591 research outputs found

    Wireless Powered Cooperative Relaying using NOMA with Imperfect CSI

    Full text link
    The impact of imperfect channel state (CSI) information in an energy harvesting (EH) cooperative non-orthogonal multiple access (NOMA) network, consisting of a source, two users, and an EH relay is investigated in this paper. The relay is not equipped with a fixed power source and acts as a wireless powered node to help signal transmission to the users. Closed-form expressions for the outage probability of both users are derived under imperfect CSI for two different power allocation strategies namely fixed and dynamic power allocation. Monte Carlo simulations are used to numerically evaluate the effect of imperfect CSI. These results confirm the theoretical outage analysis and show that NOMA can outperform orthogonal multiple access even with imperfect CSI.Comment: 6 pages, 6 figures, accepted in IEEE GLOBECOM 2018 NOMA Worksho

    Multi-points cooperative relay in NOMA system with N-1 DF relaying nodes in HD/FD mode for N user equipments with energy harvesting

    Get PDF
    Non-Orthogonal Multiple Access (NOMA) is the key technology promised to be applied in next-generation networks in the near future. In this study, we propose a multi-points cooperative relay (MPCR) NOMA model instead of just using a relay as in previous studies. Based on the channel state information (CSI), the base station (BS) selects a closest user equipment (UE) and sends a superposed signal to this UE as a first relay node. We have assumed that there are N UEs in the network and the N-th UE, which is farthest from BS, has the poorest quality signal transmitted from the BS compared the other UEs. The N-th UE received a forwarded signal from N - 1 relaying nodes that are the UEs with better signal quality. At the i-th relaying node, it detects its own symbol by using successive interference cancellation (SIC) and will forward the superimposed signal to the next closest user, namely the (i + 1)-th UE, and include an excess power which will use for energy harvesting (EH) intention at the next UE. By these, the farthest UE in network can be significantly improved. In addition, closed-form expressions of outage probability for users over both the Rayleigh and Nakagami-m fading channels are also presented. Analysis and simulation results performed by Matlab software, which are presented accurately and clearly, show that the effectiveness of our proposed model and this model will be consistent with the multi-access wireless network in the future.Web of Science82art. no. 16

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Throughput analysis of non-orthogonal multiple access and orthogonal multiple access assisted wireless energy harvesting K-hop relaying networks

    Get PDF
    This study introduces the non-orthogonal multiple access (NOMA) technique into the wireless energy harvesting K-hop relay network to increase throughput. The relays have no dedicated energy source and thus depend on energy harvested by wireless from a power beacon (PB). Recently, NOMA has been promoted as a technology with the potential to enhance connectivity, reduce latency, increase fairness amongst users, and raise spectral effectiveness compared to orthogonal multiple access (OMA) technology. For performance considerations, we derive exact throughput expressions for NOMA and OMA-assisted multi-hop relaying and compare the performance between the two. The obtained results are validated via Monte Carlo simulations
    • …
    corecore