1,596 research outputs found

    Dynamic Implicit-Solvent Coarse-Grained Models of Lipid Bilayer Membranes : Fluctuating Hydrodynamics Thermostat

    Full text link
    Many coarse-grained models have been developed for equilibrium studies of lipid bilayer membranes. To achieve in simulations access to length-scales and time-scales difficult to attain in fully atomistic molecular dynamics, these coarse-grained models provide a reduced description of the molecular degrees of freedom and often remove entirely representation of the solvent degrees of freedom. In such implicit-solvent models the solvent contributions are treated through effective interaction terms within an effective potential for the free energy. For investigations of kinetics, Langevin dynamics is often used. However, for many dynamical processes within bilayers this approach is insufficient since it neglects important correlations and dynamical contributions that are missing as a result of the momentum transfer that would have occurred through the solvent. To address this issue, we introduce a new thermostat based on fluctuating hydrodynamics for dynamic simulations of implicit-solvent coarse-grained models. Our approach couples the coarse-grained degrees of freedom to a stochastic continuum field that accounts for both the solvent hydrodynamics and thermal fluctuations. We show our approach captures important correlations in the dynamics of lipid bilayers that are missing in simulations performed using conventional Langevin dynamics. For both planar bilayer sheets and bilayer vesicles, we investigate the diffusivity of lipids, spatial correlations, and lipid flow within the bilayer. The presented fluctuating hydrodynamics approaches provide a promising way to extend implicit-solvent coarse-grained lipid models for use in studies of dynamical processes within bilayers

    Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications

    Full text link
    This chapter summarizes several approaches combining theory, simulation and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse grained models that ensure a certain chemical specificity

    Coarse-grained simulation of transmembrane peptides in the gel phase

    Get PDF
    We use Dissipative Particle Dynamics simulations, combined with parallel tempering and umbrella sampling, to investigate the potential of mean force between model transmembrane peptides in the various phases of a lipid bilayer, including the low-temperature gel phase. The observed oscillations in the effective interaction between peptides are consistent with the different structures of the surrounding lipid phases

    The order-disorder transition in model lipid bilayers is a first-order hexatic to liquid phase transition

    Full text link
    We characterize the order-disorder transition in a model lipid bilayer using molecular dynamics simulations. We find that the ordered phase is hexatic. In particular, in-plane structures possess a finite concentration of 5-7 disclination pairs that diffuse throughout the plane of the bilayer, and further, in-plane structures exhibit long-range orientational order and short-range translational order. In contrast, the disordered phase is liquid. The transition between the two phases is first order. Specifically, it exhibits hysteresis, and coexistence exhibits an interface with capillary scaling. The location of the interface and its spatial fluctuations are analyzed with a spatial field constructed from a rotational-invariant for local 6-fold orientational order. As a result of finite interfacial tension, there necessarily exist associated forces of assembly between membrane-bound solutes that pre-melt the ordered phase.Comment: Addressed the comments from colleagues, corrected typos, clarified text, updated references. The new draft also contains new results relating to the hexatic phas

    Coarse-grained simulation of amphiphilic self-assembly

    Get PDF
    We present a computer simulation study of amphiphilic self assembly performed using a computationally efficient single-site model based on Gay-Berne and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer and inverse micelle arrangements can be readily achieved for a single model parameterisation. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as headgroup size and interaction strength also have measurable affects on system properties. </p

    Carbohydrate-derived amphiphilic macromolecules: a biophysical structural characterization and analysis of binding behaviors to model membranes.

    Get PDF
    The design and synthesis of enhanced membrane-intercalating biomaterials for drug delivery or vascular membrane targeting is currently challenged by the lack of screening and prediction tools. The present work demonstrates the generation of a Quantitative Structural Activity Relationship model (QSAR) to make a priori predictions. Amphiphilic macromolecules (AMs) "stealth lipids" built on aldaric and uronic acids frameworks attached to poly(ethylene glycol) (PEG) polymer tails were developed to form self-assembling micelles. In the present study, a defined set of novel AM structures were investigated in terms of their binding to lipid membrane bilayers using Quartz Crystal Microbalance with Dissipation (QCM-D) experiments coupled with computational coarse-grained molecular dynamics (CG MD) and all-atom MD (AA MD) simulations. The CG MD simulations capture the insertion dynamics of the AM lipophilic backbones into the lipid bilayer with the PEGylated tail directed into bulk water. QCM-D measurements with Voigt viscoelastic model analysis enabled the quantitation of the mass gain and rate of interaction between the AM and the lipid bilayer surface. Thus, this study yielded insights about variations in the functional activity of AM materials with minute compositional or stereochemical differences based on membrane binding, which has translational potential for transplanting these materials in vivo. More broadly, it demonstrates an integrated computational-experimental approach, which can offer a promising strategy for the in silico design and screening of therapeutic candidate materials

    General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Full text link
    Coarse-grained model for saturated (DCPC, DLPC, DMPC, DPPC, DSPC) and unsaturated (POPC, DOPC) phospholipids is introduced within the Single Chain Mean Field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120 degrees, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins
    corecore