
Journal of Computing and Information Technology - CIT 21, 2013, 4, 223–233
doi:10.2498/cit.1002181

223

Enhancing the Security Level of SHA-1
by Replacing the MD Paradigm

Harshvardhan Tiwari and Krishna Asawa
Jaypee Institute of Information Technology (JIIT), Noida (Uttar Pradesh), India

Cryptographic hash functions are important crypto-
graphic techniques and are used widely in many crypto-
graphic applications and protocols. All the MD4 design
based hash functions such as MD5, SHA-0, SHA-1
and RIPEMD-160 are built on Merkle-Damgård iterative
method. Recent differential and generic attacks against
these popular hash functions have shown weaknesses
of both specific hash functions and their underlying
Merkle-Damgård construction. In this paper we propose
a hash function which follows design principle of SHA-1
and is based on dither construction. Its compression
function takes three inputs and generates a single output
of 160-bit length. An extra input to a compression
function is generated through a fast pseudo-random
function. Dither construction shows strong resistance
against major generic and other cryptanalytic attacks.
The security of proposed hash function against generic
attacks, differential attack, birthday attack and statistical
attack was analyzed in detail. It is exhaustedly compared
with SHA-1 because hash functions from SHA-2 and
SHA-3 are of higher bit length and known to be more
secure than SHA-1. It is shown that the proposed hash
function has high sensitivity to an input message and is
secure against different cryptanalytic attacks.

Keywords: cryptographic hash function, MD4, SHA-1,
RIPEMD-160, generic attacks

1. Introduction

The rapid growth of new digital technologies in-
creased the demand of information security in
communication. Cryptographic hash functions
are being widely used in different security ap-
plications and protocols such as digital signa-
ture, message authentication code, SSL, TLS,
etc. for ensuring the integrity and authenticity
of information. Cryptographic hash functions
are functions that compress an input message
of arbitrary length to an output with short fixed
length, the hash value. Collision resistance,
preimage resistance and second preimage resis-
tance are three important security properties of

a hash function. Collision resistance means it
is computationally infeasible to find two dis-
tinct inputs X, X′ with H(X) = H(X′). It is
practically impossible to find the preimage X of
H(X), when H(X) is given, this is referred to
as preimage resistance. Finding X �= X′ with
H(X) = H(X′), when X and H(X) are given,
should also be infeasible. This property is called
second preimage resistance. Due to the birthday
paradox, an ideal hash function that generates an
n-bit hash value requires evaluating about 2n/2

messages to find any pair of messages having
the same hash value. Also, it requires 2n hash
computations for finding preimage and second
preimage. There are three main categories of
hash functions, namely hash functions based on
block cipher, hash functions based on modular
algorithm and dedicated hash functions [1, 2].
Most widely used hash functions are MD4 [3]
design based dedicated hash functions. These
hash functions use traditional Merkle-Damgård
iterative structure [4, 5]. The input message Mis
padded to obtain a message of length multiple
m-bits and divided into t blocks of equal length.
The hash function H can then be described as
follows:

h0 = IV, hi = f (hi−1, Mi), 1 ≤ i ≤ t,
H(M) = ht

f is a collision resistant compression function,
hi is the ith chaining variable and IV is the initial
value of the chaining variable. Recent attacks
presented by many researchers have exposed
flaws in bothMerkle-Damgård construction and
specific hash functions. Some attacks against
Merkle-Damgård construction are fixed point
[6], multicollision attack [7], second preimage
attack [8], herding attack [9]. In this paper,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/19544012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

224 Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

we propose a hash function DSHA-1 that takes
an input message of arbitrary length and con-
verts it into a 160-bit hash value. The com-
pression function of the proposed hash func-
tion uses dithering design. Dither construction
[10] is obtained by providing an additional in-
put to the Merkle-Damgård construction. Its
padding and splitting of message is similar to
Merkle-Damgård construction. The iterative
structure of this design provides good resistance
against generic and other cryptanalytic attacks.
The compression function of the proposed hash
function is defined as follows:

h0 = IV, hi = f (hi−1, Mi, di), 1 ≤ i ≤ t,
H(M) = ht

where di is a dither input, obtained from a
pseudo random function. In [11], this function
is used as a replacement for Boolean functions
of step operations in SHA-1. For each 512-bit
message block Mi there is a different set of 80
32-bit dither values di.

The rest of this paper is organized as follows;
Section 2 presents the related work. The pro-
posed hash function is presented in Section 3.
Section 4 contains the security analysis ofDSHA-
1. The performance analysis of hash function is
presented in Section 5. The paper is concluded
in Section 6.

2. Related work

A number of hash functions have been pro-
posed, most of them have been influenced by
the design of the MD4 hash function. The MD4
hash function was proposed by Rivest [3]. The
algorithm produces hash values of 128 bits in
length. It is a very fast hash function optimized
for 32-bit architectures. Extended version of
MD4 generates 256-bit hash value. MD4 pads
a message by appending single bit 1 followed
by variable number of 0’s until the length of
the message is 448 modulo 512 and then the
64-bit length of the message is appended as two
32-bit words. Other MD4 variants also use the
same padding rule. The compression function
of MD4 takes as input 128-bit chaining variable
and a 512-bit message block and maps this to
a new chaining variable. Each run of a com-
pression function consists of three rounds and
48 sequential steps (each round consists of 16
steps), where each step is used to update the

value of one of the four registers. Every round
of MD4 compression function uses a different
non-linear Boolean function. In [12], the first
attack on MD4 was published. The attack was
on the last two rounds of MD4. Authors showed
that if the first round is omitted, then collision
in MD4 can be found easily. Merkle showed
an attack on the first two rounds of MD4, but
this work was never published. Dobbertin [13]
showed that MD4 is not a collision resistant
hash function. He also showed that the first two
rounds of MD4 are not one-way.

MD5 was also designed by Rivest as a strength-
ened version of MD4 [14]. It generates 128-bit
hash value. Padding, parsing and processing
of MD5 is similar to MD4, but some changes
have been made to MD4. Changes include
the addition of one extra round along with a
new round function and redefined second round
function. The compression function uses four
rounds, each round has sixteen steps. Four non-
linear Boolean functions, 64 different additive
constants are used in MD5. Each message, like
the MD4, after it has been appended by padding
bits, is processed in blocks of 512 bits. In [15],
authors found pseudo-collision for MD5. Dob-
bertin [16] published an attack that found a col-
lision in MD5. At Crypto’04, collision in MD5,
as well as collisions in other hash functions such
as MD4, RIPEMD and HAVAL-128 was an-
nounced [17].

Other MD4 design based hash functions are
from SHA-family. The original design of the
hash function SHA-0 was designed by NSA and
published by NIST as FIPS PUB 180 [18]. Two
years later, SHA-0 was withdrawn due to a flaw
found in it and replaced by SHA-1, published
by NIST as FIPS PUB 180-1[19]. Both SHA-0
and SHA-1 produce a hash value of 160-bits.
The only difference between these two versions
is that SHA-1 uses a single bitwise rotation in its
message schedule. Padding is done in the same
way, then a 512-bit message block is split into
sixteen 32-bit words and expanded into eighty
32-bit words using a message expansion rela-
tion. Each block is processed in 4 rounds con-
sisting of 20 steps each. These four rounds
are structurally similar to one another, with the
only difference that each round uses a differ-
ent Boolean function and one of four different
additive constants. A complete round of SHA-
0/1 is made up of 80 steps. NIST published

Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm 225

SHA-2 family as FIPS PUB 180-2 [20]. SHA-
2 family consists of four hash functions, SHA-
224, SHA-256, SHA-384, and SHA-512. SHA-
224 and SHA-384 are the truncated versions of
SHA-256 and SHA-512 respectively. The first
result of cryptanalysis of SHA-0 was presented
at Crypto’98. Chabaud and Joux [21] found
collision with complexity 261. This was a dif-
ferential attack and faster than generic birthday
paradox attack. Biham and Chen [22] found two
near-collisions of the full compression function
of SHA-0. In [23], authors presented collision
for the full SHA-0 and reduced SHA-1 algo-
rithms. In [24], authors showed collision in
SHA-0 in 239 operations. Rijmen and Oswald
[25] published an attack on a reduced version of
SHA-1. In [26], authors presented collisions in
full SHA-1 with less than 269 hash operations.

The RIPEMD hash function was designed in
the framework of the European Race Integrity
Primitives Evaluation (RIPE) project. The de-
sign of RIPEMD is based on MD4; its compres-
sion function consists essentially of two parallel
schemes of the MD4 compression function. It
generates 128 bit message digest. Later, two
strengthened versions of RIPEMD are released,
RIPEMD-128 and RIPEMD-160. RIPEMD-
128 also produces 128 bit message digest as its
predecessor. The RIPEMD-160 hash function
[27] processes 512-bit input message blocks and
produces a 160-bit hash value. Both RIPEMD-
128 andRIPEMD-160 are extended toRIPEMD-
256 and RIPEMD-320 respectively.

In 2007 NIST introduced a public call for new
cryptographic hash algorithms [28]. The in-
tent of the competition was to identify mod-
ern secure hash functions and to define the new
SHA-3 family. Keccak was selected as SHA-3
standard.

3. DSHA-1: A 160-bit hash function
proposal

In this section, we describe the DSHA-1 hash
function. The DSHA-1 hash function is based
on the design principle of SHA-1. The DSHA-1
hash function produces a message digest of 160-
bit length from a message of length less than 264

bits. It follows a dither construction, based on
a compression function that takes three inputs:
chaining variables, message block and dither
input to generate 160-bit hash value. Dither

inputs are generated through a pseudorandom
number generator. The initial working variables
are specified constants, and the final chaining
value is used as the output. The compression
function processes one 512-bit message block
per iteration. Message expansion is applied to
each 512-bit message block, where 16 32-bit
message words are expanded to 80 32-bit mes-
sage words. The compression function consists
of four rounds, each round is made up of a se-
quence of 20 steps. DSHA-1 uses five 32-bit
chaining variables to which new values are as-
signed in each round.

The proposed algorithm includes twomain stages
for the computation of 160-bit hash value: first
is preprocessing stage and second is computa-
tion stage. Preprocessing stage contains three
steps: message padding, message parsing and
initialization of eight chaining variables. The
computation involves message expansion and
application of compression function. The de-
tailed specifications of hash function DSHA-1
is given below.

3.1. Message padding

The message M is padded before hash compu-
tation begins. The purpose of this padding is
to ensure that the padded message is a mul-
tiple of 512. The message is always padded
although the message already has the desired
length. The input message is processed by 512-
bit block. The hash function pads a message
by appending a single bit 1 next to the end of a
message, followed by zero or more bit 0’s un-
til the length of the message and finally 64-bit
message length. Suppose that the length of the
message M is l bits, append the bit 1 to the end
of the message, followed by m zero bits, where
m is the smallest, non-negative solution to the
congruence l + 1 + m ≡ 448 mod 512. Then
represent the length of M (before padding) by
a 64-bit block and append it to the padded mes-
sage. The entire message length is now exact
multiple of 512.

3.2. Parsing the message

After a message has been padded, it must be
parsed into t 512-bit blocks,M = M1, M2, ..., Mt
before the hash computation can begin.

226 Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

3.3. Setting the initial chaining variables

The 160-bit chaining variables are used to hold
intermediate and final results of the hash func-
tion. The five chaining variables are initialized
to the following hexadecimal values.

A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = 0xC3D2E1F0

3.4. Constants

The four constants (in hexadecimal) are defined
as:

Kt = 0x5A827999 for t = 0, . . . , 19
Kt = 0x6ED9EBA1 for t = 20, . . . , 39
Kt = 0x8F1BBCDC for t = 40, . . . , 59
Kt = 0xCA62C1D6 for t = 60, . . . , 79

3.5. Boolean functions

The Boolean function Ft is defined as:

Ft = (B ∧ C) ∨ (¬B ∧ D) for t = 0, . . . , 19
Ft = (B ⊕ C ⊕ D) for t = 20, . . . , 39
Ft = (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)

for t = 40, . . . , 59
Ft = (B ⊕ C ⊕ D) for t = 60, . . . , 79

3.6. Dither input

We have taken a pseudo random function which
generates a unique pseudo random number ac-
cording to its input message word. Total of 80
32-bit pseudo-random numbers are generated.
These random numbers are given to compres-
sion function as a third input. Each step opera-
tion makes the use of exactly one 32-bit dither
input. The algorithm details are:

F(i) =
{

xi ∗
√

2
}

where {.} is a number’s fractional part and xi
is the value defined by users. In this algorithm
we have taken a 32-bit message word as xi. The
pseudo code of this algorithm is given below:

temp = Math.sqrt(2) ∗ xi;
for i = 1 to k {
a[i] = tostring(temp− Math.f loor(temp));
a[i] = substring(a[i], 2, 11); }

Different dither inputs for compression function
are computed as:

di = Fi

{
Wi ∗

√
2
}

, for i = 0, . . . , 79.

The benefits of this algorithm are high speed of
generating and the longest repeating period.

Figure 1. Step operation of DSHA-1.

3.7. Message expansion

The compression function processes one 512-
bit message block per iteration. The 512-bit
message block is divided into sixteen 32-bit
words W=W0, W1, ..., W15. These 16 32-bit
words are expanded to 80 32-bit words with the
help of the following relation, for t = 16, ..., 79

W = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) <<< 1

3.8. Processing

Execution of the compression function involves
80 steps. The compression function is com-
posed of four rounds of processing where each
round is made up of twenty steps. The pro-
cessing of a compression function is defined as
follows:

Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm 227

(a) Set Ā = A, B̄ = B, C̄ = C, D̄ = D, Ē = E.

(b) for t = 16, . . . , 79

T = (A<<<5)+Ft(B, C, D)+E+Wt+Kt+dt
E = D
D = C
C = B<<<30
B = A
A = T

3.9. Output

Upon the completion of the compression func-
tion the output is obtained as:

A = Ā + A
B = B̄ + B
C = C̄ + C
D = D̄ + D
E = Ē + E

After processing the last 512-bit message block,
we get final 160-bit hash value.

4. Security analysis

Cryptographic hash function must satisfy three
properties: Preimage resistance, second preim-
age resistance and collision resistance. In preim-
age attack on an n-bit hash function, for a given
hash value h(M)an attacker tries to find a mes-
sage M. An attack against second preimage
resistance, given a message M and h(M) finds
another message M′ such that h(M) = h(M′).
Both brute force preimage or second preimage
attacks require 2n computation of hash values.
DSHA-1 produces a 160 bit output, so find-
ing preimage and second preimage in DSHA-1
requires 2160 operations. Collision resistance
means an attacker should not be able to find
two messages M �= M′ with h(M) = h(M′).
For a hash function with n-bit hash value, an
adversary will have to try at least 2n/2 opera-
tions to find two different messages with the
same hash value. For a 160 bit hash function
DSHA-1, the complexity of collision attack is
280. In this section, our aim is to quantify the se-
curity of DSHA-1 against major cryptanalytic
attacks. In order to accomplish this task, the
following analysis has to be considered.

4.1. Length extension attack

For a given hash function h, if one can find a col-
lision for two messages M and M′ with M �= M′
such that h(M) and h(M′) collide, one can apply
a length extension attack. For any message m,
one can easily produce a collision for (M ‖ m)
and (M′ ‖ m) as h(M ‖ m) = h(M′ ‖ m).
Padding rule of the algorithm avoids such type
of attacks since we concatenate the length of the
message to the message itself. Another attack
can be as follows: for a known h(M) one can
compute the hash value h(M ‖ P ‖ m) for any
suffix m, if the length of an unknown message
M is known as well as padding P of M. DSHA-
1 prevents this kind of attack because each step
uses a different and unique pseudorandom num-
ber which restricts an attacker from recovering
the internal steps and gaining any information
of prior step operations.

4.2. Multi-collision attack

Joux found that when iterative hash functions
are used, finding a set of 2k messages all col-
liding on the same hash value is as easy as
finding k single collision for the hash func-
tion. Finding a collision, in the compression
function, i.e., a single block collision, one can
find k of such collisions, each starting from the
chaining value produced by the previous block
collision. In other words, one has to find two
message blocks Mi and M′

i where Mi �= M′
i with

f (Hi−1, Mi) = f (Hi−1, M′
i) where f represents

the compression function and Hi the chaining
value. Then it is possible to construct 2k mes-
sages with the same hash value by choosing
for block i either the message block Mi or M′

i .
Joux showed that the concatenation of two dif-
ferent hash functions is not more secure against
collision attacks than the strongest one. The
complexity of the attack depends on the size of
internal state of compression function since in-
ternal state of compression function of DSHA-1
is small and not big enough to prevent this at-
tack.

228 Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

4.3. Herding attack

The herding attack works as follows: an at-
tacker takes 2k chaining values which are fixed
or randomly chosen. Then he chooses 2n/2−k/2

message blocks. He computes the output of the
compression function for each chaining value
and each block. It is expected that for each
chaining value there exists another chaining
value, such that both collide to the same value.
The attacker stores the message block that leads
to such a collision in a table and repeats this
process again with the newly found chaining
values. Once the attacker has only one chaining
value, it is used to compute the hash value to be
published. To find a message whose chaining
value is among the 2k original values, the at-
tacker has to perform 2n−k operations. For such
a message the attacker can retrieve from the
stored messages the message blocks that would
lead to the desired hash value. DSHA-1 uses
a 32-bit pseudo random sequence in each step.
It is difficult to build collision using a diamond
structure with fixed initial values, random mes-
sage and a random dither sequence.

4.4. Fixed point attack

Dean found that fixed points in the compres-
sion function can be used for a second preim-
age attack against long messages. Kelsey and
Schneier extend this result and provide an attack
to find a second preimage on aMerkle-Damgård
construction with Merkle-Damgård strengthen-
ing much faster than 2n efforts. The complexity
of the attack is determined by the complexity of
finding expandable messages. These are mes-
sages of varying sizes such that all these mes-
sages collide internally for a given IV. Fixed
point attacks in this form cannot be applied to
the DSHA-1 because we include the random
dither value in each iteration of compression
function which does not allow finding expand-
able messages.

4.5. Slide attack

Slide attacks are common in block cipher crypt-
analysis, but they are also applicable to hash
functions. Given a hash function h and two
messages M and M′ where M is a prefix of

M′, one can find a slid pair of messages M and
M′ such that the last message input block of
the longer message M′ performs only an ad-
ditional blank round, e.g. for sponge construc-
tions. These two messages are then slid by one
blank round. This attack allows to recover the
internal state of a slid pair of messages. Involv-
ing a different dither value in each step does not
allow finding slid pairs of messages and avoids
the possibility of slide attacks.

4.6. Differential attack

The essential idea of differential attack on hash
functions, as used to break MD5 and SHA-0/1,
is to exploit a high-probability input/output
differential over some component of the hash
function, e.g. under the form of a perturb-and-
correct strategy for the latter functions, exploit-
ing high probability linear/non-linear charac-
teristics. The method finds the collision for
two identical messages M and M′. Perturbation
refers to the initial change of a bit in M′. Correc-
tion refers to those bits in the message M′which
need to be changed to make the variables of both
messages equal in subsequent rounds. The ran-
dom dither values in the computation steps of
compression function provide the high diffusion
and strengthen the function against differential
path. The correction methods fail to correct
the differences at the end of all computation
rounds. Number of rounds increases difference
between the messages. It is very hard to control
differences for DSHA-1, thus eliminating the
possibility of differential attack.

4.7. Meet-in-the-middle attack

This attack is a variation of birthday attack and is
applicable to the hash functions that use a round
function. Instead of message digest, intermedi-
ate chaining variables are compared. This at-
tack enables a cryptanalyst to construct a mes-
sage with a pre-specified message digest, which
is not possible in case of a simple birthday at-
tack. The attacker generates s1 samples for the
first part and s2 samples for the last part of a
forged message. The attacker then goes for-
wards from initial value and goes backwards
from the hash value and expects that the two
intermediate values collide to the same value.

Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm 229

Onewayness of the compression function re-
stricts an attacker from constructing a message
with a pre-specified hash value.

4.8. Correcting block attack

In this attack, the cryptanalyst uses a pair of
existing messages and its corresponding hash
value and tries to change one or more message
blocks such that the resulting hash value re-
mains unchanged. A correction block attack
is used to produce a collision. Starting with
two arbitrary messages M and M′ and append-
ing one or more correcting blocks denoted by
such that the extended messages have the same
hash values. Computation steps of DSHA-1 are
redundant enough to resist the correcting block
attack.

5. Performance analysis

5.1. Randomness

We have taken an input message M of 512 bit
length and computed corresponding hash value.
By changing the ith bit of M, new modified mes-
sages Mi have been generated, for 1 ≤ i ≤ 512.
Then we generated hash values of all these new
messages and finally computed Hamming dis-
tances between hash values of original message
and modified messages. Ideally, it should be
80. But we found that these Hamming distances

Figure 2. Frequency distribution of distances for
DSHA-1.

were between 68 and 97 for above messages.
Range of distances is given in Table 1. The av-
erage Hamming distance is 81.61. Distribution
of distances is shown in Figure 2.

Distances Hash pairs Percentage (%)

80 ± 5 316 61.71
80± 10 467 91.22
80 ± 15 505 98.63

Table 1. Range of distances for DSHA-1.

Distances Hash pairs Percentage (%)

80 ± 5 281 54.88
80 ± 10 432 84.37
80 ± 15 487 95.11

Table 2. Range of distances for SHA-1.

5.2. Bit variance test

The bit variance test consists of measuring the
impact on the digest bits by changing input mes-
sage bits. Bits of an input message are changed
and the correspondingmessage digests (for each
changed input) are calculated. Finally, from all
the digests produced, the probability Pi for each
digest bit to take on the value of 1 and 0 is mea-
sured. If Pi(1) = Pi(0) = 1/2 for all digest
bits i 1 ≤ i ≤ n, where n is the digest length,
then the hash function under consideration has
attained maximum performance in terms of the
bit variance test. Therefore, the bit variance test
actually measures the uniformity of each bit of
the digest. Since it is computationally difficult
to consider all input message bit changes, we
have evaluated the results for only up to 513
files and found the results shown in Table 3.

Hash function Mean frequency of
1s(Expected)

Mean frequency of
1s(Calculated)

SHA-1 256.50 249.11
DSHA-1 256.50 256.67

Table 3. Bit variance analysis.

The above analysis shows that hash function ex-
hibits a reasonably good avalanche effect. Thus
it can be used for cryptographic applications.

230 Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

Figure 3. Frequency distribution of distances for SHA-1.

5.3. Statistical analysis of confusion and
diffusion

Confusion and diffusion are two basic design
criteria for encryption algorithms aswell as hash
functions. Diffusion means to spread the influ-
ence of a single plaintext or key bits over as
much of the ciphertext as possible so as to hide
the statistical structure of the plaintext. Confu-
sion means to exploit some transformations to
hide any relationship between the plaintext, the
ciphertext and the key, thus making cryptanaly-
sis more difficult. For the hash value in binary
format, each bit is only 1 or 0. So the ideal diffu-
sion effect should be that any tiny changes in the
input lead to the 50% changing probability of
each output bit. We have performed the follow-
ing diffusion and confusion test [29]: Amessage
is randomly chosen and hash value is generated.
Then a bit in the message is randomly selected
and toggled and a new hash value is generated.
Finally, we compare two hash values and count
number of changed bit as Bi. The experiment is
carried out N times. Usually, four statistics are
defined as follows:

Mean changed bit number:

B̄ =
1
N

∑N

i=1
Bi

Mean changed probability:

P = (B̄/160) × 100%

Standard deviation of the changed bit number:

B =

√
1

N − 1

∑N

i=1
(Bi − B̄)2

Standard deviation:

P =

√
1

N − 1

∑N

i=1
(Bi/160 − P)2 × 100%

where N is the total number of test and Bi is the
number of changed bits in the ith test. Distribu-
tion of changed bit number is shown as Figure 4,
where N = 512.

Figure 4. Distribution of changed bit number for
DSHA-1.

Through the tests with N = 64, 128, 256, 512,
respectively, the corresponding data are listed
in Table 4.

N B̄ P% B P%

64 80.4609 50.2881 6.3387 3.9617
128 80.6035 50.3772 6.2059 3.8787
256 80.5215 50.3259 6.1935 3.8709
512 80.4171 50.2606 6.1707 3.8567

Table 4. Statistics of number of changed bits for
DSHA-1.

N B̄ P% B P%

64 79.4519 49.4289 6.6232 3.5634
128 79.6023 49.3874 6.4522 3.2356
256 80.0313 49.1093 6.6743 3.8431
512 79.3926 49.3945 6.3472 3.6452

Table 5. Statistics of number of changed bits for SHA-1.

Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm 231

Based on the analysis of the data in Table 4, we
can draw the conclusion: the mean changed bit
number B̄ and the mean changed probability P
are both very close to the ideal value 80 bit and
50%. B and P are very little, which indicates
that the capability for diffusion and confusion
is very stable.

Figure 5. Distribution of changed bit number for SHA-1.

5.4. Analysis of collision resistance

Collision means that the hash results are iden-
tical to different random inputs. In order to
investigate the collision resistance capability of
the proposed hash function, we have performed
two collision tests. In the first experiment, the
hash value for a randomly chosen message is
generated and stored in ASCII format. Then
a bit in the message is selected randomly and
toggled and thus a new hash value is generated
and stored in the same format. Two hash val-
ues are compared and the number of characters
in this format with the same value at the same
location in hash value is counted. The absolute
difference of the two hash results is calculated
by using the following formula:

AD =
∑N

i=1

∣∣dec(ei) − dec(e′i)
∣∣

where ei and e′i are the ith ASCII character of
the original and the new hash value, respec-
tively, dec() converts the entries to their equiv-
alent decimal values. This kind of collision
test is performed 2048 times. The maximum,

AD Max Min Mean Mean/char

Values 2690 993 1702.6372 85.13
Values 2332 695 1642.63 83.64

Table 6. Absolute difference of DSHA-1 and SHA-1.

minimum and mean values of AD are listed in
Table 6.

In the second experiment, the hash value for
a randomly chosen message is generated and
stored in ASCII format similarly. What is fo-
cused in this experiment is the possibility of
colliding between every two hash results, thus
every two hash results should be compared. The
simulation is performed 2048 times. The plot
of the distribution of the number of ASCII char-
acters with the same value at the same location
is given in Figure 6. The maximum number
of equal entries in the Figure 6 is 2. So the
hash results could resist collision well from the
Figure 6.

Figure 6. Distribution of the number of ASCII
characters with the same value at the same location in

the hash value for DSHA-1.

5.5. Robustness against differential
cryptanalysis

We studied the robustness of the proposed hash
function against differential cryptanalysis. This
attack analyzes the plaintext pairs along with
their corresponding pairs of hashes. For exam-
ple, if the difference between 2 messages is 2
bits, (i.e., say, d = 2) then the message digest

232 Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm

pair difference d′ for the corresponding 2 mes-
sage digests can be calculated. From the distri-
bution of d′ corresponding to different message
pairs, the standard deviation () is calculated.
If < 10%, then the hash function is secure
against differential cryptanalysis. For the ex-
periment, input message of 10 bytes was con-
sidered. The experiments were run for all possi-
ble d = {1, 2, 4, 8, 16, 32}bit differences for an
input message. The results in Table 7 show that
the proposed hash function is secure against the
differential attack.

d 1 2 4 8 16 32

 (DSHA-1) 6.18 6.11 6.07 6.14 6.23 6.09
 (SHA-1) 7.56 8.34 10.02 8.87 10.14 7.19

Table 7. Results for differential cryptanalysis.

Figure 7. Distribution of the number of ASCII
characters with the same value at the same location in

the hash value for SHA-1.

6. Conclusion

The proposed hash function processes a mes-
sage of arbitrary length by 512-bit blocks and
produces as output a 160-bit hash value or mes-
sage digest. DSHA-1 is built on dither con-
struction. The compression function of DSHA-
1 takes three input parameters: 512-bit message
block, 160-bit chaining variable and 80 32-bit
words of dither input, and produces a single
output of 160-bit length. Dither input words
are generated through a pseudo-random func-
tion. This function uses message sub-blocks as

a key. Random dither input words to a compres-
sion function provide larger minimum distance
between similar words, high randomness, good
mixing of bits and lesser control over the prop-
agation of difference in the words. The iterative
structure of a proposed hash function preserves
all the three security properties: collision re-
sistance, preimage and second preimage and
achieves the high level security against major
generic attacks. We have analyzed the proposed
hash function for its randomness and security.
The bit variance test has been performed for
one bit changes. The result of bit variance test
shows that DSHA-1 achieves a good degree of
avalanche effect, i.e. when a single input bit is
complemented, each of the output bits changed
with a probability of 0.5. Thus proposed hash
function pass the bit variance test. The statis-
tical analysis of DSHA-1 indicates that it has
strong and stable confusion and diffusion capa-
bility. The calculated mean changed bit num-
ber and mean changed probability are 81.50 and
50.31% respectively, both very close to the ideal
value 80 bit and 50% while standard deviation
of the changed bit number and standard devi-
ation are very little, which indicates the capa-
bility for confusion and diffusion is very stable.
It possesses high message sensitivity and good
statistical properties.

References

[1] B. SCHNEIER, Applied cryptography. John Wiley &
Sons, 1996.

[2] A. J. MENEZES, P. C. VAN OORSCHOT, S. A. VAN-
STONE, Handbook of applied cryptography. CRC
Press, 1997.

[3] R. RIVEST, The MD4 message digest algorithm.
CRYPTO’90, LNCS, 537 (1991), 303–311.

[4] R. MERKLE, One way hash functions and DES.
CRYPTO’ 89, LNCS, 435 (1990), 428–446.

[5] I. B. DAMGÅRD, A design principle for hash func-
tions. CRYPTO’ 89, LNCS, 435 (1990), 416–427.

[6] R. D. DEAN, Formal aspects of mobile code security.
PhD Thesis, Princeton University, 1999.

[7] A. JOUX, Multicollisions in iterated hash functions.
CRYPTO’04, LNCS, 3152 (2004), 306–316.

[8] J. KELSEY, B. SCHNEIER, Second preimages on n-
bit hash functions for much less than 2n work.
EUROCRYPT’05, LNCS, 3494 (2005), 474–490.

Enhancing the Security Level of SHA-1 by Replacing the MD Paradigm 233

[9] J. KELSEY, T. KOHNO, Herding hash functions and
the Nostradamus attack. EUROCRYPT’ 06, LNCS,
4004 (2006), 183–200.

[10] R. RIVEST, Abelian square-freedithering for iterated
hash functions. ECRYPT Hash Function Workshop,
2005.

[11] A. ABROR, S. LEE, Y. LEE, Modified SHA-1 hash
function (mSHA-1). ITC-CSCC’ 09, (2009),
pp. 1320–1323.

[12] B. DEN BOER, A. BOSSELAERS, An attack on the
last two rounds of MD4. CRYPTO ’91, LNCS, 576
(1992), 194–203.

[13] H. DOBBERTIN, Cryptanalysis of MD4. FSE’ 96,
LNCS, 1039 (1996), 53–69.

[14] R. RIVEST, The MD5 message digest algorithm.
Request for Comments (RFC) 1321, Internet Engi-
neering Task Force, 1992.

[15] B. DEN BOER, A. BOSSELAERS, Collisions for the
compression function of MD5. EUROCRYPT ’93,
LNCS, 765 (1994), 293–304.

[16] H. DOBBERTIN, Cryptanalysis of MD5. EURO-
CRYPT’96, 1996.

[17] X. WANG, X. D. FENG, X. LAI, H. YU, Collisions
for hash functions MD4, MD5, HAVAL-128 and
RIPEMD. CRYPTO’ 04, 2004.

[18] NIST, Secure hash standard (SHS), Federal Infor-
mation Processing Standards 180, 1993.

[19] NIST, Secure hash standard (SHS), Federal Infor-
mation Processing Standards 180-1, 1995.

[20] NIST, Secure hash standard (SHS), Federal Infor-
mation Processing Standards 180-2, 2002.

[21] F. CHABAUD, A. JOUX, Differential collisions in
SHA-0. CRYPTO’98, LNCS, 1462 (1998), 56–71.

[22] E. BIHAM, R. CHEN, Near-collisions of SHA-0.
CRYPTO’04, LNCS, 3152 (2004), 290–305.

[23] E. BIHAM, R. CHEN, A. JOUX, P. CARRIBAULT, C.
LEMUET,W. JALBY, Collision of SHA-0 and reduced
SHA-1. EUROCRYPT’05, LNCS, 3494 (2005),
36–57.

[24] X. WANG, H. YU, Y. L. YIN, Efficient collision
search attacks on SHA-0. CRYPTO’ 05, LNCS,
3621 (2005), 1–16.

[25] V. RIJMEN, E. OSWALD, Update on SHA-1. RSA’05,
LNCS, 3376 (2005), 58–71.

[26] X. WANG, Y. L. YIN, H. YU, Finding collisions in
the full SHA-1. CRYPTO’ 05, LNCS, 3621 (2005),
17–36.

[27] H. DOBBERTIN, A. BOSSELAERS, B. PRENEEL,
RIPEMD-160– A strengthened version ofRIPEMD.
FSE’96, LNCS, 1039 (1996), 71–82.

[28] B. PRENEEL, The NIST SHA-3 Competition: A
perspective on the final year. AFRICACRYPT’11,
LNCS, 6737 (2011), 383-386.

[29] K. W. WONG, A combined chaotic cryptographic
and hashing scheme. Physics letters A, 307(5-6)
(2003), 292–298.

Received: July, 2013
Revised: November, 2013

Accepted: November, 2013

Contact addresses:

Harshvardhan Tiwari
Jaypee Institute of Information Technology (JIIT)

Noida (Uttar Pradesh)
India

e-mail: tiwari.harshvardhan@gmail.com

Krishna Asawa
Jaypee Institute of Information Technology (JIIT)

Noida (Uttar Pradesh)
India

HARSHVARDHAN TIWARI received his B.E. andM.Tech. degrees inCom-
puter Science and Engineering from RGPV University, India, in 2005
and 2009, respectively. Currently he is a PhD scholar at JIIT Univer-
sity. His research interests are computer network, algorithms, network
security and information security.

KRISHNA ASAWA is presently working with Jaypee Institute of Informa-
tion Technology (JIIT), Noida (Uttar Pradesh), India, in the capacity
of an Associate Professor. In 2002 Dr. Krishna received a PhD degree
in Computer Science from Banasthali Vidyapith, Deemed to be Univer-
sity, Banasthali (Rajasthan), India. She completed her post graduate
study (1993 in Computer Science) and her graduate study (1996 in
Electronics) at the Faculty of Engineering, Jai Narain Vyas University
Jodhpur (Rajasthan), India. Her area of interest and expertise includes
soft computation, information security, knowledge and data engineer-
ing, multi agent communication and its modelling, machine cognition
and its applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

