180 research outputs found

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis

    Sampling Sparse Signals on the Sphere: Algorithms and Applications

    Get PDF
    We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used in array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct KK spikes from (K+K)2(K+\sqrt{K})^2 spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large KK. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.Comment: 14 pages, 8 figures, submitted to IEEE Transactions on Signal Processin

    Probabilistic Modeling Paradigms for Audio Source Separation

    Get PDF
    This is the author's final version of the article, first published as E. Vincent, M. G. Jafari, S. A. Abdallah, M. D. Plumbley, M. E. Davies. Probabilistic Modeling Paradigms for Audio Source Separation. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 7, pp. 162-185. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch007file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04file: VincentJafariAbdallahPD11-probabilistic.pdf:v\VincentJafariAbdallahPD11-probabilistic.pdf:PDF owner: markp timestamp: 2011.02.04Most sound scenes result from the superposition of several sources, which can be separately perceived and analyzed by human listeners. Source separation aims to provide machine listeners with similar skills by extracting the sounds of individual sources from a given scene. Existing separation systems operate either by emulating the human auditory system or by inferring the parameters of probabilistic sound models. In this chapter, the authors focus on the latter approach and provide a joint overview of established and recent models, including independent component analysis, local time-frequency models and spectral template-based models. They show that most models are instances of one of the following two general paradigms: linear modeling or variance modeling. They compare the merits of either paradigm and report objective performance figures. They also,conclude by discussing promising combinations of probabilistic priors and inference algorithms that could form the basis of future state-of-the-art systems

    Single-Microphone Speech Enhancement Inspired by Auditory System

    Get PDF
    Enhancing quality of speech in noisy environments has been an active area of research due to the abundance of applications dealing with human voice and dependence of their performance on this quality. While original approaches in the field were mostly addressing this problem in a pure statistical framework in which the goal was to estimate speech from its sum with other independent processes (noise), during last decade, the attention of the scientific community has turned to the functionality of human auditory system. A lot of effort has been put to bridge the gap between the performance of speech processing algorithms and that of average human by borrowing the models suggested for the sound processing in the auditory system. In this thesis, we will introduce algorithms for speech enhancement inspired by two of these models i.e. the cortical representation of sounds and the hypothesized role of temporal coherence in the auditory scene analysis. After an introduction to the auditory system and the speech enhancement framework we will first show how traditional speech enhancement technics such as wiener-filtering can benefit on the feature extraction level from discriminatory capabilities of spectro-temporal representation of sounds in the cortex i.e. the cortical model. We will next focus on the feature processing as opposed to the extraction stage in the speech enhancement systems by taking advantage of models hypothesized for human attention for sound segregation. We demonstrate a mask-based enhancement method in which the temporal coherence of features is used as a criterion to elicit information about their sources and more specifically to form the masks needed to suppress the noise. Lastly, we explore how the two blocks for feature extraction and manipulation can be merged into one in a manner consistent with our knowledge about auditory system. We will do this through the use of regularized non-negative matrix factorization to optimize the feature extraction and simultaneously account for temporal dynamics to separate noise from speech

    Musical source separation using time-frequency source priors

    Full text link

    Signal compaction using polynomial EVD for spherical array processing with applications

    Get PDF
    Multi-channel signals captured by spatially separated sensors often contain a high level of data redundancy. A compact signal representation enables more efficient storage and processing, which has been exploited for data compression, noise reduction, and speech and image coding. This paper focuses on the compact representation of speech signals acquired by spherical microphone arrays. A polynomial matrix eigenvalue decomposition (PEVD) can spatially decorrelate signals over a range of time lags and is known to achieve optimum multi-channel data compaction. However, the complexity of PEVD algorithms scales at best cubically with the number of channel signals, e.g., the number of microphones comprised in a spherical array used for processing. In contrast, the spherical harmonic transform (SHT) provides a compact spatial representation of the 3-dimensional sound field measured by spherical microphone arrays, referred to as eigenbeam signals, at a cost that rises only quadratically with the number of microphones. Yet, the SHT’s spatially orthogonal basis functions cannot completely decorrelate sound field components over a range of time lags. In this work, we propose to exploit the compact representation offered by the SHT to reduce the number of channels used for subsequent PEVD processing. In the proposed framework for signal representation, we show that the diagonality factor improves by up to 7 dB over the microphone signal representation with a significantly lower computation cost. Moreover, when applying this framework to speech enhancement and source separation, the proposed method improves metrics known as short-time objective intelligibility (STOI) and source-to-distortion ratio (SDR) by up to 0.2 and 20 dB, respectively

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK
    • …
    corecore