors were trained and tested on
disjoint sets of the FAUST (top) and SCAPE (bottom) datasets, respectively. All
descriptors in these plots are 16-dimensional.

performance when switching from the easier symmetric evaluation (solid line) to
the harder asymmetric one (dashed lines).

7.3 Learning shape retrieval

Given a query shape X , shape retrieval deals with the problem of finding the
target shape Y most similar to X among the samples available in the given dataset.
Usually, rather than directly comparing the shapes, it is preferable to compare
features encoding the global structure of the shape, called global descriptors.

Intrinsic convolutional networks allow to learn global descriptors simply by
concatenating an additional layer computing an aggregation of the local features
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COV

G

f(x)

f(x 0)

Figure 7.17. The covariance layer COV combines the p-dimensional local descrip-
tors at each vertex x 2 X of the shape on the left in a p⇥ p matrix representing a
global descriptor for the shape X .

produced by the network (7.1) presented in Section 7.1.
In the paper [MBBV15], inspired by the work [TPM06], we propose to consider

as feature aggregation layer the covariance layer, defined as

G=
Z

X
(f(x)�µ)(f(x)�µ)>d x ,

where f(x) = ( f1(x), . . . , fp(x))> is a p-dimensional input vector, µ =
R
X f(x)d x ,

and G is a p ⇥ p matrix, which can be regarded as a global descriptor for the
shape X (Figure 7.17).

Training is done by minimizing the siamese loss (7.2), where positives and
negatives are shapes from same and different classes, respectively.

7.3.1 GCNN experiments and results

As input we considered m= 16-dimensional HKS descriptors. We used a GCNN
architecture composed of a fully connected layer FC8 acting as dimensionality
reduction and producing p = 8-dimensional features, followed by a geodesic
convolutional layer GC8 with a bank of q = 8 filters and angular max pooling
layer AMP (6.6). Finally a covariance layer COV produces a q⇥ q output matrix
used as the global shape descriptor.

As dataset we considered FAUST. In particular, the training set consisted of
five poses per subject (a total of 50 shapes), while testing was performed on the
50 remaining shapes in a leave-one-out fashion.

Evaluation was done in terms of precision (percentage of retrieved shapes
matching the query class) and recall (percentage of shapes from the query class
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Figure 7.18. Performance (in terms of Precision-Recall) of shape retrieval on the
FAUST dataset using different descriptors. Higher curve corresponds to better
performance.

that is retrieved). Figure 7.18 shows the precision-recall curve. For comparison,
we show the performance of other descriptors (HKS, WKS, and OSD) aggregated
into a global covariance shape descriptor. GCNN outperforms significantly all
other methods.
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Chapter 8

Learning shape correspondence with
intrinsic deep learning

In this chapter, we provide an experimental evaluation of the performance of
intrinsic CNN methods in the problem of learning shape correspondence across
shapes from challenging datasets. In particular, we will provide the results
achieved by our methods [MBBV15; BMR+16; BMRB16; MBM+17].

8.1 Shape correspondence as a classification prob-
lem

Rodolà and colleagues, in their seminal work [RRBW+14], defined the problem
of finding the correspondence in a collection of shapes as a classification problem,
where one tries to assign each vertex of a query shape X to one of the vertices of
some common reference shape Y (representing a label space) .

In the papers [MBBV15; BMR+16; BMRB16; MBM+17], we showed that this
can be achieved by adding a softmax layer at the end of the intrinsic CNN ar-
chitecture presented in Equation (7.1). A softmax layer applies the softmax
function

gi(x) =
e fi(x)

Pn
i=1 e fi(x)

point-wise to the n-dimensional input f(x) = ( fi(x), . . . , fn(x)) and gives as output
a n-dimensional function g(x) = (g1(x), . . . , gn(x)), which can be interpreted as
a probability distribution over the n classes.

Let n and m denote the number of vertices in X and Y , respectively. For a point
x on a query shape, the output of an intrinsic CNN U⇥ is an m-dimensional vector

107
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Query X

xx
y⇤(x)y⇤(x)

Reference Y

U⇥

Figure 8.1. Learning shape correspondence: an intrinsic deep network U⇥ is
applied point-wise to some input features defined at each point. The output of
the network at each point x of the query shape X is a probability distribution
over the reference shape Y that can be thought of as a soft correspondence.

and can be interpreted as a probability distribution (soft correspondence) on the
vertices of the reference shape Y (the label space). This situation is depicted in
Figure 8.1, where red colors correspond to the values of the probability distribution
over Y produced by the intrinsic convolutional neural network U⇥ applied to the
point x 2 X .

Training set Let us denote by y⇤(x) the ground-truth correspondence of x on
the reference shape. We assume to be provided examples of points from shapes
across the collection and their ground-truth correspondence, T = {(x , y⇤(x))}.
Some public-domain datasets, such as SCAPE [ASK+05] and FAUST [BRLB14],
naturally provide such information.

Cost function The more the probability distribution associated to the point
x 2 X is concentrated around y⇤(x) 2 Y , the better the correspondence quality
is. A perfect correspondence for the point x 2 X coincides with the Dirac’s delta
�y⇤(x).

Such behaviour can be obtained by minimizing over the training set the
multinomial regression loss

L(⇥) = �
X

(x ,y⇤(x)2T
log U⇥( f (x))(y⇤(x)),
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w.r.t. the network parameters ⇥. Here U⇥( f (x))(y) denotes the conditional
probability p(y |x) of x being mapped to y .

The multinomial regression loss can be interpreted as the Kullback-Leibler
divergence between the probability distribution produced by the network U⇥ and
the ground-truth distribution �y⇤(x).

8.1.1 Correspondence refinement

The most straightforward way to convert the soft correspondence U⇥( f (x))(y)
produced by intrinsic CNNs into a pointwise correspondence is by assigning x to

ŷ(x) = argmax
y2Y

U⇥( f (x))(y). (8.1)

The value
c(x) =max

y2Y
U⇥( f (x))(y) 2 [0,1]

can be interpreted as the confidence of the prediction: the closer the distribution
produced by the network is to a delta-function (in which case c = 1), the better it
is.

Functional map refinement By exploiting the functional map framework [OBCS+12]
presented in Section (2.8.1), a slightly more elaborate scheme to refine the soft
correspondences produced by the intrinsic CNN can be devised.

First, we select a subset of points P = {x : c(x)> ⌧} at which the confidence
of the predicted correspondence exceeds some threshold ⌧.

Second, we use this subset of corresponding points to find a functional map
between L2(X ) and L2(Y) by solving the linear system of |P|k equations in k2

variables,
�PC=  P , (8.2)

where
�P = (�1(x), . . . ,�k(x)), x 2 P,
 P = ( 1( ŷ(x)), . . . , k( ŷ(x))), x 2 P,

are the first k Laplacian eigenfunctions of shapes X and Y , respectively, sampled
at the subset of corresponding points (represented as |P|k matrices). The k⇥ k
matrix C represents the functional correspondence between L2(X ) and L2(Y) in
the frequency domain. The parameters ⌧ and k must be chosen in such a way
that the system is over-determined, i.e. |P|> k.
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Third, after having found C⇤ by solving (8.2) in the least-squares sense, we
produce a new point-wise correspondence by matching �C⇤ and  in the k-
dimensional eigenspace

y(x) = argmax
y2Y
k(�1(x), . . . ,�k(x))C⇤ � ( 1( ŷ(x)), . . . , k( ŷ(x)))k2.

Bayesian refinement The predicted correspondence can be refined by using the
Bayesian filtering approach proposed in [VLR+17].

Since this method assumes the two shapes to be full models, when dealing with
range scans we follow a different refinement process, described in the following.
Let t : X ! Y be the map obtained by assigning to each point x 2 X the point
argmaxy T (x , y); in other words, t is a maximum likelihood realization of the
soft correspondence T . Since the correct map is expected to be as smooth as
possible, the idea is to identify the points x 2 X where t is discontinuous and to
replace their image with better matches.

We detect the discontinuities by measuring the smoothness of the coordinate
functions f{x ,y,z} of Y (i.e., the xyz-coordinates of the points of Y seen as three
separate scalar functions on Y) when these are pulled back to X via t. In
particular, if t is smooth, then we expect the gradient norms krX ( f � t)k to be
approximately constant across the surface X (here, rX is the intrinsic gradient
operator on X ). Therefore, the points of discontinuity of t are detected as the
outlier points x̂ 2 X where this norm deviates significantly.

For each detected outlier x̂ , the corresponding match t( x̂) is replaced by
means of an iterative procedure alternating between two steps:

• Non-local step. The map t is converted to a partial functional map [RCB+17]
in the Fourier basis, low-pass filtered to the first k = 20 harmonics, and
converted back to a point-wise map. This acts as a non-local smoothing of
the entire correspondence, but only the point t( x̂) is actually updated.

• Local step. We compute a minimizer of

min
y⇤2Y

�����
X

y2t(B✏( x̂))

dY(y, y⇤)�
X

x2B✏( x̂)

dX (x , x̂)

����� , (8.3)

where dX , dY are the geodesic distance functions on X ,Y and B✏( x̂) is the
geodesic open ball of radius ✏ around x̂ . The minimizer to the problem
above is a weighted geometric median of the image, under t, of the local
neighborhood of x̂ . This step can thus be seen as a form of median filtering
of the correspondence.
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The two steps are iterated until convergence to a stationary state, or until no
more outliers are detected.

8.1.2 Performance evaluation

The correspondence performance was evaluated using the Princeton protocol
[KLF11], plotting the percentage of matches that are at most r-geodesically distant
from the ground-truth correspondence on the reference shape, as a function of
the parameter r. Two versions of the protocol consider intrinsically symmetric
matches as correct (symmetric setting) or wrong (asymmetric, more challenging
setting). Some methods based on intrinsic structures (e.g. LSCNN or RF applied
on WKS descriptors) are invariant under intrinsic symmetries and thus cannot
distinguish between symmetric points.

8.1.3 Datasets

To better assess the quality of the correspondence learned by the proposed ap-
proaches we considered different datasets corresponding to different challenges:
full meshes, partial meshes, and range scans.

Correspondences between full meshes are tested on the FAUST dataset, de-
scribed in Section 7.2.2. The first 80 shapes are used for training, while the
remaining 20 are used for testing.

Correspondences between partial meshes are tested on the recent very chal-
lenging SHREC’16 Partial Correspondence benchmark [CRB+16], consisting of
nearly-isometrically deformed shapes from eight classes, with different parts re-
moved. Two types of partiality in the benchmark are cuts (removal of a few large
parts) and holes (removal of many small parts). In each class, the vertex-wise
groundtruth correspondence between the full shape and its partial versions is
given. The dataset was split into training and testing disjoint sets. For cuts,
training was done on 15 shapes per class; for holes, training was done on 10
shapes per class.

Finally, range maps have been synthetically generated from FAUST meshes.
For each subject and pose, we produced 10 rangemaps in 100⇥ 180 resolution,
covering shape rotations around the z-axis with increments of 36 degrees (total of
1000 range maps), keeping the groundtruth correspondence. Training and testing
set splitting was done accordingly to the one on FAUST full meshes (subjects 1–8
are used for training, subjects 9–10 for testing).
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Random Forest

GCNN3

Y

Refinement: maximum

Random Forest

GCNN3

Y

Refinement: functional map
Figure 8.2. Example of correspondence obtained with GCNN [MBBV15] and Ran-
dom forest [RRBW+14]. Similar colors encode corresponding points. Top: raw
correspondences obtained by the intrinsic CNN. Bottom: raw correspondences
are refined by the functional map refinement.
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8.2 GCNN experiments and results
Architecture As input data, we considered m = 150-dimensional geometry
vectors (2.19).

As GCNN model we considered an architecture GCNN3 containing three
convolutional layers (FC16, GC32 + AMP, GC64 + AMP, GC128 + AMP, FC256,
FC6890). The zeroth FAUST shape containing n = 6890 vertices was used as
reference shape Y .

For each point on the query shape, the output of GCNN representing the
soft correspondence as a 6890-dimensional vector was converted into a point
correspondence by taking the maximum or by employing the previously described
functional map refinement.

Results Figure 8.2 shows a qualitative evaluation of the correspondence ob-
tained with GCNN3 and the random forests model developed by Rodolà et al.
[RRBW+14]. Colors are transferred using raw point-wise correspondence (top)
and correspondences were refined using the functional maps algorithm (bottom).
GCNN3 shows significantly better performance than random forests [RRBW+14].

Figure 8.3 shows a quantitative evaluation of the correspondences produced
by GCNN3 in terms of the Princeton benchmark [KLF11] presented in Section
8.1.2. GCNN3 outperforms the hand-crafted methods Blended maps [KLF11] and
Functional map [OBCS+12] and the learning method Random forests [RRBW+14].
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Figure 8.3. Performance of shape correspondence on the FAUST dataset evaluated
using the Princeton benchmark. Higher curve corresponds to better performance.
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8.3 ADD experiments and results

Architecture For the correspondence experiment, we used a 5-layer architecture
(ASF512 + ReLU + ASF512 + ReLU + SC + FC2048 + ReLU + FC2048 + ReLU +
FC6890 + Softmax) with multiple anisotropies, denoted with mADD4.

Results Figures 8.4 and 8.5 (left) quantify the quality of the correspondence
learned with our method on FAUST meshes and point clouds. For comparison,
we show the performance of blended intrinsic maps (BIM) [KLF11], functional
maps (FM) [OBCS+12], and random forest (RF) [RRBW+14]. Note that blended
maps use orientation information and thus can distinguish bilaterally symmetric
points (therefore, the dashed and solid black curves in Figure 8.4 coincide). On
the other hand, random forests in [RRBW+14] were learned on WKS input, which
is ambiguous with respect to symmetry; this explains the significant drop when
passing from the symmetric to the asymmetric evaluation setting.

Figures 8.4 and 8.5 (right) depict the quality of the obtained correspondence.
To visualize the colors transferred from the reference shape to the query shapes,
we use the raw point-wise correspondence produced by our method as an input
to the functional maps algorithm.

Correspondence quality
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Figure 8.4. Correspondence on FAUST meshes. Left: evaluation of the correspon-
dence using the symmetric (solid) and asymmetric (dashed) Princeton protocol.
Right: example of correspondence obtained using our method (similar colors
encode corresponding points, where the leftmost shape is the reference).
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Correspondence quality
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Figure 8.5. Correspondence on FAUST point clouds. Left: evaluation of the
correspondence using the symmetric (solid) and asymmetric (dashed) Princeton
protocol. Right: example of correspondence obtained using our method (similar
colors encode corresponding points, where the leftmost shape is the reference).

8.4 ACNN experiments and results
Architecture As input data we consider m = 544-dimensional SHOT descriptors
(local histogram of normal vectors) [STDS14]. For learning correspondences
between full meshes, we considered the following ACNN architecture: FC64 +
AC64 + AC128 + AC256 + FC1024 + FC512 + Softmax, where AC denoted
the anisotropic convolutional layer. For the more challenging task of learning
correspondences between partial meshes, we considered instead the architecture:
AC32 + FC1024 + DO(0.5) + FC2048 + DO(0.5) + Softmax, where DO denotes
a dropout layer [HSK+12].
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Figure 8.6. Performance of different correspondence methods on different
datasets. Left: FAUST, center: SHREC’16 Partial (cuts), right: SHREC’16 Par-
tial (holes). Evaluation of the correspondence was done using the symmetric
(solid) and asymmetric (dashed) Princeton protocol.
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Results Figure 8.6 (left) shows a quantitative evaluation of the quality of the
correspondence produced by the ACNN method and compares it to different
other methods. The correspondence learned with the proposed ACNN clearly
outperforms all the other approaches.

Random Forest

Anisotropic CNN
0

0.1

Figure 8.7. Examples of partial correspondence on the horse shape from the
SHREC’16 Partial (cuts) dataset. First row: correspondence produced by ACNN.
Corresponding points are shown in similar color. Reference shape is shown
on the left. Second and third rows: pointwise geodesic error (in % of geodesic
diameter) of the ACNN and RF correspondence, respectively. For visualization
clarity, the error values are saturated at 10% of the geodesic diameter. Hot colors
correspond to large errors.
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Figure 8.6 (center) compares the performance of different partial matching
methods on the SHREC’16 Partial (cuts) dataset. ACNN outperforms other ap-
proaches with a significant margin. Figure 8.7 (top) shows examples of partial cor-
respondence on the horse shape as well as the pointwise geodesic error (bottom).
We observe that the proposed approach produces high-quality correspondences
even in such a challenging setting.

Figure 8.6 (right) compares the performance of different partial matching
methods on the SHREC’16 Partial (holes) dataset. Also in this setting, ACNN
outperforms other approaches with a significant margin. Figure 8.8 (top) shows
examples of partial correspondence on the dog shape as well as the pointwise
geodesic error (bottom).

Random Forest

Anisotropic CNN
0

0.1

Figure 8.8. Examples of partial correspondence on the dog shape from the
SHREC’16 Partial (holes) dataset. First row: correspondence produced by ACNN.
Corresponding points are shown in similar color. Reference shape is shown
on the left. Second and third rows: pointwise geodesic error (in % of geodesic
diameter) of the ACNN and RF correspondence, respectively. For visualization
clarity, the error values are saturated at 10% of the geodesic diameter. Hot colors
correspond to large errors.



118 8.5 MoNet experiments and results

8.5 MoNet experiments and results

Architecture The quantitative and qualitative evaluation described above was
repeated also for MoNet, by considering an architecture composed of 3 convo-
lutional layers, similar to the one considered by the GCNN and ACNN methods.
MoNet shows even further improvement w.r.t. ACNN and GCNN approaches and
provide state-of-the-art results.

Results To evaluate the quality of the correspondences produced by MoNet, we
did two experiments: on meshes and on range scans.
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Figure 8.9. Shape correspondence quality obtained by different methods on the
FAUST humans dataset (left) and on FAUST range scans (right). Dotted curves
show raw performance, solid curves show performance after refinement. On
meshes, MoNet results are compared with different other methods, including
GCNN and ACNN. On range scans, we show the performance of a Euclidean
CNN with a comparable 3-layer architecture.

Figure 8.9 (left) depicts the quantitative evaluation results for meshes, showing
that MoNet significantly outperforms the competing approaches. In particular,
close to 90% of points have zero error, and for 99% of the points the error is
below 4cm. To get a better idea of the correspondence quality, Figure 8.10 shows
the point-wise geodesic correspondence error of our method, and Figure 8.11
visualizes the obtained correspondence using texture transfer.
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Figure 8.10. Pointwise error (geodesic distance from groundtruth) of different
correspondence methods on the FAUST humans dataset. For visualization clarity,
the error values are saturated at 7.5% of the geodesic diameter, which corresponds
to approximately 15 cm. Hot colors represent large errors.
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Figure 8.11. Examples of correspondence on the FAUST humans dataset obtained
by the proposed MoNet method. What is shown is the texture transferred from
the leftmost reference shape to different subjects in different poses by means of
our correspondence.

Finally, we repeated the shape correspondence experiment on range scans
synthetically generated from FAUST meshes. Figure 8.9 (right) shows the quality
of correspondence between such range scans obtained by MoNet in terms of
the Princeton protocol [KLF11]. For comparison, we show the performance of a
standard Euclidean CNN with an equivalent architecture of three convolutional
layers applied on raw depth values and on SHOT descriptors. Our approach
clearly shows a superior performance. Figure 8.12 shows the relative point-wise
geodesic correspondence error. Figure 8.13 shows a qualitative visualization of
correspondence using similar color code for corresponding vertices. We also show
correspondence on shapes from SCAPE [ASK+05] and TOSCA [BBK08] datasets.
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Figure 8.12. Pointwise error (geodesic distance from groundtruth) of different
methods on FAUST range maps. For visualization clarity, the error values are
saturated at 7.5% of the geodesic diameter, which corresponds to approximately
15 cm. Hot colors represent large errors.

Figure 8.13. Visualization of correspondence on FAUST range maps as color
code (corresponding points are shown in the same color). Full reference shape is
shown on the left. Bottom row show examples of additional shapes from SCAPE
and TOSCA datasets.
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Chapter 9

Conclusions and future work

The incredible success of deep learning methods in computer vision and pattern
recognition applications, with incredible performance on very challenging image
analysis tasks, makes it very tempting for other domains and data as well.

In this thesis, we addressed the problem of providing such an extension for
shape analysis applications, where data are represented as non-Euclidean domains
in the form of 3D shapes.

We presented different methods allowing to provide such an extension and
tested their performance on three basic problems in shape analysis: local shape
descriptors, shape retrieval, and shape correspondence.

In particular, in Chapter 4 we presented SCNN [BZSL13], a spectral formula-
tion of CNNs on non-Euclidean domains. While extremely important because it
was the inspiration to our specific contribution in this field, we showed how its
lack of generalizability makes it unsuitable for shape analysis tasks.

In Chapter 5, we proposed LSCNN [BMM+15], an alternative definition of the
spectral construction presented in Chapter 4 by replacing the Fourier transform
with a windowed Fourier transform. We showed that LSCNN allows to overcome
the drawbacks of SCNN and allows to learn class-specific descriptors that are
expressive, localized, and robust.

Chapter 6 is devoted to the main contribution of this thesis: a spatial domain
formulation of convolution as correlation between a learnable filter and a patch,
extracted by suitable patch operators. We reviewed several ways to construct
such patch operator by providing details about the local charting procedure and
the weighting functions defined thereon. In particular, the charting procedure of
GCNN [MBBV15] extracts a local system of geodesic polar coordinates and the
weighting functions are fixed Gaussians thereon. Unfortunately, this construction
is limited to triangular meshes only. ACNN [BMRB16] employs fixed anisotropic
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diffusion kernels as spatial weighting functions, allowing to extract patches cap-
turing directional structures in the data. Interestingly, this construction can be
used both on meshes and point clouds. The chapter ends showing that previous
constructions can be casted as particular instances of MoNet [MBM+17], a more
generic framework replacing hand-crafted weighting functions with learnable
ones.

Spatial intrinsic CNNs are an extension of traditional Euclidean CNNs to non-
Euclidean domains by replacing the traditional convolutional layers with by the
ones proposed in GCNN, ACNN, or MoNet. Spatial intrinsic CNNs learn local,
stationary, and compositional task-specific features.

Finally, Chapters 7 and 8 provide extensive experimental results showing that
the proposed methods are successfully applicable to different shape analysis tasks
and achieve state-of-the-art results.

9.1 Future work

There are several promising directions to extend the works presented in this thesis.
In the following we highlight what we believe to be the most interesting ones:

• Traditional Euclidean CNN architectures are characterized by an alternation
of convolutional and pooling layers. In the proposed approaches we focused
our attention on the extension of the convolutional layer only. It appears
natural to extend the pooling layer as well, for instance by constructing a
hierarchy of coarser meshes.

• The lack of shift-invariance of non-Euclidean domains makes the patch
operator point dependent, i.e. one has to compute a different patch operator
for each vertex of the shape. This represents one of the major computational
bottlenecks of the proposed approaches. A possible workaround in the
context of range scans is to perform the convolution operation over the
depth values in a sliding window fashion like traditional approaches. In
order to make the operation intrinsic, we propose to deform the depth
values inside such window using the metric tensor to adapt the filter to the
underlying shape geometry.

• For the sake of presentation coherence, we only covered the application of
the MoNet approach [MBM+17] to 3D shapes. Such framework, however,
is not limited to shapes only, but it allows to extend CNNs to graphs as well.
Extending CNNs to graphs is a very interesting research direction because a
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variety of interesting data can be modelled as graphs. A possible application
is related to drug design, where the molecules and proteins drugs are
made of can be modeled as graphs and one is interested in analyzing their
geometrical properties.

• In the proposed approaches, intrinsic CNNs are used to map the vertices of
a shape to local descriptors, however one may be interested in the inverse
problem of mapping features to their geometric counterpart. This is related
to the problem of shape synthesis, where one wants to recover the shape
geometry from some features. In computer vision, the similar problem of
image generation is addressed in terms of variational autoencoders (VAE)
and generative adversarial network (GAN). We would like to propose an
intrinsic extension of such approaches for shape synthesis applications.
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