42 research outputs found

    Cryptanalysis of 4-Pass HAVAL

    Get PDF
    HAVAL is a cryptographic hash function proposed by Zheng et al. Rompay et al and Wang et al found collisions of full 3-Pass HAVAL. In this paper, we study the security of 4-Pass HAVAL. We find collisions of full versions of 4-Pass HAVAL. The attack is similar to the two-block attack of MD5 proposed by Wang et al. The computational complexity of the attack is about 2^30-2^32 for the first block and 2^27-2^29 for the second block. We use this attack to find 256bit collisions of 4-Pass HAVAL in 3-4 hour on a common PC

    Preimage Attacks on 41-Step SHA-256 and 46-Step SHA-512

    Get PDF
    In this paper, we propose preimage attacks on 41-step SHA-256 and 46-step SHA-512, which drastically increase the number of attacked steps compared to the best previous preimage attack working for only 24 steps. The time complexity for 41-step SHA-256 is 2253.52^{253.5} compression function operations and the memory requirement is 216Ă—102^{16}\times 10 words. The time complexity for 46-step SHA-512 is 2511.52^{511.5} compression function operations and the memory requirement is 23Ă—102^{3}\times 10 words. Our attack is a meet-in-the-middle attack. We first consider the application of previous meet-in-the-middle attack techniques to SHA-2. We then analyze the message expansion of SHA-2 by considering all previous techniques to find a new independent message-word partition. We first explain the attack on 40-step SHA-256 whose complexity is 22492^{249} to describe the ideas. We then explain how to extend the attack

    Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

    Get PDF
    Cryptographic hash functions are important cryptographic techniques and are used widely in many cryptographic applications and protocols. All the MD4 design based hash functions such as MD5, SHA-0, SHA-1 and RIPEMD-160 are built on Merkle-Damgard iterative method. Recent differential and generic attacks against these popular hash functions have shown weaknesses of both specific hash functions and their underlying Merkle-Damgard construction. In this paper we propose a hash function which follows design principle of SHA-1 and is based on dither construction. Its compression function takes three inputs and generates a single output of 160-bit length. An extra input to a compression function is generated through a fast pseudo-random function. Dither construction shows strong resistance against major generic and other cryptanalytic attacks. The security of proposed hash function against generic attacks, differential attack, birthday attack and statistical attack was analyzed in detail. It is exhaustedly compared with SHA-1 because hash functions from SHA-2 and SHA-3 are of higher bit length and known to be more secure than SHA-1. It is shown that the proposed hash function has high sensitivity to an input message and is secure against different cryptanalytic attacks

    An Overview of Cryptography (Updated Version, 3 March 2016)

    Get PDF
    There are many aspects to security and many applications, ranging from secure commerce and payments to private communications and protecting passwords. One essential aspect for secure communications is that of cryptography...While cryptography is necessary for secure communications, it is not by itself sufficient. This paper describes the first of many steps necessary for better security in any number of situations. A much shorter, edited version of this paper appears in the 1999 edition of Handbook on Local Area Networks published by Auerbach in September 1998

    Cube attacks on cryptographic hash functions

    Get PDF
    Cryptographic hash functions are a vital part of our current computer sys- tems. They are a core component of digital signatures, message authentica- tion codes, file checksums, and many other protocols and security schemes. Recent attacks against well-established hash functions have led NIST to start an international competition to develop a new hashing standard to be named SHA-3. In this thesis, we provide cryptanalysis of some of the SHA-3 candidates. We do this using a new cryptanalytical technique introduced a few months ago called cube attacks. In addition to summarizing the technique, we build on it by providing a framework for estimating its potential effectiveness for cases too computationally expensive to test. We then show that cube at- tacks can not only be applied to keyed cryptosystems but also to hash func- tions by way of a partial preimage attack. We successfully apply this attack to reduced-round variants of the ESSENCE and Keccak SHA-3 candidates and provide a detailed analysis of how and why the cube attacks succeeded. We also discuss the limits of theoretically extending these attacks to higher rounds. Finally, we provide some preliminary results of applying cube attacks to other SHA-3 candidates

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Boomerang and Slide-Rotational Analysis of the SM3 Hash Function

    Get PDF
    SM3 is a hash function designed by Xiaoyun Wang et al., and published by the Chinese Commercial Cryptography Administration Office for the use of electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash function, but introduces additional strengthening features. In this paper, using a higher order differential cryptanalysis approach, we present a practical 4-sum distinguisher against the compression function of SM3 reduced to 32 rounds. In addition, we point out a slide-rotational property of SM3-XOR, which exists due to the fact that constants used in the rounds are not independent

    Analysis and Design Security Primitives Based on Chaotic Systems for eCommerce

    Get PDF
    Security is considered the most important requirement for the success of electronic commerce, which is built based on the security of hash functions, encryption algorithms and pseudorandom number generators. Chaotic systems and security algorithms have similar properties including sensitivity to any change or changes in the initial parameters, unpredictability, deterministic nature and random-like behaviour. Several security algorithms based on chaotic systems have been proposed; unfortunately some of them were found to be insecure and/or slow. In view of this, designing new secure and fast security algorithms based on chaotic systems which guarantee integrity, authentication and confidentiality is essential for electronic commerce development. In this thesis, we comprehensively explore the analysis and design of security primitives based on chaotic systems for electronic commerce: hash functions, encryption algorithms and pseudorandom number generators. Novel hash functions, encryption algorithms and pseudorandom number generators based on chaotic systems for electronic commerce are proposed. The securities of the proposed algorithms are analyzed based on some well-know statistical tests in this filed. In addition, a new one-dimensional triangle-chaotic map (TCM) with perfect chaotic behaviour is presented. We have compared the proposed chaos-based hash functions, block cipher and pseudorandom number generator with well-know algorithms. The comparison results show that the proposed algorithms are better than some other existing algorithms. Several analyses and computer simulations are performed on the proposed algorithms to verify their characteristics, confirming that these proposed algorithms satisfy the characteristics and conditions of security algorithms. The proposed algorithms in this thesis are high-potential for adoption in e-commerce applications and protocols
    corecore